

https://doi.org/10.26637/MJM0803/0044

A C **and** A C ²**-Paracompact spaces**

S. Umamaheswari^{1*} and M. Saraswathi²

Abstract

The reason for this paper is to present the two new ideas of AC -Paracompact spaces and AC ₂-Paracompact spaces. Additionally we have demonstrated that each \mathscr{AC} -Paracompactness and \mathscr{AC}_2 -Paracompactness has a topological property. We have likewise presented the $\mathscr{A}\mathscr{C}$ -normal and its properties.

Keywords

Angelic spaces, $\mathscr C$ -Paracompact, $\mathscr C_2$ -Paracompact, $\mathscr C$ -Normal, $\mathscr A\mathscr C$ -Paracompact, $\mathscr A\mathscr C_2$ -Paracompact, $\mathscr A\mathscr C_2$ normal.

AMS Subject Classification

46A50, 54D10, 54D20.

1,2*Department of Mathematics, KKC-Velur 638182,Tamil Nadu, India.* ***Corresponding author**: ¹ umamaheswari.maths@gmail.com; ²msmathsnkl@gmail.com **Article History**: Received **12** April **2020**; Accepted **09** June **2020** ©2020 MJM.

Contents

1. Introduction

In 1944, Dieudonne. J [\[7\]](#page-5-2) presented the paracompact space. The idea of paracompactness [\[7\]](#page-5-2) is one of the most helpful speculation of compactness. Some notable mathematicians of different occasions have contemplated certain stronger just as more weaker types of paracompactness. C -Paracompact and \mathcal{C}_2 -Paracompact were characterized by Arhangelskii. C -Paracompact and C_2 -Paracompact were concentrated in [\[17\]](#page-5-3). Alzahrani S [\[3\]](#page-5-4) research $\mathscr C$ -normal topological property. Fermlin's idea of angelic space [\[6\]](#page-5-5) and a portion of its emanation carry us with he required tools for introducing those outcomes in a mordant idea.

2. Preliminaries

Definition 2.1. *[\[6\]](#page-5-5) A topological space T is termed as an angelic, if for each relatively countably compact subset* S *of T* the ensuing hold: (a) $\mathscr S$ is relatively compact (b) If $s \in \overline{\mathscr S}$, *then there is a sequence in* $\mathscr S$ *that converges to s.*

Definition 2.2. *[\[14\]](#page-5-6) A topological space X is paracompact, if each open cover has a locally finite open refinement.*

Definition 2.3. *[\[17\]](#page-5-3)*

A topological space M is termed as \mathcal{C} *-paracompact if* \exists *a paracompact space N and a bijective mapping* $p : M \to N \ni$ *the restriction* $p|_{S}: S \rightarrow p(S)$ *is a homeomorphism for every compact subspace* $S \subseteq M$.

Definition 2.4. [\[17\]](#page-5-3) A topological space *M* is termed as \mathcal{C}_2 *paracompact if* ∃ *a Hausdorff paracompact space N and a bijective mapping* $p : M \to N \ni$ *the restriction* $p|_S : S \to p(S)$ *is a homeomorphism for every compact subspace* $S \subseteq M$.

Definition 2.5. [\[3\]](#page-5-4) A space *M* is termed as \mathcal{C} -normal if \exists *a* normal space *N* and function $p : M \to N \ni$ the restriction $p|_{S}: S \rightarrow p(S)$ *is homeomorphism for each compact subspace S* ⊆ *M.*

el**Definition 2.6.** [\[10\]](#page-5-7) A space (M, τ) is termed as submetriz*able if* \exists *a metric d on M* \Rightarrow *the topology* τ_d *on M caused by d is coarser than* τ*, i.e.* τ_{*d*} ⊆ τ.

Definition 2.7. [\[2\]](#page-5-8) A space (M, τ) is supposed to be epinor*mal if* \exists *a coarser topology* τ' *on* $X \ni (M, \tau')$ *is normal.*

Definition 2.8. *[\[4\]](#page-5-9) A topology* τ *on a nonempty set M is supposed to be minimal Hausdorff if* (*M*, τ) *is Hausdorff and has no Hausdorff topology on M strictly coarser than* τ*.*

Definition 2.9. *[\[20\]](#page-5-10) A space M is termed as mildly normal, k-normal, if any two disjoint closed domains U and V of M* ∃ *disjoint open sets* \mathcal{U}, \mathcal{V} *of* $M \ni U \subseteq \mathcal{U}$ *and* $V \subseteq \mathcal{V}$ *.*

Definition 2.10. *[\[17\]](#page-5-3) A topological space* (M, τ) *is termed* a s lower compact if \exists a coarser topology τ' on $M \ni (M, \tau')$ *is T*2*–compact.*

Definition 2.11. *[\[8\]](#page-5-12) Let X be topological space. If* $\exists X' =$ $X \times \{1\}$ *and* $X \cap X' = \emptyset \ni A(X) = X \cup X'$, *then* $A(X)$ *with the unique topology* τ *is termed as Alexandroff duplicate of X.*

3. $\mathscr{A}\mathscr{C}$ and $\mathscr{A}\mathscr{C}_2$ -Paracompact Spaces

Definition 3.1. *Let M be an angelic space and S be an angelic compact subspace of M. If there is a bijection mapping p* : $M \rightarrow N$, *N* is an angelic paracompact space and the restriction $p|S : S \to p(S)$ *is a homeomorphism, then M is said to be an* A C *-paracompact space.*

Definition 3.2. *Let M be an angelic space and S be an angelic compact subspace of M. If there is a bijection function p* : $M \rightarrow N$, *N* is a Hausdorff angelic paracompact space and *the restriction* $p|_{S}: S \rightarrow p(S)$ *is a homeomorphism, then M is said to be an* \mathcal{AC}_2 -paracompact space.

Theorem 3.3. *Every* A C *-paracompact space (*A C ²*-paracompact space) is a topological property.*

Proof. Suppose *M* is an $\mathscr{A}\mathscr{C}$ -paracompact ($\mathscr{A}\mathscr{C}_2$ -paracompact) space and $M \cong O$. Let *N* be an angelic paracompact (Hausdorff angelic paracompact) space and $p : M \to N$ be a bijective mapping \ni the restriction $p|_S : S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. Let $q: Q \to M$ be a homeomorphism. Hence, N and $p \circ q: Q \to N$ has the topological properties. \Box

Theorem 3.4. *Every* $\mathscr{A}\mathscr{C}$ -paracompact space ($\mathscr{A}\mathscr{C}_2$ -paraco*mpact space) has an additive property.*

Proof. Suppose M_{α} is an $\mathscr{A}\mathscr{C}$ -paracompact($\mathscr{A}\mathscr{C}_2$ -paracompact) space for each $\alpha \in A$. To prove that their sum $\bigoplus_{\alpha \in A} M_{\alpha}$ is an \mathscr{AC} -paracompact (\mathscr{AC}_2 -paracompact). For each $\alpha \in \Lambda$, choose an angelic paracompact (Hausdorff angelic paracompact) space N_{α} and bijective mapping $p_{\alpha}: M_{\alpha} \to N_{\alpha}$ \Rightarrow $p_{\alpha \S_{\alpha}} : S_{\alpha} \rightarrow p_{\alpha}(S_{\alpha})$ is a homeomorphism for every angelic compact subspace S_{α} of M_{α} . By reason of N_{α} is an angelic paracompact (Hausdorff angelic paracompact) for each $\alpha \in \Lambda$, then the sum $\bigoplus_{\alpha \in A} N_{\alpha}$ is an angelic paracompact (Hausdorff angelic paracompact). Consider the function sum $\bigoplus_{\alpha \in \Lambda} p_{\alpha} : \bigoplus_{\alpha \in \Lambda} M_{\alpha} \to \bigoplus_{\alpha \in \Lambda} p_{\alpha}$ described by $\bigoplus_{\alpha \in \Lambda} p_{\alpha}(m)$ $=p(m)$ if *m* ∈ *M*_β, β ∈ Λ. Currently, a subspace $S ⊆ ⊕ α ∈ ΛM_α$ is an angelic compact iff the set $\Lambda_0 = {\alpha \in \Lambda : S \cap M_\alpha \notin \emptyset}$ is finite, $S \cap M_{\alpha}$ is an angelic compact in M_{α} for every $\alpha \in$ $Λ_0$. If *S* ⊆ ⊕α∈Λ $M_α$ is an angelic compact, subsequently $(\bigoplus_{\alpha \in \Lambda} M_{\alpha})|_{C}$ is a homeomorphism as $p_{\alpha/C \cap M_{\alpha}}$ is a homeomorphism for every $\alpha \in \Lambda_0$. \Box

Theorem 3.5. If *M* is an AC -paracompact (AC ₂-paracomp*act*), then its Alexandroff duplicate $A(M)$ is also an \mathcal{AC} *paracompact* (AC_{2} *-paracompact).*

Proof. Let *M* be any $\mathscr{A}\mathscr{C}$ -paracompact space. Choose an angelic paracompact space N and a bijective function $p : M \to N$ \Rightarrow $p|_{S}$: $S \rightarrow p(S)$ is a homeomorphism for every angelic compact subspace $S \subseteq M$. Suppose the Alexandroff duplicate spaces *A*(*M*) and *A*(*N*) of *M* and *N* commonly. By reason of *N* is an angelic paracompact, next *A*(*N*) is also an angelic paracompact. Characterize $q : A(M) \to A(N)$ by $q(a) = A(a)$ if *a* ∈ *M*. If *a* ∈ *M*₀, consider the unique element *b* in *M* ∋ $b_0 = a$, then characterize $q(a) = (p(b))'$. Next *q* is a bijective mapping. Currently, a subspace $S \subseteq A(M)$ is an angelic compact iff *S*∩*M* is an angelic compact in *M* and for every open set *U* in *M* with $S \cap M \subseteq A(M)$, we state $S \cap M'/U'$ is finite. take $S \subseteq A(M)$ is any angelic compact subspace. To prove $q|S : S \to q(S)$ is a homeomorphism. Take $a \in S$ is arbitrary. If $a \in S \cap M'$, let $b \in X$ be the unique element \ni $b' = a$. For the smallest basic open neighborhood $\{(f(b))'\}$ of the point *g*(*a*) we state that $\{a\}$ is open in $\mathcal C$ and $g(\{a\}) \subseteq$ $\{(f(b))'\}$. If $a \in S \cap M$. Let *W* be any open set in $N \ni$ *g*(*a*) = *f*(*a*) ∈ *W*. Consider *H* = (*W* ∪(*W'* /{*f*(*a*)'}))∩*g*(*C*) which is a basic open neighborhood of $p(a)$ in $q(S)$. By reason of $p|_{\ell}(S \cap M)$: $S \cap M \rightarrow p(S \cap M)$ is a homeomorphism, then \exists an open set *U* in *M* with $a \in U$ and $p|_{S \cap M(U \cap S)} \subseteq W$. Currently, $(U \cup U'/\{a'\}) \cap q(C)$ is open in $\mathscr{C} \ni a \in G$ and $q_{c(G)} \subseteq H$. Thus, $q|_S$ is continuous. Currently, to prove that $q|_S$ is open. Take $K \cap (K'/\{k'\})$, here $k \in K$ and *K* is open in *M*, be any basic open set in $A(M)$, then $(K \cap S) \cup ((K' \cap S) / \{k'\})$ is a basic open set in \mathscr{C} . By reason of $M \cap S$ is an angelic compact in *M*.then $q|_{S(K \cap (M \cap C))} = q|_{M \cap S(K \cap (M \cap S))})$ is open in *N* ∩ *p*(*S* ∩ *M*) as *p*|_{*M*∩*S*} is a homeomorphism. Hence *K* ∩ *S* is open in $N \cap p(N \cap M)$. Also, $p(K' \cap S) / \{k'\}$ is open in $N' \cap q(S)$ be a set of isolated points. Hence $q|S$ is an open function. Hence, $p|_S$ is a homeomorphism. \Box

Theorem 3.6. *If* (M, τ') *is a submetrizable space of* (M, τ) with $\tau' \subseteq \tau$, then (M, τ') is an \mathscr{AC}_2 -paracompact.

Proof. Since τ' is a metrizable topology on $M \ni \tau' \subseteq \tau$. Next (M, τ') is \mathcal{AC}_2 -paracompact and the identity function id_M : $(M, \tau) \rightarrow (M, \tau')$ is a continuous function. If *S* is some angelic compact subspace of (M, τ) , then the restriction of the identity mapping on *S* onto $id_M(S)$ is a homemorphism as *S* is an angelic compact, $id_M(S)$ is Hausdorff be a subspace of the metrizable space (M, τ') , and every continuous one-to-one mapping of an angelic compact space onto a Hausdorff space is a homeomorphism. Hence, (M, τ') submetrizable space is an $\mathscr{A}\mathscr{C}_2$ -paracompact. П

Theorem 3.7. *If M is an* \mathcal{AC} -paracompact (\mathcal{AC}_2 -paracomp*act)* Frechet space and $p : M \to N$ is a witness of the \mathcal{AC} *paracompactness* (AC_2 -paracompactness) of *M*, then *p* is *continuous.*

Proof. Suppose *S* is any nonempty subset of *M*. Take $n \in p(S)$ is arbitrary and $m \in M$ be the unique element $\Rightarrow p(m) = n$. Then *m* \in *S*. Choose a sequence $(s_n) \subseteq S \ni s_n \to s$ Let then $T = \{s, s_n : n \in N\}$ is an angelic compact subspace of *M*, being a convergent sequence with its limit, thus $p|_T : T \to p(T)$ is

a homeomorphism. Currently, take $V \subseteq U$ is some open neighbourhood of *y*; next $V \cap p(T)$ is open in the subspace $p(T)$ including *n*. Thus, $p^{-1}(V) \cap T$ is open in the subspace *T* containing *m*. Thus, $p^{-1}(V) \cap B \cap \{m_n : n \in N\} \neq \emptyset$, so $((p^{-1}(V) ∩ T) ∩ A ≠ ∅$. Hence, $\emptyset ≠ p((p^{-1}(V) ∩ T) ∩ S) ⊆$ *p*(($p^{-1}(V) \cap S$) = *V* ∩ *p*(*S*). hence, *n* ∈ ($p(\overline{S})$) and $p(\overline{S})$ ⊆ $(p(\overline{S}))$ Thus, *p* is continuous. \Box

Corollary 3.8. If *M* is an AC -paracompact (AC ₂-paracom*pact)* first countable space and $p : M \rightarrow Y$ is a witness of *the* AC -paracompact (AC ₂-paracompact) of *M*, then *p* is *continuous.*

Corollary 3.9. *If M is an* A C ²*-paracompact Frechet space, then X is Hausdorff.*

Proof. Since *N* is a *T*² angelic paracompact space and *p* : $M \rightarrow N$ be a bijective mapping \Rightarrow the restriction $p|_{S}: S \rightarrow p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. Through Theorem 3.5, *p* is continuous. Take *A*, *B* are some disjoint angelic compact space; then $f(A)$, $f(B)$ are disjoint angelic compact subspaces of N . By reason of N is T_2 , then $f(A)$ and $f(B)$ are disjoint closed subspaces of *N*. By reason of *N* is T_2 angelic paracompact, *N* is normal and thus \exists open subsets *G* and *H* of $Y \ni f(A) \subseteq G$, $f(B) \subseteq H$, and $G \cap H = \emptyset$. By the continuity of p , $U = p^{-1}(G)$ and $V = p^{-1}(H)$. Thus, for every disjoint angelic compact subspaces *A* and *B*, ∃ open sets *U* and $V \ni S \subseteq U$, $T \subseteq V$ and $U \cap V = \emptyset$. \Box

Theorem 3.10. *If M is a* T_1 *space* \Rightarrow *the only angelic compact subsets are the finite subsets, then M is* $AC₂$ *paracompact space.*

Proof. Suppose *M* is a T_1 space \exists the only angelic compact subspaces of M are the finite subsets of M . Since T_1 , finally some angelic compact subspace of *M* is discrete. Then, take $N = M$ and let *Y* with the discrete topology. Thus the identity mapping from *M* onto *N*. Hence, \exists a bijection mapping *p* : $M \rightarrow N$, *N* is an angelic Hausdorff paracompact space and the restriction $p|_{S}: S \rightarrow p(S)$ is a homeomorphism, then *M* is said to be an $\mathscr{A}\mathscr{C}_2$ -paracompact. \Box

Theorem 3.11. *Let M be the Hausdorff locally angelic compact space. Then M is an* \mathcal{AC}_2 *-Paracompact space.*

Proof. Since *M* is any Hausdorff locally angelic compact topological space. Then \exists a T_2 angelic compact space N and hence N is T_2 angelic paracompact, and a bijective function $p : M \to N \ni p$ is continuous. By reason of *p* is continuous, Next for some angelic compact subspace $S \subseteq M$, we have $p|S : S \to p(S)$ is a homeomorphism because 1 to 1, onto, and continuity are acquired from *p*, and $p|_S$ is closed as *S* is an angelic compact and $p(S)$ is Hausdorff. \Box

Example 3.12. A Tychonoff \mathcal{AC}_2 -paracompact space is not *locally compact.*

Proof. Consider the quotient space R/N. We can describe it as follows: Let $i = \sqrt{-1}$. Let $N = \mathbb{R}/N \cup i$. Define $p : \mathbb{R} \to Y$ as follows:

$$
p(x) = \begin{cases} x; \text{ if } x \in \mathbb{R} / \mathbb{N} \\ i; \text{ if } x \in \mathbb{N} \end{cases}
$$

Now consider on R the usual topology U. Define on *N* the topology $\tau = \{W \subseteq Y : p^{-1}(W) \in U\}$. Then $p : (R, U) \to$ (N, τ) is a closed quotient mapping. We can describe the open neighborhoods of each element in as follows: The open neighborhoods of $i \in N$ are $(U/N) \cup \{i\}$, here *U* is an open set in $(N, U) \ni N \subseteq U$. The open neighborhoods of any $y \in \mathbb{R}/\mathbb{N}$ are $(y-\varepsilon, y+\varepsilon)$ N where ε is a positive real number. It is well known that (N, τ) is T_3 , which is neither locally angelic compact nor first countable. Now, by reason of (N, τ) is Lindelöf, being a continuous image of $\mathbb R$ with its usual topology, and T_3 , then (N, τ) is angelic paracompact and T_4 . Hence, it is an $\mathscr{A}\mathscr{C}_2$ -paracompact. \Box

Definition 3.13. *A topological space* (*M*, τ) *is termed as lower angelic compact if* \exists *a coarser topology* τ' *on M* \ni (X, τ') *is* T_2 *angelic compact.*

Theorem 3.14. *If* (*M*, τ) *lower angelic compact space, Then M* is an \mathcal{AC}_2 -paracompact.

Proof. Suppose τ' is a T_2 angelic compact topology on $M \ni$ $\tau' \subseteq \tau$. Next (M, τ') is T_2 angelic paracompact and the identity mapping $id_M : (M, \tau) \to (M, \tau')$ is a continuous function. If *S* is some angelic compact subspace of (M, τ) , next the restriction of the identity mapping on *S* onto $id_M(S)$ is a homeomorphism as *S* is an angelic compact, $id_M(S)$ is Hausdorff being a subspace of the T_2 space (M, τ') and every continuous 1-1 function of an angelic compact space onto a Hausdorff space is a homeomorphism. Hence, *M* is an \mathscr{AC}_2 -paracompact. \Box

Theorem 3.15. *If* (M, τ) *is an* \mathcal{AC}_2 *-paracompact countably angelic compact Frechet, then* (*M*, τ) *is lower angelic compact.*

Proof. Consider a T_2 angelic paracompact space (N, τ^*) and a bijection function $p : (M, \tau) \to (N, \tau^*)$ \ni the restriction $p|S : S \rightarrow p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By reason of *M* is Frechet, then *p* is continuous. Hence, $(M, \tau*)$ is countably angelic compact. By reason of $(M, \tau*)$ is also an angelic paracompact, then $(M, \tau*)$ is *T*₂ angelic compact. Characterize a topology τ' on *M* as follows: $\tau' = \{p^{-1}(U) : U \in \tau\}$. Then τ' is coarser than τ and $p:(M, \tau') \rightarrow (N, \tau*)$ is a bijection continuous function. Let *W* ∈ τ' be arbitrary; then *W* is $p^{-1}(U)$ for some $U \in \tau^*$. Thus, $p(W) = p(p^{-1}(U)) = U$. Hence, *p* is open and *p* is a homeomorphism. Thus, (M, τ') is T_2 angelic compact. Therefore, (M, τ) is lower angelic compact. П

4. A C **-Normal and its Properties**

Definition 4.1. *A space M is termed as an* $\mathscr{A}\mathscr{C}$ *-normal if* \exists *a normal space N and a bijective* $p : M \to N \ni$ *the restriction* $p|S : S \to p(S)$ *is homeomorphism for every angelic compact subspace* $S \subseteq M$.

Definition 4.2. *A space M is termed as Angelic countably normal if there exists a normal space N and a bijective p* : $M \to N \ni$ *the restriction* $p|_S : S \to p(S)$ *is a homeomorphism for each angelic countable subspace* $S \subseteq M$.

Example 4.3. An \mathcal{AC} normal space is not an \mathcal{AC}_2 -paracom*pact.*

Proof. Suppose $\mathbb R$ with $L = \{0, \mathbb R\} \cup \{(-\infty, x) : x \in \mathbb R\}$. In this space (\mathbb{R}, L) , any two nonempty closed sets are intersect; thus, (\mathbb{R}, L) is normal and thus $\mathscr{A}\mathscr{C}$ -normal. (\mathbb{R}, L) is not Hausdorff as any two nonempty open sets must intersect. A subset $S \subset \mathbb{R}$ is angelic compact iff it has a maximum element. Suppose that (\mathbb{R}, L) is \mathcal{AC}_2 -paracompact. Take *N* is Hausdorff paracompact space and $p : R \to Y$ be a bijection \ni $p|S : S \to p(S)$ is homeomorphism for every angelic compact subspace *S* of \mathbb{R} . Let $S = (-\infty, 0]$; then *S* is an angelic compact in (\mathbb{R}, L) and *S* as a subspace is not Hausdorff because any two nonempty open sets in *S* must intersect. However, *S* will be homeomorphic to $p(S)$ and $p(S)$ is Hausdorff, being a subspace of a Hausdorff space, and this is a contradiction. Thus, (\mathbb{R}, L) cannot be \mathscr{AC}_2 -paracompact space. \Box

Example 4.4. An infinite AC *normal space is not an* AC *paracompact space.*

Proof. Let $M = [0, \infty)$. Define $\tau = \{0, M\} \cup \{[0, x) : x \in$ $\mathbb{R}, 0 \lt x$. Consider (\mathbb{R}, L) is just the angelic subspace of (\mathbb{R}, L) . (i.e), $\tau = L_M = L_{[0,\infty)}$. Now consider (M, τ_0) , where τ_0 is the particular point topology. We have that τ is coarser than τ_0 because any nonempty open set in τ must contain 0. Thus, (M, τ_0) cannot be an angelic paracompact. Observe that (M, τ) is normal because there are no two nonempty closed disjoint subsets. Thus, (M, τ) is an $\mathscr{A}\mathscr{C}$ -normal. Now, a subset *S* of *M* is an angelic compact iff *S* has maximal element. If *S* has maximal element, then any open cover for *S* will be covered by one member of the open cover, the one that contains the maximal element. If *S* has no maximal element, then *S* cannot be finite. If *S* is unbounded above, then $\{[0,n): n \in N\}$ would be an open cover for *S* has no finite subcover. If *S* is bounded above, let $y = \frac{supS}{sup}$ and pick an increasing sequence $(c_n) \subseteq S \ni c_n \rightarrow y$, where the convergence is taken in the usual metric topology on *M*. Then $\{ [0, c_n) : n \in N \}$ would be an open cover for *S* that has no finite subcover. Thus, *S* would not be an angelic compact. (*M*, τ) is Frechet. That is because *M* is first countable. If $x \in M$, then $B(x) = \{ [0, x + 1n) : n \in N \}$ is a countable local base for *M* at *x*.

Now, suppose that *M* is an $\mathscr{A}\mathscr{C}$ -paracompact. Choose an angelic paracompact space *Y* and a bijective mapping *p* : $M \rightarrow N \ni p|_{S} : S \rightarrow p(S)$ is a homeomorphism for each angelic compact subspace *A* of *M*. By Corollary 3.8, *p* is continuous.

Thus, for some nonempty open subset *U* of *N* we have that $p^{-1}(U)$ is open in *M*. By reason of *p* is a bijective, *M* is infinite. For each $y \in M$, pick an open neighborhood U_y of *y* \ni the family $\{U_y : y \in Y\}$ is an infinite open cover for *M*. By reason of each U_y contains the element $p(0)$, then the open cover $\{U_y : y \in Y\}$ cannot have any locally finite open refinement and thus *Y* is not paracompact, which is a contradiction. Therefore, *M* is $\mathscr{A}\mathscr{C}$ -normal but not an $\mathscr{A}\mathscr{C}$ paracompact. П

Lemma 4.5. *If* $p : M \to N$ *is a bijective function, M is an* A C *-normal space and any finite subset of M is discrete, then N is T*1*.*

Proof. By reason of $p : M \to N$ is a bijective function $\supseteq p|_S$: $S \to p(S)$ is a homeomorphism for each angelic compact subspace $S \subseteq M$. Assume *M* has more than one element and take *a*, *b* are distinct elements of *N*. Let *c* and *d* be the unique elements of $M \ni p(c) = a$ and $p(d) = b$. Then $p|_{\{c,d\}}:\{c,d\} \to \{a,b\}$ is a homeomorphism and $\{c,d\}$ is a discrete subspace of *M*. Thus, $p({c}) = {a}$ and $p({d}) =$ ${b}$ are both open in ${a,b}$ as a subspace of *N*. Thus, \exists an open neighborhood $U_a \subseteq N$ of a $\ni U_a \cap \{a,b\} = \{a\}$; hence, *b* ∉ *U_a*, and similarly ∃ an open neighborhood *U_b* ⊆ *N* of *b* ∋ $a \notin U_b$. Thus, *N* is T_1 . П

Example 4.6. $\mathbb R$ *With* $\tau_p(\mathbb R, \tau_p)$ *is not an* $\mathscr A\mathscr C$ *-normal space.*

Proof. $\mathbb R$ with τ_p , here the particular point is $p \in \mathbb R$, is not $\mathscr{A}\mathscr{C}$ -normal. By reason of $\tau_p = \{\emptyset\} \cup \{U \subseteq \mathbb{R} : p \in U\}$. We known that (\mathbb{R}, τ_p) is neither T_1 nor normal space and if $A \subseteq \mathbb{R}$, then $\{\{x, p\} : x \in A\}$ is an open cover for *S*, thus a subset *S* of *R* is an angelic compact iff it is finite. To show (\mathbb{R}, τ_p) is not \mathscr{AC} -normal, suppose that (\mathbb{R}, τ_p) is \mathscr{AC} -normal. Take N is a normal space, $p : M \to N$ be a function \ni the restriction $p|_{S}: S \rightarrow p(S)$ is a homeomorphism for every angelic compact subspace *S* of (\mathbb{R}, τ_p) . Consider the ensuing two cases for the space *N*,

Case (i): *M* is T_1 . Take $S = \{a, b\}$, where $a \neq b$; then *S* is an angelic compact subspace of (\mathbb{R}, τ_p) . By assumption $p|S : S \to p(S) = \{p\{a\}, p\{b\}\}\$ is a homeomorphism. By reason of $p(S)$ is a finite subspace of *M* and *M* is T_1 , then $p(S)$ is a discrete subspace of M. Hence, $p|_S$ is not continuous which is contradiction as $p|_S$ is a homeomorphism.

Case (ii): *M* is not T_1 . To prove the topology on *M* is the particular point topology with $p(b)$ as its particular point. Assume that *N* is not the particular point topology then \exists a non-empty open set $U \subset N \ni p(b) \notin U$. Choose $y \in U$ and take $x \in \mathbb{R}$ is the unique real number $\Rightarrow p(x) = y$. Suppose ${a,b}$ and $a \notin b$ because $p(x) = y \in U$, $p(b) \notin U$, and p is 1-1. Take $p|_{a,b}: \{a,b\} \rightarrow \{y,p(b)\}.$ Currently, $\{y\}$ is open in the subspace $\{y, p(b)\}$ of *N* as $\{y\} = U \cap \{y, p(b)\}$, but $p^{-1}(\{y\}) = \{x\}$ and $\{x\}$ is not open in the subspace $\{a,b\}$ of (\mathbb{R}, τ_p) , which means $p|_{\{a,b\}}$ is not continuous. Any particular point space consisting of more than one point cannot be normal, so which contradiction as *N* is normal. Hence, (\mathbb{R}, τ_p) is not an $\mathscr{A}\mathscr{C}$ -normal. П

Theorem 4.7. *Every angelic compact non-normal space is not an* A C *-normal.*

Proof. Consider *M* is an angelic compact non-normal space. Assume *M* is an $\mathscr{A}\mathscr{C}$ -normal, then \exists a normal space *N* and a bijective mapping $p : M \to N \ni$ the restriction $p|_{S} : S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By reason of *M* is an angelic compact, then $M \cong N$, and this is a contradiction as *N* is normal and *M* is not an angelic compact non-normal space. Hence *M* cannot be an $\mathscr{A}\mathscr{C}$ -normal. \Box

Theorem 4.8. Let *M* be an $\mathscr{A}\mathscr{C}$ -normal space. If every count*able subspace of M is included in an angelic compact subspace, then M is an angelic countably normal.*

Proof. Take *M* is any $\mathscr{A}\mathscr{C}$ -normal space \ni if *S* is any countable subspace of *M*, then ∃ an angelic compact subspace *E* $\exists S \subseteq E$. Take *N* is a normal space and $p : M \rightarrow N$ be a bijective mapping \Rightarrow $p|_S : S \rightarrow p(S)$ is homeomorphism for every angelic compact subspace *S* of *M*. Presently, take *S* is some countable subspace of *M*. Choose an angelic compact subspace *E* of $M \ni S \subseteq E$, next $p|_E : E \to p(E)$ is homeomorphism, hence $p|_S : S \to p(S)$ is homeomorphism as $(p|E|)$ |s = p|s.

Theorem 4.9. *Let M be an* A C *-normal. If M is a Frechet Lindelöf space* \Rightarrow *any finite subspace of M is discrete, then M is an* \mathcal{AC}_2 -paracompact.

Proof. Consider *M* is $\mathscr{A}\mathscr{C}$ -normal, then \exists a normal space *N* and a bijection function $p : M \to N \ni$ the restriction $p|_S : S \to$ $p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By Lemma 4.1, *Y* is T_1 and hence T_4 . By reason of *M* is Frechet, then p is continuous. By reason of M is Lindelöf and p is continuous and onto, then N is Lindelöf. By reason of any T_3 Lindelöf space is an angelic paracompact, then N is T_2 angelic paracompact. Therefore, M is an \mathcal{AC}_2 -paracompact space. \Box

Theorem 4.10. *If* (M, τ) *is Lindelöf epinormal space then* (M, τ) *is an* \mathcal{AC}_2 *-paracompact.*

Proof. Suppose (M, τ) is some Lindelöf epinormal space. Choose a coarser topology τ' on $M \ni (M, \tau')$ is T_4 . By reason of (M, τ) is Lindelöf and τ' is coarser than τ we have (M, τ') is T_3 and Lindelöf, and hence Hausdorff paracompact. Therefore, (M, τ') is an \mathscr{AC}_2 -paracompact as the identity function *id* : $(M, \tau) \rightarrow (M, \tau')$. Hence (M, τ) is an \mathscr{AC}_2 paracompact. \Box

Theorem 4.11. Let (M, τ) be an \mathcal{AC}_2 -paracompact Frechet *space. Then* (*M*, τ) *is an epinormal.*

Proof. Take (M, τ) is some $\mathscr{A}\mathscr{C}_2$ -Paracompact Frechet space and (M, τ) is normal. Suppose that (M, τ) is not normal. Let (N, τ') be a T_2 angelic paracompact space and $p : (M, \tau) \rightarrow$ (N, τ') be a bijective mapping \supseteq the restriction $p|_{S}: S \rightarrow p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By reason of *M* is Frechet, *p* is continuous; Theorem 3.5,

Define $\tau^* = \{p^{-1}(U) : U \in \tau'\}$. It is clear τ^* is a topology on *M* coarser than $\tau \ni p : (M, \tau^*) \to (N, \tau')$ is continuous. If $W \in \tau^*$, then *W* is $W = p^{-1}(U)$ here $U \in \tau'$. Thus, $p(W) =$ $p(p^{-1}(U)) = U$, gives *p* is open and homeomorphism. hence, $(M, \tau*)$ is T_4 . hence, (M, τ) is an epinormal.

Corollary 4.12. *Let* (M, τ) *be an* \mathcal{AC}_2 *-paracompact Frechet space, then* (M, τ) *is completely Hausdorff.*

Example 4.13. Any \mathscr{AC}_2 -paracompact Frechet space is an *epinormal.*

Proof. Suppose that two countably infinite sets are termed as almost disjoint if their intersection is finite. Consider a subfamily of $[\omega_0]^{\omega_0} = \{A \subset \omega_0 : A \text{ is infinite }\}$ a mad family on ω_0 if it is a maximal (with respect to inclusion) pairwise almost disjoint subfamily. Take *A* is a pairwise almost disjoint subfamily of $[\omega_0]^{\omega_0}$. The Mrowka space $\psi(A)$ is describe by $\omega_0 \cup A$, every point of ω_0 is isolated, and a basic open neighborhood of $W \in A$ has $\{W\} \cup (W/F)$, with $F \in [\omega_0] < \omega_0 = \{ B \subseteq \omega_0 : B is finite \}$. since \exists an almost disjoint family $A \subset [\omega_0]^{\omega_0} \ni |A| > \omega_0$ and the Mrowka space $\Psi(A)$ is a Tychonoff, separable, first countable, and locally angelic compact space that is neither countably angelic compact, angelic paracompact, nor normal. *A* is a mad family iff $\psi(A)$ is pseudocompact. The Mrowka space $\psi(A)$ is an $\mathscr{A}\mathscr{C}_2$ -paracompact, being T_2 locally angelic compact. $\psi(A)$ is also Frechet, being first countable. Hence Mrowka space is an epinormal. П

Remark 4.14. Any minimal Hausdorff \mathcal{AC}_2 -paracompact *Frechet space is an angelic compact.*

Theorem 4.15. *Let M be a minimal Hausdorff second countable space. The ensuing are equivalent.*

- *(i) M* is an \mathcal{AC}_2 -paracompact.
- *(ii) M is locally angelic compact.*
- *(iii) M is an angelic compact*
- *(iv) M is an epinormal.*
- *(v) M is metrizable.*
- *(vi) M is lower compact.*
- *(vii) M is minimal T*4*.*

Proof. (*i*) \Rightarrow (*ii*) By reason of any second countable space is first countable and any first countable space is Frechet, then Theorem 4.5, gives that M is T_2 angelic compact and hence locally angelic compact. (*ii*) \Rightarrow (*iii*) By reason of any T_2 locally angelic compact space is Tychonoff, by the minimality, *M* is an angelic compact. (*iii*) \Rightarrow (*iv*) Any *T*₂ angelic compact space is T_4 . (*iv*) \Rightarrow (*v*) Any epinormal space is $T_{21/2}$. By minimilaity, M is angelic compact and hence T_3 . By reason of any T_3 second countable space is metrizable, the result follows. $(v) \Rightarrow (vi)$ By minimality, *M* is $T_{21/2}$ angelic compact

and hence lower angelic compact. $(vi) \Rightarrow (vii)$ Again, by minimality, M is T_2 angelic compact and hence T_4 . By reason of any minimal T_4 space is an angelic compact. (*vii*) \Rightarrow (*i*) By reason of any minimal T*T*⁴ space is angelic compact, *M* will be T_2 angelic paracompact and hence $\mathscr{A}\mathscr{C}_2$ -paracompact. \Box

Example 4.16. A minimal Hausdorff second countable AC *paracompact space is Cannot be* \mathcal{AC}_2 -paracompact.

Proof. Let $M = \{a, b, c_j, a_{ij}, b_{ij} : i \in \mathbb{N}, j \in \mathbb{N}\}\)$ here all these elements are distinct. Characterize the ensuing neighborhood system on *M*:

For each $i, j \in N$, a_{ij} is isolated and b_{ij} is isolated.

For each $i \in N$, $B(c_i) = \{V^n(c_i)\} = \{c_i, a_{ij}, b_{ij} : j \ge n$ $n \in \mathbb{N}$.

 $\mathscr{B}(a) = \{V^n(a) = \{a, a_{ij} : i \geq n\} : n \in \mathbb{N}\}.$ $\mathscr{B}(a) = \{V^n(b) = \{b, b_{ij} : i \ge n\} : n \in \mathbb{N}\}.$

Denote the unique topology on *M* caused by the above neighborhood system by τ . Next τ is minimal Hausdorff and (M, τ) is cannot compact. By reason of *M* is countable and each local base is countable, then the neighborhood system is a countable base for (M, τ) , so it is second countable but not \mathscr{AC}_2 -paracompact because it is not $T_{21/2}$ as the closure of any open neighborhood of a must intersect the closure of any open neighborhood of *b*. \Box

5. Conclusion

Our primary outcomes incorporates the two new ideas of $\mathscr{A}\mathscr{C}$ -Paracompact spaces and $\mathscr{A}\mathscr{C}_2$ -Paracompact spaces. Likewise demonstrated that, each $\mathscr{A}\mathscr{C}$ -Paracompactness and \mathcal{AC}_2 -Paracompactness has a topological property. We likewise explored the $\mathscr{A}\mathscr{C}$ -normal and its properties.

References

- [1] Al-Montasherey K., *New results about the Alexandroff duplicate space*, MSc, King Abdulaziz University, Jeddah, Saudi Arabia, (2015).
- [2] AlZahrani S, Kalantan L., Epinormality, *J Nonlinear Sci Appl.*, 9 (2016), 5398–5402.
- [3] AlZahrani S, Kalantan L., *C*-normal topological property, *Filomat*, 31 (2017), 407–411.
- [4] Berri MP, Minimal topological spaces, *T Am Math Soc.*, 108(1963), 97–105.
- [5] Bourbaki N, Topologie general, *Topologie General*, (1951), 858–1142.
- [6] Bourgain. J, Fermlin. D.H and Talagrand. M, Pointwise compact sets of Baire-measurable functions, *Amer. J.Math.*, 100 (1978), 845–886.
- [7] Dieudonne.J, Une generalization despaces compacts, *J.Math. Pures et. Appl.*, 23(1944), 65–76.
- [8] Engelking R, On the double circumference of Alexandroff, *Bull Acad Pol Sci Ser Astron Math Phys*, 16(8) (1968), 629–634.
- [9] Engelking. R, *General Topology*, Heldermann, Berlin, 1989.
- [10] Gruenhage G, *Generalized Metric Spaces. In: Kunen K, Editor. Handbook of Set-Theoretic Topology*, Amsterdam, the Netherlands: North-Holland, (1984), 423–510.
- [11] Kalantan L, Results about *k*-normality, *Topol. Appl.*, 125(2002), 47–62.
- [12] Kalantan L, Alhomieyed M, *CC*-normal topological spaces, *Turk. J. Math.*, 41(2017), 749–755.
- [13] Mrowka S, On completely regular spaces, *Fund. Math.*, 41(1954), 105–106.
- [14] Munkers. R James, *Topology*, Second Edition, Pearson Education Pte. Ltd., Singapore.
- [15] Parhomenko AS, On condensations into compact spaces, *Bull. Acad. Sci. URSS. Ser. Math.,* 5(1941), 225–232.
- [16] Porter. J.R, Stephenson. R.M, *Minimal Hausdorff spaces - Then and now. In: Aull CE, Lowen R, editors. Handbook of the History of General Topology*, Dordrecht, the Netherlands: Kluwer Academic Publishers, (1998), 669- 687.
- [17] Saeed. M.M, Kalantan. L and Alzumi. H, *C* - Paracompactness and *C*2- Paracompactness, *Turk. J. Math.,* 43(2019), 9–20.
- [18] Shchepin. E.V, Real valued functions and spaces close to normal, *Sib J Math.*, 13(1972), 1182–1196.
- [19] Singal. M.K and Arya. S.P, On nearly paracompact spaces, *Matemati CkiVesnik* 6(21)(1969), 3–16.
- [20] Singal M, Singal. A.R, Mildly normal spaces, *Kyungpook Math J.*, 3 (1973), 29–31.
- [21] Steen L, Seebach JA, *Counterexamples in Topology*, Mineola, NY, USA: USA; Dover Publications, 1995.
- [22] VanDouwen EK, *The Integers and Topology. In: Kunen K, Editor. Handbook of Set-Theoretic Topology*, Amsterdam, the Netherlands: North-Holland, (1984), 111–167.

? ? ? ? ? ? ? ? ? ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********