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Abstract
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1. Introduction
Kasahara [2] introduced the notion of an operation γ in

1979. The notion of γ-open sets were introduced and inves-
tigated by Ogata [4] in 1991. Ibrahim [3] introduced the
concept of b-γ-open set by using the operation γ . Further, he
continued studying the weak forms of γ-open sets in his work.
Andrijevic [1] introduced the notion of b-open sets in 1996.
In [5], Sivashanmugaraja and Vadivel introduced the notion of
fuzzy b-γ-open sets. The aim of this paper is to analyze some
properties of b-γ-open sets in a topological space. Further
the concepts of b-γ-boundary, b-γ-exterior, b-γ-limit point,
b-γ-neighborhood, b-γ-generalized closed set and locally b-
γ-closed spaces are introduced. Also, the relationship among
these sets are discussed.

2. Preliminaries
Throughout this paper, (X , τ) or X always mean topolog-

ical space.

Definition 2.1. [4] Let (X ,τ) be a space and γ be an oper-
ation on τ. A⊆ X is called γ-open if ∀ x ∈ A, ∃ an open set
U such that x ∈U and γ(U) ⊆ A. Then the collection of all
γ-open sets in X are denoted by τγ . Evidently τγ ⊆ τ. A subset
A of X is called γ-closed⇔ its complement is γ-open.

Definition 2.2. [4] Let (X ,τ) be a space and γ be an oper-
ation on τ. Then X is said to be γ-regular, if ∀ x ∈ X and ∀
open neighborhood V of x, ∃ an open neighborhood U of x,
such that γ(U)⊆V. A space X is γ-regular space⇔ τ = τγ .

Definition 2.3. [3] Let (X ,τ) be a space. A⊆ X is said to be
b-γ-open if A⊆ τγ -int(cl(A))∪ cl(τγ -int(A)).

Definition 2.4. [1] Let (X ,τ) be a space. A⊆ X is said to be
b-open if A⊆ int(cl(A))∪ cl(int(A)).

Definition 2.5. [3] Let (X ,τ) be a space with an operation γ

on the topology τ. Then the intersection of two b-γ-open sets
may not be b-γ-open.

Definition 2.6. [3] Let (X ,τ) be a space with an operation
γ on the topology τ. Then if {Ai : i ∈ ∆} is a collection of
b-γ-open sets of a space (X ,τ), then ∪i∈∆Ai is a b-γ-open set.

3. b-γ-open and b-γ-closed sets

Remark 3.1. Let (X ,τ) be a space and B is a subset of X .
Then B is said to be b-γ-closed⇔ Bc is b-γ-open.

Further, the set of all b-γ-open sets and b-γ-closed sets of
(X ,τ) are denoted by b-γO(X) and b-γC(X) respectively.
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Definition 3.2. Let (X , τ) be a space and A ⊆ X . Then the
b-γ-closure of A (briefly, bclγ(A)) is given by bclγ(A) =

⋂
{B :

A⊆ B and B ∈ b-γC(X)}.

Definition 3.3. Let (X , τ) be a space and A⊆ X . Then the b-
γ-interior of A (briefly, bintγ(A)) is given by bintγ(A) =

⋃
{B :

A⊇ B and B ∈ b-γO(X)}.

Theorem 3.4. Let (X ,τ) be a space with an operation γ on
the topology τ. Then the below statements hold:

(i) Each γ-open set of (X ,τ) is b-γ-open set in (X ,τ);

(ii) Each b-γ-open set of (X ,τ) is b-open set in (X ,τ).

Proof. (i) Let B is a γ-open set. Then B = τγ -int(B). Since,
B⊆ cl(B), B⊆ cl(τγ -int(B))⊆ cl(τγ -int(B))∪τγ -int(cl(B)).
Therefore, B is b-γ-open.

(ii) Evident.

Remark 3.5. The converse of the above Theorem 3.4 may not
be true as shown in the below examples.

Example 3.6. Let X = {a,b,c} and τX = {X ,φ ,{a,c}}.
Define an operation γ on τX by γ(B) = B. Here, the set {b,c}
is not γ-open but it is b-γ-open.

Example 3.7. Let X = {a,b,c} and σ = {X ,φ ,{a},{b},{a,b},
{b,c}}. Define an operation γ on σ by

γ(B) =

{
B, if B = {b}
X , if B 6= {b}.

(3.1)

Then the set {a} is b-open but not b-γ-open.

Remark 3.8. The notion of b-open and b-γ-open sets are
independent. A space X is γ-regular space⇔ The sets b-open
and b-γ-open are equal.

Definition 3.9. In the above Example 3.7, the set of all γ-open
sets τγ = {X ,φ ,{b}}. Here, b-γ-open and b-open sets are not
equal. Again, suppose we define γ on τ by γ(B) = B, then the
sets b-γ-open and b-open are equal.

Proposition 3.10. Let B and C be two subsets of a space
(X ,τ) with an operation γ on the topology τ. Then the below
statements hold:

(i) bclγ( /0) = /0 and bclγ(X) = X ;

(ii) B is a b-γ-closed⇔ bclγ(B) = B;

(iii) bclγ(B) is a b-γ-closed set of (X ,τ) and B⊆ bclγ(B);

(iv) If B⊂C, then bclγ(B)⊂ bclγ(C);

(v) bclγ(B)∪bclγ(C)⊂ bclγ(B∪C);

(vi) bclγ(B∩C)⊂ bclγ(B)∩bclγ(C).

Proof. Evident.

Proposition 3.11. Let B and C be two subsets of a space
(X ,τ) with an operation γ on the topology τ. Then the below
statements hold:

(i) bintγ( /0) = /0 and bintγ(X) = X ;

(ii) B is a b-γ-open⇔ bintγ(B) = B;

(iii) bintγ(B) is a b-γ-open set of (X ,τ) and bintγ(B)⊆ B;

(iv) If B⊂C, then bintγ(B)⊂ bintγ(C);

(v) bintγ(B)∪bintγ(C)⊂ bintγ(B∪C);

(vi) bintγ(B∩C)⊂ bintγ(B)∩bintγ(C).

Proof. Evident.

Proposition 3.12. Let B⊆X with an operation γ on the topol-
ogy τ. Then the below statements holds:

(i) intγ(B)⊆ int(B)⊆ bint(B)⊆B⊆ bcl(B)⊆ cl(B)⊆ clγ(B);

(ii) intγ(B)⊆ bintγ(B)⊆ bint(B)⊆ B⊆ bcl(B)⊆ bclγ(B)⊆
clγ(B).

Proposition 3.13. Let B⊆X with an operation γ on the topol-
ogy τ. Then the below statements are equivalent:

(i) B is a b-γ-open set in (X ,τ);

(ii) X \B is a b-γ-closed set in (X ,τ);

(iii) bclγ(X \B) = X \B.

Proof. Evident.

Proposition 3.14. Let B⊆X with an operation γ on the topol-
ogy τ. Then the below statements are equivalent:

(i) B is a b-γ-closed set in (X ,τ);

(ii) X \B is a b-γ-open set in (X ,τ);

(iii) bintγ(X \B) = X \B;

Proof. Evident.

4. b-γ-boundary and b-γ-exterior

Definition 4.1. Let C be a subset of a space (X ,τ). Then the
b-γ-boundary of C (briefly, b-γbd(C)) is given by b-γbd(C) =
bclγ(C)∩bclγ(X \C).

Theorem 4.2. Let (X ,τ) be a space and B ⊆ X . Then the
below statements are hold:

(1) b-γbd(B) = b-γbd(X \B);

(2) b-γbd(B) = bclγ(B)\bintγ(B);

(3) b-γbd(B)∩bintγ(B) = φ ;

(4) b-γbd(B)∪bintγ(B) = bclγ(A).
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Proof. (1) Evident from Definition 4.1
(2) By definition, b-γbd(B) = bclγ(B)∩ bclγ(X \ B) =

bclγ(B)∩ [X \bintγ(B)] = [bclγ(B)∩X ]\ [bclγ(B)∩bintγ(B)]
= bclγ(B)\bintγ(B).

(3) Also, by using (2), b-γbd(B)∩ bintγ(B) = [bclγ(B) \
bintγ(B)]∩bintγ(B) = [bclγ(B)∩bintγ(B)]\bintγ(B) = bintγ(B)
\bintγ(B) = φ .

(4) By using (3), b-γbd(B)∪bintγ(B)= [bclγ(B)\bintγ(B)]
∪bintγ(B) = bclγ(B).

Theorem 4.3. Let (X ,τ) be a space and B ⊆ X . Then the
below statements are hold:

(i) The set B is a b-γ-open⇔ B∩b-γbd(B) = φ ;

(ii) The set B is a b-γ-closed⇔ b-γbd(B)⊂ B;

(iii) The set B is a b-γ-clopen⇔ b-γbd(B) = φ .

Proof. (i) Suppose that B be a b-γ-open set. Then B= bintγ(B),
Thus B∩ b-γbd(B) = bintγ(B)∩ b-γbd(B) = φ . Conversely,
let B∩b-γbd(B) = φ . Then by Theorem 4.2, B∩ [bclγ(B) \
bintγ(B)] = [B∩bclγ(B)]\ [B∩bintγ(B)] = B\bintγ(B) = φ .
So, B = bintγ(B) and hence B is b-γ-open.

(ii) Suppose that B be a b-γ-closed set. Then B = bclγ(B).
But b-γbd(B)= bclγ(B) \ bintγ(B) = B \ bintγ(B). Therefore
b-γbd(B)⊂ B. Conversely, consider b-γbd(B)⊂ B. By Theo-
rem 4.2, bclγ(B) = b-γbd(B) ∪ bintγ(B)⊂ B∪bintγ(B) = B.
Therefore bclγ(B)⊂ B and B⊂ bclγ(B). Hence, B = bclγ(B).
Thus B is b-γ-closed.

(iii) Suppose that B be a b-γ-clopen set. Then B= bintγ(B)
and also B = bclγ(B). Then by Theorem 4.2, b-γbd(B) =
bclγ(B) \ bintγ(B) = B \B = φ . Conversely, assume that b-
γbd(B) = φ . Then b-γbd(B) = bclγ(B) \ bintγ(B) = φ and
hence, B is b-γ-clopen.

Definition 4.4. Let (X ,τ) be a space and B be a subset of a
space X . Then the set X \bclγ(B) is said to be b-γ-exterior of
B and is denoted by b-γext(B). Every point x ∈ X is said to be
a b-γ-exterior point of B, if it is a b-γ-interior point of X \B.

Definition 4.5. Let (X ,τ) be a space and N be a subset of a
space X . N is said to be a b-γ-neighborhood of a point x ∈ X
if ∃ a b-γ-open set P such that x ∈ P⊆ N.

The class of all b-γ-nbds of x ∈ X is called the
b-γ-neighborhood system of x and it is denoted by b-γ-Nx.

Theorem 4.6. Let B and C are two subsets of a space (X ,τ).
Then the below statements are hold:

(i) b-γext(φ) = X and b-γext(X) = φ ;

(ii) b-γext(B) = bintγ(X \B);

(iii) b-γext(B)∩b-γbd(B) =φ ;

(iv) b-γext(B)∪b-γbd(B) = bclγ(X \B);

(v) {bintγ(B), b-γbd(B) and b-γext(B)} form a partition of
X ;

(vi) If B⊂C, then b-γext(C)⊂ b-γext(B);

(vii) b-γext(B∪C)⊂ b-γext(B)∪b-γext(C);

(viii) b-γext(B∩C)⊃ b-γext(B)∩b-γext(C).

Proof. (i) Evident.
(ii) Evident from Definition 4.4

(iii) From statement (ii) and Theorem 4.2, we have b-
γext(B)∩b-γbd(B) = bintγ(X \B)∩ b-γbd(X \B) = φ .

(iv) Also, From statement (ii) and Theorem 4.2, we have b-
γext(B)∪ b-γbd(B) = bintγ(X \B)∪ b-γbd(X \B) = bclγ(X \
B).

(v) and (vi) Evident.
(vii) By definition, b-γext(B∪C) = X \ bclγ(B∪C) ⊂

X \ [bclγ(B)∪ bclγ(C)] = [X \ bclγ(B)]∩ [X \ bclγ(C)] = b-
γext(B)∩b-γext(C)⊂ b-γext(B)∪ b-γext(C).

(viii) Also by definition, b-γext(B∩C) = X \ bclγ(B∩
C)⊃ X \ [bclγ(B)∩bclγ(C)] = [X \bclγ(B)]∪ [X \bclγ(C)] =
b-γext(B)∪b-γext(C)⊃ b-γext(B)∩b-γext(C).

Remark 4.7. In the above Theorem 4.6, the inclusion relation
of the statement (vi), (vii) cannot be replaced by equality as
shown in the below example.

Example 4.8. Let X = {a,b,c}with topology τX = {X ,φ ,{a},
{b},{a,b},{b,c}}. Define an operation γ on τX by

γ(B) =

{
int(cl(B)), if a ∈ B
cl(B), if a /∈ B.

(4.1)

Let C = {a,b} and D = {b,c}. Then b-γext(C) = φ and b-
γext(D) = {a}. But b-γext(C ∪D) = φ , So, b-γext(C)∪ b-
γext(D) 6⊂ b-γext(C∪D). Also, b-γext(C∩D) = {a}. There-
fore, b-γext(C∩D) 6⊂ b-γext(C)∩b-γext(D).

Definition 4.9. Let X be a space and B ⊆ X . Then a point
x ∈ X is said to be a b-γ-limit point of a set B ⊂ X if every
b-γ-open set P⊂ X containing x contains a point of B other
than x.

The collection of all b-γ-limit points of B is said to be a
b-γ-derived set of B and it is mentioned by b-γDs(B).

Proposition 4.10. Let B be a subset of a space (X ,τ). Then,
the below statements are hold:

(i) The set B is b-γ-closed⇔ b-γDs(B)⊂ B;

(ii) The set B is b-γ-open⇔ B is b-γ-neighborhood, ∀ point
x ∈ B;

(iii) bclγ(B) = B∪b-γDs(B).

Proof. (i) Let B be a b-γ-closed set and x∈ B. Then x∈ X \B,
which is open. Thus ∃ a b-γ-open set (X \B) such that (X \
B)∩B = φ . Therefore x /∈ b-γDs(B). Thus, b-γDs(B)⊂ B.

Conversely, assume that b-γDs(B)⊂ B and x /∈ B. Then
x /∈ b-γDs(B). Thus ∃ a b-γ-open set V containing x such that
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V ∩B = φ . Therefore X \B =
⋃

x∈B
{K,K is b-γ-open }. Hence,

B is b-γ-closed.
(ii) Let B be a b-γ-open set. Then B is a b-γ-neighborhood,

∀ x ∈ B.
Conversely, let B be a b-γ-neighborhood, ∀ x ∈G. Then ∃

a b-γ-open set Vx containing x such that x ∈Vx ⊆ B. Therefore
B =

⋃
x∈G

Vx. Thus, B is a b-γ-open.

(iii) Since, b-γDs(B) ⊂ bclγ(B) and B ⊂ bclγ(B), B∪ b-
γDs(B)⊂ bclγ(B).

Conversely, assume that x /∈ b-γDs(B)∪B. Then x /∈ b-
γDs(B), x /∈ B. Then ∃ a b-γ-open set V containing x such
that V ∩B = φ . Therefore x /∈ bclγ(B) which implies that
bclγ(B)⊂ B∪b-γDs(B). Thus, bclγ(B) = B∪b-γDs(B).

Theorem 4.11. Let B and C be two subsets of a space (X ,τ).
Then the below statements are hold:

(i) If B⊂C, then b-γDs(B)⊂ b-γDs(C).

(ii) B is a b-γ-closed set⇔ B contains each of its b-γ-limit
points.

(iii) bclγ(B) = B∪b-γDs(B).

Proof. (i) Evident.
(ii) If B be a b-γ-closed set, then X \B is b-γ-open. If

x /∈ B, then x ∈ X \B. Then ∃ a b-γ-open (X \B) such that
(X \B)∩B = φ . Therefore x /∈ b-γDs(B). Hence, b-γDs(B)⊂
B.

Conversely, assume that b-γDs(B) ⊂ B and x /∈ B. Then
x /∈ b-γDs(B). Then ∃ a b-γ-open set M containing x such that
M∩B = φ and therefore

X \B =
⋃

x∈B
{M, M is b-γ-open }.

Hence B is b-γ-closed.
(iii) Since, b-γDs(B)⊂ bclγ(B) and B⊂ bclγ(B), b-γDs(B)∪

B ⊂ bclγ(B). Conversely, assume that x /∈ b-γDs(B) ∪ B.
Then x /∈ b-γDs(B), x /∈ B. Then ∃ a b-γ-open set M con-
taining x such that M∩B = φ . Thus x /∈ bclγ(B). This gives
that bclγ(B) ⊂ b-γDs(B)∪B. Hence, bclγ(B) = b-γDs(B)∪
B.

Theorem 4.12. Let X be a space and B ⊆ X . B is b-γ-open
⇔ B is b-γ-neighborhood, ∀ point x ∈ H.

Proof. Let B be a b-γ-open set. Then clearly B is a b-γ-
neighborhood, ∀ x∈B. Conversely, let B be a b-γ-neighborhood,
∀ x ∈ B. Then ∃ a b-γ-open set Ux containing x such that x ∈
Ux ⊆ B. Therefore, B =

⋃
x∈B

Ux. Hence, B is a b-γ-open.

Theorem 4.13. Let (X ,τ) be space. If b-γ-Nx be the b-γ-
neighborhood systems of a point x ∈ X , then the below state-
ments are hold:

(1) Every member of b-γ-Nx contains a point x and b-γ-Nx is
not empty;

(2) Every superset of members of Nx belongs b-γ-Nx;

(3) Every member N ∈ b-γ-Nx is a superset of a member
V ∈b-γ-Nx, where V is b-γ-neighborhood of every point
x ∈V.

Proof. Evident.

Definition 4.14. Let X be a space. B ⊆ X is called locally
b-γ-closed if B =V ∩K, ∀ open set V and K is b-γ-closed set
in X .

Theorem 4.15. Let X be a space and B ⊆ X . The set B is
locally b-γ-closed⇔ B =V ∩bclγ(B).

Proof. Suppose that B is a locally b-γ-closed set. Then B =
V ∩K, ∀ open set V and K is b-γ-closed set in X . Thus, B⊆
bclγ(B) ⊆ bclγ(K) = K. Therefore B ⊆ V ∩ bclγ(B) ⊆ V∩
bclγ(K) = B. Hence B =V ∩ bclγ(B). Conversely, since the
set bclγ(B) is b-γ-closed and B =U ∩bclγ(B). Then, clearly
B is locally b-γ-closed.

Theorem 4.16. Let X be a space and B be a locally b-γ-
closed subset of X . Then the below statements are hold:

(i) The set bclγ(A)\B is a b-γ-closed set;

(ii) The set B∪ (X \bclγ(B)) is a b-γ-open set;

(iii) B⊆ bintγ(B∪ (X \bclγ(B))).

Proof. (i) If B is a locally b-γ-closed set, then ∃ an open set V
such that B =V ∩bclγ(B). Therefore, bclγ(B)\B = bclγ(B)\
[V ∩bclγ(B)] = bclγ(B)∩ [X \ (V ∩bclγ(B))] bclγ(B)∩ [(X \
V )∪ (X \bclγ(B))] =bclγ(B)∩ (X \V ), which is b-γ-closed.

(ii) By statement (i), we have X \ [(bclγ(B) \B)] is a b-
γ-open set and X \ [(bclγ(B)\B)] = X \bclγ(B)∪ (X ∩B) =
B∪ [X \bclγ(B)]. Thus B∪ [X \bclγ(B)] is b-γ-open.

(iii) It is obvious that, B⊆ (B∪ [X \bclγ(B)]) = bintγ [B∪
(X \bclγ(B))].

5. b-γ-g-open and b-γ-g-closed sets

Definition 5.1. Let (X ,τ) be a space and B ⊆ X is said to
be b-γ-generalized closed set (for shortly, b-γ-g-closed) in
(X ,τ), if bclγ(B) ⊂ V whenever B ⊂ V and V is a b-γ-open
set of (X ,τ).

The complement of b-γ-generalized closed set is called
b-γ-generalized open (for shortly, b-γ-g-open) set.

Remark 5.2. Let (X ,τ) be a space and B⊆ X . Then:

(i) The set B is b-γ-generalized open⇔ Bc is b-γ-generalized
closed;

(ii) The set B is b-γ-generalized closed⇔ Bc is b-γ-generalized
open.

Theorem 5.3. Let (X ,τ) be a space. B⊆ X . is said to be b-
γ-g-open⇔C ⊆ bintγ(B), whenever C is b-γ-closed set and
C ⊆ B.
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Proof. Let B be a b-γ-generalized open set in X . Then Bc is
b-γ-generalized closed in X . Let C be a b-γ-closed set in X
such that C ⊆ B. Then Bc ⊆Cc, Cc ∈ b-γO(X). Since Bc is b-
γ-generalized closed, bclγ (Bc) ⊆Cc, which gives [bintγ(B)]c

⊆Cc. Hence C ⊆ bintγ(B).
Conversely, suppose that C ⊆ bintγ(B), whenever C ⊆ B

and C is b-γ-closed set in X . Then [bintγ(B)]c ⊆ Cc = D,
where D is b-γ-open set in X . That is bclγ (Bc) ⊆ D, which
gives Bc is b-γ-generalized closed . Thus B is b-γ-generalized
open.

Theorem 5.4. Let X be a space with an operation γ on the
topology τ. Then each b-γ-closed set is b-γ-g-closed.

Proof. Let B be a b-γ-closed set in a space X and B ⊆ C,
where C is b-γ-open in X . Since B is b-γ-closed, bclγ(B) =
B⊆C. Thus bclγ(B)⊆C. Hence, B is b-γ-g-closed.

The converse of the above Theorem 5.4 may not be true
as shown in the below example.

Example 5.5. Let X = {a,b,c} and τX be the discrete topol-
ogy. Define an operation γ on τX by γ(B) = X . Here the set
{a,b} is b-γ-generalized closed but not b-γ-closed.

Proposition 5.6. Let X be a space. B⊆ X is b-γ-generalized
closed⇔ B∩bclγ({y}) = φ holds, ∀ y ∈ bclγ(B).

Proof. Suppose that V be a b-γ-open set such that B⊆V. Take
a point y ∈ bclγ(B). By supposition ∃ a x ∈ bclγ({y}) and
x ∈ B⊆V. Then V ∩{y} 6= φ . This implies y ∈V. Therefore
bclγ(B)⊆V. Hence, B is b-γ-generalized closed set.

Conversely, Suppose that B be a b-γ-generalized closed
subset of X and take y ∈ bclγ(B) such that B∩bclγ({y}) = φ .
Since bclγ({y}) is a b-γ-closed in (X ,τ), X \bclγ({y}) is a b-
γ-open set. Since B⊆ X \bclγ({y}) and B is b-γ-generalized
closed, we have bclγ(B) ⊆ X \ bclγ({y}) holds. Therefore
y /∈ bclγ(B), which is a contradiction. Thus, B∩bclγ({y}) 6=
φ .

Theorem 5.7. If B∩bclγ({y}) 6= φ holds, ∀ y∈ bclγ(B), then
bclγ(B)\B does not contain a non empty b-γ-closed set.

Proof. Assume that ∃ a non empty b-γ-closed set G such that
G ⊆ bclγ(B) \B. Take y ∈ G, y ∈ bclγ(B) holds. It follows
that B∩G = B∩ bclγ(G) ⊇ B∩ bclγ({y}) 6= φ . Therefore,
B∩G 6= φ , which is a contradiction.

Corollary 5.8. A subset B of (X ,τ) is b-γ-generalized closed
⇔ B = G\H, where G is b-γ-closed and H contains no non-
empty b-γ-closed subsets.

Proof. Necessity follows from Theorem 5.7 and Proposition
5.6, with G = bclγ(B) and H = bclγ(B)\B.

Conversely, suppose that B = G\H and B⊆ Q with Q is
b-γ-open. Therefore, G∩ (X \Q) is a b-γ-closed subset of H
and hence is empty. Therefore, bclγ(B)⊆ G⊆ Q.

Theorem 5.9. Let B be a subset of X and B⊆C⊂ bclγ(B). If
B is b-γ-generalized closed, then C is also a b-γ-generalized
closed set of X .

Proof. Let B be a b-γ-generalized closed set and B ⊆ C ⊂
bclγ(B). Let V be a b-γ-open set of X such that B⊆V. Since
B is b-γ-generalized closed, bclγ(B) ⊆ V. Now bclγ(B) ⊆
bclγ(C)⊆ bclγ(bclγ(B)) = bclγ(B)⊆V. Therefore, bclγ(B)⊆
V, V is b-γ-open. Thus, B is a b-γ-generalized closed set in
X .

Theorem 5.10. Let (X ,τ) be a space and γ be an operation
on τ. Then ∀ y ∈ X , either {y} is b-γ-closed or the set X \{y}
is b-γ-generalized closed in (X ,τ).

Proof. Assume that {y} is not b-γ-closed. By Remark 3.1,
we have X \{y} is not b-γ-open set. Let V be any b-γ-open set
such that X \{y}⊆V. Therefore V = X . Thus bclγ(X \{y})⊆
V. Hence, X \{y} is b-γ-generalized closed set.

6. Conclusion
In this paper, the ideas of b-γ-boundary, b-γ-exterior and

locally b-γ-closed sets are presented. Also some concepts
and lemmas of b-γ-g-open and b-γ-g-closed sets are also in-
vestigated. The results are illustrated with a well-analyzed
examples. For future study, some other fields such as Fuzzy
topology, Intuitionistic topology, Nano topology and etc., can
be considered for studying these sets.
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