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Abstract
Divisor cordial labeling is a variant of cordial labeling. We investigate divisor cordial labeling for Armed Crown,
Closed Helm, Web graph and one point union of Cycles.
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1. Introduction
We begin with simple, finite, connected and undirected

graph G = (V (G),E(G)). For all standard terminology and
notation we follow Clark and Holton [9]. We will give brief
summary of definitions which are useful for the present inves-
tigations.

Definition 1.1. A graph labeling is an assignment of integers
to the vertices or edges or both subject to certain condition(s).
If the domain of the mapping is the set of vertices (or edges)
then the labeling is called a vertex labeling (or edge labeling).

Labeled graph have applications in many diversified field
such as X-Ray crystallography, network design, missile guid-
ance codes etc. A detailed study on verity of applications of
graph labeling is reported in Bloom and Golomb [4].

For an extensive survey on graph labeling and biblio-
graphic references we refer to Gallian [8].

In 1987, Cahit [7] introduced cordial labeling as a weaker
version of graceful labeling and harmonious labeling. Many
variants of cordial labeling are also introduced with variation

in cordial condition. These labeling are known as equitable
labeling.

Definition 1.2. For a graph G = (V (G),E(G)), the vertex
labeling function is defined as f : V (G)→{0,1} and induced
edge labeling function f ∗ : E(G)→{0,1} such that for each
edge uv, f ∗(uv) = | f (u)− f (v)|. f is called cordial labeling
of graph G if the number of vertices labeled with 0 and the
number of vertices labeled with 1 differ by at most 1, and
the number of edges labeled with 0 and the number of edges
labeled with 1 differ by at most 1. The graph that admits a
Cordial Labeling is called a Cordial Graph.

In 2011, R. Varatharajan et al. [18] have introduced divi-
sor cordial labeling as follows.

Definition 1.3. For a graph G = (V (G),E(G)), the vertex la-
beling function is defined as a bijection f : V (G)→{1,2, . . . ,
|V (G)|} such that an edge uv is assigned the label 1 if one
f (u) or f (v) divides the other and 0 otherwise. f is called
Divisor cordial labeling of graph G if the number of edges
labeled with 0 and the number of edges labeled with 1 differ
by at most 1. The graph that admits a Divisor cordial labeling
is called a Divisor cordial graph. Denote the number of edges
labeled with 0 and 1 by E f (0) and E f (1) respectively.

Varatharajan et al. [18, 19] have derived many results
related to divisor cordial graphs for standard graph families.
Vaidya and Shah [20, 21] have investigated divisor cordial
labeling for some star related graphs.
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Bosamia and Kanani [12, 13] discussed divisor cordial
labeling in the context of some graph operations. Raj and
Manoharan [14, 15] have discussed divisor cordial labeling
for some disconnected graphs while Raj and Valli [16] as
well as Maya and Nicholas [17] have obtained divisor cordial
labeling for some new graph families. Ghodasara and Adalja
[5, 6] have obtained divisor cordial labeling in the context of
some graph operations.

Murugan and Devakiruba [3] as well as Rokad and Gho-
dasara [1] have obtained divisor cordial labeling for some
cycle related graphs. Divisor cordial labeling for duplication
of graph elements is studied by Thirusangu and Madhu[11].
Devaraj et. al.[10] as well as Muthaiyan and Pugalenthi[2]
obtained results related to divisor cordial labeling.

Definition 1.4. A crown graph is cycle with a pendent edge
attached at each vertex.

Definition 1.5. The armed crown is a graph in which path P2
is attached at each vertex of cycle Cn by an edge. It is denoted
by ACn where n is the number of vertices of cycle Cn.

Definition 1.6. The helm graph Hn is the graph obtained from
a wheel Wn by attaching a pendent edge at each vertex of the
cycle.

Definition 1.7. A closed helm is the graph obtained from a
helm by joining each pendent vertex to form a cycle. It is
denoted by CHn.

Definition 1.8. A web graph Wbn is the graph obtained by
joining the pendent vertices of a helm to form a cycle and
then adding a single pendent edge to each vertex of this outer
cycle.

Definition 1.9. A One Point Union of Cycles is consists of t
copies of cycle Cn sharing a common vertex. It is denoted by
C(t)

n .

In the present paper we have investigated divisor cordial
labeling for armed crown, closed helm, web graph and one
point union of cycles.

2. Main Results
Theorem 2.1. The armed crown ACn is a divisor cordial
graph.

Proof. Consider the graph ACn with the vertex set V (ACn) and
an edge set E(ACn) then |V (ACn)|= 3n and |E(ACn)|= 3n.

We define the divisor cordial labeling f : V (ACn)→{1,2,
. . . ,3n} as follows:

f (v3n−2) = 1,

f (vi) = 2i;
for 1≤ i≤ p1 such that 2i ≤ 3n,

Let p1 = 3k1 + r1;0≤ r1 ≤ 2;

f (vi+3(k1+br1/2c)) = 3×2i−1;

for 1≤ i≤ p2 such that 3×2i−1 ≤ 3n,

Let p2 = 3k2 + r2;0≤ r2 ≤ 2;
f (vi+3(k1+br1/2c)+3(k2+br2/2c)) = 5×2i−1;

for 1≤ i≤ p3 such that 5×2i−1 ≤ 3n,

Let p3 = 3k3 + r3;0≤ r3 ≤ 2;
f (vi+3(k1+br1/2c)+3(k2+br2/2c)+3(k3+br3/2c)) = 7×2i−1;

for 1≤ i≤ p4 such that 7×2i−1 ≤ 3n.

Continuing in this way till we get b3n/2c edges with label
1. Now for remaining vertices label them in such a way that it
does not divide the label of adjacent vertices.

In view of above defined labeling pattern we have E f (0) =
d3n/2e, E f (1) = b3n/2c. Thus |E f (0)−E f (1)| ≤ 1.

Hence the graph armed crown ACn is a divisor cordial
graph.

Example 2.2. The armed crown AC5 and its divisor cordial
labeling is shown in Figure 1.

v1

v2
v3

v4

v5

v6

v7

v8

v9

v10
v11

v12

v13

v14

v15

2

4 8

3
6

12
5

9

10

7

1

14

15

11

13

1 0

1

1

1

10

0

0

0
0

0

1

1

0

Figure 1: Armed Crown AC5 and its divisor cordial labeling.

Theorem 2.3. The Closed Helm CHn is a divisor cordial
graph.

Proof. Consider the graph CHn with the vertex set V (CHn)
and an edge set E(CHn) then |V (CHn)|= 2n+1 and |E(CHn)|
= 4n.

We define the divisor cordial labeling f : V (CHn)→{1,2,
. . . ,2n+1} in following two cases.

Case 1: For n < 8.

967
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Figure 2: Closed helm CH3 and its divisor cordial labeling.
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Figure 3: Closed helm CH4 and its divisor cordial labeling.
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Figure 4: Closed helm CH5 and its divisor cordial labeling.
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Figure 5: Closed helm CH6 and its divisor cordial labeling.
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Figure 6: Closed helm CH7 and its divisor cordial labeling.

Case 2: For n≥ 8.
f (v2n+1) = 1,

f (vi) = 2i;
for 1≤ i≤ p1 such that 2i ≤ 2n+1,

Let p1 = 2k1 + r1;0≤ r1 ≤ 1;
f (vi+2(k1+r1)) = 3×2i−1;
for 1≤ i≤ p2 such that 3×2i−1 ≤ 2n+1,

Let p2 = 2k2 + r2;0≤ r2 ≤ 1;
f (vi+2(k1+r1)+2(k2+r2)) = 5×2i−1;
for 1≤ i≤ p3 such that 5×2i−1 ≤ 2n+1,

Let p3 = 2k3 + r3;0≤ r3 ≤ 1;
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f (vi+2(k1+r1)+2(k2+r2)+2(k3+r3)) = 7×2i−1;
for 1≤ i≤ p4 such that 7×2i−1 ≤ 2n+1.

Continuing in this way till we get 2n edges with label 1.
Now for remaining vertices label them in such a way that it
does not divide the label of adjacent vertices.

In the view of above defined labeling pattern we have
E f (0) = 2n, E f (1) = 2n. Thus |E f (0)−E f (1)| ≤ 1.

Hence, the graph closed helm CHn is a divisor cordial
graph.

Example 2.4. The Closed Helm CH8 and its divisor cordial
labeling is shown in Figure 7.
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Figure 7: Closed helm CH8 and its divisor cordial labeling.

Theorem 2.5. The Web graph Wbn is a divisor cordial graph.

Proof. Consider the graph Wbn with the vertex set V (Wbn)
and an edge set E(Wbn) then |V (Wbn)|= 3n+1 and |E(Wbn)|
= 5n.

We define the divisor cordial labeling f : V (Wbn) →
{1,2, . . . ,3n+1} in following two cases.

Case 1: For n = 4,6,8,10.
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Figure 8: Web graph Wb4 and its divisor cordial labeling.
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Figure 9: Web graph Wb6 and its divisor cordial labeling.
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Figure 10: Web graph Wb8 and its divisor cordial labeling.
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Figure 11: Web graph Wb10 and its divisor cordial labeling.

Case 2: For n 6= 4,6,8,10.
f (v3n+1) = 1,

f (vi) = 2i;
for 1≤ i≤ p1 such that 2i ≤ 3n+1,

Let p1 = 3k1 + r1;0≤ r1 ≤ 2;
f (vi+3(k1+br1/2c)) = 3×2i−1;
for 1≤ i≤ p2 such that 3×2i−1 ≤ 3n+1,

Let p2 = 3k2 + r2;0≤ r2 ≤ 2;
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f (vi+3(k1+br1/2c)+3(k2+br2/2c)) = 5×2i−1;
for 1≤ i≤ p3 such that 5×2i−1 ≤ 3n+1,

Let p3 = 3k3 + r3;0≤ r3 ≤ 2;
f (vi+3(k1+br1/2c)+3(k2+br2/2c)+3(k3+br3/2c)) = 7×2i−1;
for 1≤ i≤ p4 such that 7×2i−1 ≤ 3n+1.

Continuing in this way till we get b5n/2c edges with label
1. Now for remaining vertices label them in such a way that it
does not divide the label of adjacent vertices.

In the view of the above defined labeling pattern we have
E f (0) = d5n/2e, E f (1) = b5n/2c. Thus |E f (0)−E f (1)| ≤ 1.

Hence, the web graph Wbn is a divisor cordial graph.

Example 2.6. The Web Graph Wb5 and its divisor cordial
labeling is shown in Figure 12.
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Figure 12: Web graph Wb5 and its divisor cordial labeling.

Theorem 2.7. The graph C(t)
3 is a divisor cordial graph.

Proof. Consider the graph C(t)
3 with the vertex set V (C(t)

3 ) and

an edge set E(C(t)
3 ) then |V (C(t)

3 )|= 2t +1 and |E(C(t)
3 )|= 3t.

We define the divisor cordial labeling f : V (C(t)
3 )→{1,2,

. . . ,2t +1} as follows:
f (v1) = 1,
f (v2t+1) = 2,
f (v2i) = 2i; for 2≤ i≤ t,
f (v4i+1) = 2i+1; for i≥ 1 such that 2i+1≤ 2t +1.
Continuing in this way till we get b3t/2c edges with label

1. Now for remaining vertices label them in such a way that it
does not divide the label of adjacent vertices.

In the view of above defined labeling pattern we have
E f (0) = d3t/2e, E f (1) = b3t/2c. Thus |E f (0)−E f (1)| ≤ 1.

Hence, The graph C(t)
3 is a divisor cordial graph.

Example 2.8. The graph C(5)
3 and its divisor cordial labeling

is shown in Figure 13.
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Figure 13: The graph C(5)
3 and its divisor cordial labeling.

Theorem 2.9. The graph C(t)
4 is a divisor cordial graph.

Proof. Consider the graph C(t)
4 with the vertex set V (C(t)

4 ) and
an edge set E(C(t)

4 ) then |V (C(t)
4 )|= 3t+1 and |E(C(t)

4 )|= 4t.
We define the divisor cordial labeling f : V (C(t)

4 )→{1,2, . . . ,
3t +1} as follows:

f (v3t+1) = 1

In this way we get 2t edges with label 1. Now for remain-
ing vertices label them in such a way that it does not divide
the label of adjacent vertices.

In view of above define labeling pattern we have E f (0) =
2t, E f (1) = 2t. Thus |E f (0)−E f (1)| ≤ 1.

Hence, The graph C(t)
4 is a divisor cordial graph.

Example 2.10. The graph C(4)
4 and its divisor cordial label-

ing is shown in Figure 14.
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Figure 14:The graph C(4)
4 and its divisor cordial labeling.

Theorem 2.11. The graph C(t)
n is a divisor cordial graph for

n≥ 5.
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Proof. Consider the graph C(t)
n with the vertex set V (C(t)

n )

and an edge set E(C(t)
n ) then |V (C(t)

n )| = (n− 1)t + 1 and
|E(C(t)

n )|= nt.

We define the divisor cordial labeling f : V (C(t)
n )→{1,2,

. . . ,(n−1)t +1} in following two cases:

Case 1: For 5≤ n≤ 9

f (v(n−1)t+1) = 1,

f (vi) = 2i;

for 1≤ i≤ p1 such that 2i ≤ (n−1)t +1,

Let p1 = (n−1)k1 + r1;0≤ r1 ≤ (n−2);

f (vi+(n−1)(k1+br1/(n−2)c)) = 3×2i−1;

for 1≤ i≤ p2 such that 3×2i−1 ≤ (n−1)t +1,

Let p2 = (n−1)k2 + r2;0≤ r2 ≤ (n−2);

f (vi+(n−1)(k1+br1/(n−2)c)+(n−1)(k2+br2/(n−2)c)) = 5×2i−1;

for 1≤ i≤ p3 such that 5×2i−1 ≤ (n−1)t +1,

Continuing in this way till we get bnt/2c edges with label
1. Now for remaining vertices label them in such a way that it
does not divide the label of adjacent vertices.

Case 2: For n≥ 10

f (vi) = 2i−1;

for 1≤ i≤ p1 such that 2i−1 ≤ (n−1)t +1,

f (vi+p1) = 3×2i−1;

for 1≤ i≤ p2 such that 3×2i−1 ≤ (n−1)t +1,

f (vi+p1+p2) = 5×2i−1;

for 1≤ i≤ p3 such that 5×2i−1 ≤ (n−1)t +1,

f (vi+p1+p2+p3) = 7×2i−1;

for 1≤ i≤ p4 such that 7×2i−1 ≤ (n−1)t +1.

Continuing in this way till we get bnt/2c edges with label
1. Now for remaining vertices label them in such a way that it
does not divide the label of adjacent vertices.

In view of above defined labeling pattern we have E f (0) =
dnt/2e, E f (1) = bnt/2c. Thus |E f (0)−E f (1)| ≤ 1.

Hence, The graph C(t)
n is a divisor cordial graph.

Example 2.12. The graph C(3)
7 and its divisor cordial label-

ing is shown in Figure 15.
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Figure 15: The graph C(3)
7 and its divisor cordial labeling.

3. Conclusion
In this paper we have investigated divisor cordial labeling
of Armed Crown, Closed Helm, Web Graph and One Point
Union of Cycle. To investigate analogous results for different
graphs as well as in the context of various graph labeling
problems is an open area of research.
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