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Abstract
The reason for this paper is to present the two new ideas of A C -Paracompact spaces and A C 2-Paracompact
spaces. Additionally we have demonstrated that each A C -Paracompactness and A C 2-Paracompactness has a
topological property. We have likewise presented the A C -normal and its properties.
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1. Introduction
In 1944, Dieudonne. J [7] presented the paracompact

space. The idea of paracompactness [7] is one of the most
helpful speculation of compactness. Some notable mathe-
maticians of different occasions have contemplated certain
stronger just as more weaker types of paracompactness. C -
Paracompact and C2-Paracompact were characterized by Arhangel-
skii. C -Paracompact and C2-Paracompact were concentrated
in [17]. Alzahrani S [3] research C -normal topological prop-
erty. Fermlin’s idea of angelic space [6] and a portion of
its emanation carry us with he required tools for introducing
those outcomes in a mordant idea.

2. Preliminaries
Definition 2.1. [6] A topological space T is termed as an
angelic, if for each relatively countably compact subset S of
T the ensuing hold: (a) S is relatively compact (b) If s ∈S ,
then there is a sequence in S that converges to s.

Definition 2.2. [14] A topological space X is paracompact,
if each open cover has a locally finite open refinement.

Definition 2.3. [17]
A topological space M is termed as C -paracompact if ∃ a

paracompact space N and a bijective mapping p : M→ N 3
the restriction p|S : S→ p(S) is a homeomorphism for every
compact subspace S⊆M.

Definition 2.4. [17] A topological space M is termed as C2-
paracompact if ∃ a Hausdorff paracompact space N and a
bijective mapping p : M→ N 3 the restriction p|S : S→ p(S)
is a homeomorphism for every compact subspace S⊆M.

Definition 2.5. [3] A space M is termed as C -normal if ∃
a normal space N and function p : M→ N 3 the restriction
p|S : S→ p(S) is homeomorphism for each compact subspace
S⊆M.

Definition 2.6. [10] A space (M,τ) is termed as submetriz-
able if ∃ a metric d on M 3 the topology τd on M caused by
d is coarser than τ , i.e.τd ⊆ τ .

Definition 2.7. [2] A space (M,τ) is supposed to be epinor-
mal if ∃ a coarser topology τ ′ on X 3 (M,τ ′) is normal.

Definition 2.8. [4] A topology τ on a nonempty set M is
supposed to be minimal Hausdorff if (M,τ) is Hausdorff and
has no Hausdorff topology on M strictly coarser than τ .

Definition 2.9. [20] A space M is termed as mildly normal,
k-normal, if any two disjoint closed domains U and V of M ∃
disjoint open sets U , V of M 3U ⊆U and V ⊆ V .
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Definition 2.10. [17] A topological space (M,τ) is termed
as lower compact if ∃ a coarser topology τ ′ on M 3 (M,τ ′)
is T2–compact.

Definition 2.11. [8] Let X be topological space. If ∃ X ′ =
X×{1} and X ∩X ′ = /0 3 A(X) = X ∪X ′, then A(X) with the
unique topology τ is termed as Alexandroff duplicate of X.

3. A C and A C 2-Paracompact Spaces
Definition 3.1. Let M be an angelic space and S be an angelic
compact subspace of M. If there is a bijection mapping p :
M→N, N is an angelic paracompact space and the restriction
p|S : S→ p(S) is a homeomorphism, then M is said to be an
A C -paracompact space.

Definition 3.2. Let M be an angelic space and S be an angelic
compact subspace of M. If there is a bijection function p :
M → N, N is a Hausdorff angelic paracompact space and
the restriction p|S : S→ p(S) is a homeomorphism, then M is
said to be an A C 2-paracompact space.

Theorem 3.3. Every A C -paracompact space (A C 2-paraco-
mpact space) is a topological property.

Proof. Suppose M is an A C -paracompact (A C 2-paracomp-
act) space and M ∼= O. Let N be an angelic paracompact
(Hausdorff angelic paracompact) space and p : M→ N be a
bijective mapping 3 the restriction p|S : S→ p(S) is home-
omorphism for every angelic compact subspace S ⊆M. Let
q : O→M be a homeomorphism. Hence, N and p◦q : O→N
has the topological properties.

Theorem 3.4. Every A C -paracompact space (A C 2-paraco-
mpact space) has an additive property.

Proof. Suppose Mα is an A C -paracompact(A C 2-paracom-
pact) space for each α ∈ A. To prove that their sum ⊕α∈AMα

is an A C -paracompact (A C 2-paracompact). For each α ∈Λ,
choose an angelic paracompact ( Hausdorff angelic para-
compact) space Nα and bijective mapping pα : Mα → Nα

3 pα§α
: Sα → pα(Sα) is a homeomorphism for every an-

gelic compact subspace Sα of Mα . By reason of Nα is an
angelic paracompact (Hausdorff angelic paracompact) for
each α ∈ Λ, then the sum ⊕α∈ANα is an angelic paracompact
(Hausdorff angelic paracompact). Consider the function sum
⊕α∈Λ pα :⊕α∈ΛMα →⊕al pha∈ΛNα described by ⊕α∈Λ pα(m)
= p(m) if m∈Mβ , β ∈Λ. Currently, a subspace S⊆⊕α∈ΛMα

is an angelic compact iff the set Λ0 = {α ∈ Λ : S∩Mα /∈ /0}
is finite, S∩Mα is an angelic compact in Mα for every α ∈
Λ0. If S ⊆ ⊕α∈ΛMα is an angelic compact, subsequently
(⊕α∈ΛMα)|C is a homeomorphism as pα/C∩Mα

is a homeo-
morphism for every α ∈ Λ0.

Theorem 3.5. If M is an A C -paracompact (A C 2-paracomp-
act), then its Alexandroff duplicate A(M) is also an A C -
paracompact (A C 2-paracompact).

Proof. Let M be any A C -paracompact space. Choose an an-
gelic paracompact space N and a bijective function p : M→N
3 p|S : S→ p(S) is a homeomorphism for every angelic com-
pact subspace S ⊆ M. Suppose the Alexandroff duplicate
spaces A(M) and A(N) of M and N commonly. By reason
of N is an angelic paracompact, next A(N) is also an angelic
paracompact. Characterize q : A(M)→ A(N) by q(a) = A(a)
if a ∈M. If a ∈M0, consider the unique element b in M 3
b0 = a, then characterize q(a) = (p(b))′. Next q is a bijec-
tive mapping. Currently, a subspace S⊆ A(M) is an angelic
compact iff S∩M is an angelic compact in M and for every
open set U in M with S∩M ⊆ A(M), we state S∩M′/U ′ is
finite. take S ⊆ A(M) is any angelic compact subspace. To
prove q|S : S→ q(S) is a homeomorphism. Take a ∈ S is
arbitrary. If a ∈ S∩M′, let b ∈ X be the unique element 3
b′ = a. For the smallest basic open neighborhood {( f (b))′}
of the point g(a) we state that {a} is open in C and g({a})⊆
{( f (b))′}. If a ∈ S∩M. Let W be any open set in N 3
g(a) = f (a) ∈W . Consider H = (W ∪ (W ′/{ f (a)′}))∩g(C)
which is a basic open neighborhood of p(a) in q(S). By reason
of p|(S∩M) : S∩M→ p(S∩M) is a homeomorphism, then ∃
an open set U in M with a∈U and p|S∩M(U∩S)⊆W . Currently,
(U ∪U ′/{a′}))∩ q(C) is open in C 3 a ∈ G and qc(G) ⊆ H.
Thus, q|S is continuous. Currently, to prove that q|S is open.
Take K ∩ (K′/{k′}), here k ∈ K and K is open in M,be any
basic open set in A(M),then (K ∩ S)∪ ((K′ ∩ S)/{k′}) is a
basic open set in C . By reason of M∩ S is an angelic com-
pact in M.then q|S(K∩(M∩C)) = q|M∩S(K∩(M∩S))) is open in
N ∩ p(S∩M) as p|M∩S is a homeomorphism. Hence K ∩ S
is open in N ∩ p(N ∩M). Also, p(K′ ∩ S)/{k′}) is open in
N′ ∩ q(S) be a set of isolated points. Hence q|S is an open
function. Hence, p|S is a homeomorphism.

Theorem 3.6. If (M,τ ′) is a submetrizable space of (M,τ)
with τ ′ ⊆ τ , then (M,τ ′) is an A C 2-paracompact.

Proof. Since τ ′ is a metrizable topology on M 3 τ ′ ⊆ τ . Next
(M,τ ′) is A C 2-paracompact and the identity function idM :
(M,τ)→ (M,τ ′) is a continuous function. If S is some angelic
compact subspace of (M,τ), then the restriction of the identity
mapping on S onto idM(S) is a homemorphism as S is an
angelic compact, idM(S) is Hausdorff be a subspace of the
metrizable space (M,τ ′), and every continuous one-to-one
mapping of an angelic compact space onto a Hausdorff space
is a homeomorphism. Hence, (M,τ ′) submetrizable space is
an A C 2-paracompact.

Theorem 3.7. If M is an A C -paracompact (A C 2- paracomp-
act) Frechet space and p : M→ N is a witness of the A C -
paracompactness (A C 2-paracompactness) of M, then p is
continuous.

Proof. Suppose S is any nonempty subset of M. Take n∈ p(S)
is arbitrary and m ∈ M be the unique element 3 p(m) = n.
Then m ∈ S. Choose a sequence (sn)⊆ S 3 sn→ s Let then
T = {s,sn : n∈N} is an angelic compact subspace of M, being
a convergent sequence with its limit, thus p|T : T → p(T ) is
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a homeomorphism. Currently, take V ⊆ U is some open
neighbourhood of y; next V ∩ p(T ) is open in the subspace
p(T ) including n. Thus, p−1(V )∩T is open in the subspace
T containing m. Thus, p−1(V )∩B)∩{mn : n ∈ N} 6= /0, so
((p−1(V )∩T )∩A 6= /0. Hence, /0 6= p((p−1(V )∩T )∩ S) ⊆
p((p−1(V )∩ S) = V ∩ p(S). hence, n ∈ (p(S)) and p(S) ⊆
(p(S)) Thus, p is continuous.

Corollary 3.8. If M is an A C -paracompact (A C 2-paracom-
pact) first countable space and p : M → Y is a witness of
the A C -paracompact (A C 2-paracompact) of M, then p is
continuous.

Corollary 3.9. If M is an A C 2-paracompact Frechet space,
then X is Hausdorff.

Proof. Since N is a T2 angelic paracompact space and p :
M→N be a bijective mapping 3 the restriction p|S : S→ p(S)
is homeomorphism for every angelic compact subspace S⊆M.
Through Theorem 3.5, p is continuous. Take A, B are some
disjoint angelic compact space; then f (A), f (B) are disjoint
angelic compact subspaces of N. By reason of N is T2, then
f (A) and f (B) are disjoint closed subspaces of N. By reason
of N is T2 angelic paracompact, N is normal and thus ∃ open
subsets G and H of Y 3 f (A)⊆G, f (B)⊆H, and G∩H = /0.
By the continuity of p, U = p−1(G) and V = p−1(H). Thus,
for every disjoint angelic compact subspaces A and B, ∃ open
sets U and V 3 S⊆U , T ⊆V and U ∩V = /0.

Theorem 3.10. If M is a T1 space 3 the only angelic compact
subsets are the finite subsets, then M is A C 2 paracompact
space.

Proof. Suppose M is a T1 space ∃ the only angelic compact
subspaces of M are the finite subsets of M. Since T1, finally
some angelic compact subspace of M is discrete. Then, take
N = M and let Y with the discrete topology. Thus the identity
mapping from M onto N. Hence, ∃ a bijection mapping p :
M→ N, N is an angelic Hausdorff paracompact space and
the restriction p|S : S→ p(S) is a homeomorphism, then M is
said to be an A C 2-paracompact.

Theorem 3.11. Let M be the Hausdorff locally angelic com-
pact space. Then M is an A C 2-Paracompact space.

Proof. Since M is any Hausdorff locally angelic compact
topological space. Then ∃ a T2 angelic compact space N and
hence N is T2 angelic paracompact, and a bijective function
p : M→ N 3 p is continuous. By reason of p is continuous,
Next for some angelic compact subspace S ⊆ M, we have
p|S : S→ p(S) is a homeomorphism because 1 to 1, onto, and
continuity are acquired from p, and p|S is closed as S is an
angelic compact and p(S) is Hausdorff.

Example 3.12. A Tychonoff A C 2-paracompact space is not
locally compact.

Proof. Consider the quotient space R/N. We can describe it
as follows: Let i =

√
−1. Let N =R/N∪ i. Define p : R→Y

as follows:

p(x) =

{
x; if x ∈ R/N
i; if x ∈ N

Now consider on R the usual topology U. Define on N the
topology τ = {W ⊆ Y : p−1(W ) ∈ U}. Then p : (R,U)→
(N,τ) is a closed quotient mapping. We can describe the
open neighborhoods of each element in as follows: The open
neighborhoods of i ∈ N are (U/N)∪{i}, here U is an open
set in (N,U) 3 N ⊆ U . The open neighborhoods of any
y ∈R/N are (y−ε,y+ε)N where ε is a positive real number.
It is well known that (N,τ) is T3, which is neither locally
angelic compact nor first countable. Now, by reason of (N,τ)
is Lindelöf, being a continuous image of R with its usual
topology, and T3, then (N,τ) is angelic paracompact and T4.
Hence, it is an A C 2-paracompact.

Definition 3.13. A topological space (M,τ) is termed as
lower angelic compact if ∃ a coarser topology τ ′ on M 3
(X ,τ ′) is T2 angelic compact.

Theorem 3.14. If (M,τ) lower angelic compact space, Then
M is an A C 2-paracompact.

Proof. Suppose τ ′ is a T2 angelic compact topology on M 3
τ ′⊆ τ . Next (M,τ ′) is T2 angelic paracompact and the identity
mapping idM : (M,τ)→ (M,τ ′) is a continuous function. If S
is some angelic compact subspace of (M,τ), next the restric-
tion of the identity mapping on S onto idM(S) is a homeomor-
phism as S is an angelic compact, idM(S) is Hausdorff being
a subspace of the T2 space (M,τ ′) and every continuous 1-1
function of an angelic compact space onto a Hausdorff space is
a homeomorphism. Hence, M is an A C 2-paracompact.

Theorem 3.15. If (M,τ) is an A C 2-paracompact countably
angelic compact Frechet, then (M,τ) is lower angelic com-
pact.

Proof. Consider a T2 angelic paracompact space (N,τ∗) and
a bijection function p : (M,τ)→ (N,τ∗) 3 the restriction
p|S : S→ p(S) is homeomorphism for every angelic compact
subspace S⊆M. By reason of M is Frechet, then p is continu-
ous. Hence, (M,τ∗) is countably angelic compact. By reason
of (M,τ∗) is also an angelic paracompact, then (M,τ∗) is
T2 angelic compact. Characterize a topology τ ′ on M as fol-
lows: τ ′ = {p−1(U) : U ∈ τ∗}. Then τ ′ is coarser than τ and
p : (M,τ ′)→ (N,τ∗) is a bijection continuous function. Let
W ∈ τ ′ be arbitrary; then W is p−1(U) for some U ∈ τ∗. Thus,
p(W ) = p(p−1(U)) =U . Hence, p is open and p is a home-
omorphism. Thus, (M,τ ′) is T2 angelic compact. Therefore,
(M,τ) is lower angelic compact.
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4. A C -Normal and its Properties
Definition 4.1. A space M is termed as an A C -normal if ∃
a normal space N and a bijective p : M→ N 3 the restriction
p|S : S→ p(S) is homeomorphism for every angelic compact
subspace S⊆M.

Definition 4.2. A space M is termed as Angelic countably
normal if there exists a normal space N and a bijective p :
M→ N 3 the restriction p|S : S→ p(S) is a homeomorphism
for each angelic countable subspace S⊆M.

Example 4.3. An A C normal space is not an A C 2-paracom-
pact.

Proof. Suppose R with L = { /0,R}∪ {(−∞,x) : x ∈ R}. In
this space (R,L), any two nonempty closed sets are intersect;
thus, (R,L) is normal and thus A C -normal. (R,L) is not
Hausdorff as any two nonempty open sets must intersect.
A subset S ⊂ R is angelic compact iff it has a maximum
element. Suppose that (R,L) is A C 2-paracompact. Take N is
Hausdorff paracompact space and p : R→ Y be a bijection 3
p|S : S→ p(S) is homeomorphism for every angelic compact
subspace S of R. Let S=(−∞,0]; then S is an angelic compact
in (R,L) and S as a subspace is not Hausdorff because any
two nonempty open sets in S must intersect. However, S will
be homeomorphic to p(S) and p(S) is Hausdorff, being a
subspace of a Hausdorff space, and this is a contradiction.
Thus, (R,L) cannot be A C 2-paracompact space.

Example 4.4. An infinite A C normal space is not an A C -
paracompact space.

Proof. Let M = [0,∞). Define τ = { /0,M} ∪ {[0,x) : x ∈
R,0 < x}. Consider (R,L) is just the angelic subspace of
(R,L). (i.e), τ = LM = L[0,∞). Now consider (M,τ0), where
τ0 is the particular point topology. We have that τ is coarser
than τ0 because any nonempty open set in τ must contain 0.
Thus, (M,τ0) cannot be an angelic paracompact. Observe that
(M,τ) is normal because there are no two nonempty closed
disjoint subsets. Thus, (M,τ) is an A C -normal. Now, a sub-
set S of M is an angelic compact iff S has maximal element. If
S has maximal element, then any open cover for S will be cov-
ered by one member of the open cover, the one that contains
the maximal element. If S has no maximal element, then S
cannot be finite. If S is unbounded above, then {[0,n) : n∈N}
would be an open cover for S has no finite subcover. If S is
bounded above, let y = supS and pick an increasing sequence
(cn)⊆ S 3 cn→ y, where the convergence is taken in the usual
metric topology on M. Then {[0,cn) : n ∈ N} would be an
open cover for S that has no finite subcover. Thus, S would not
be an angelic compact. (M,τ) is Frechet. That is because M
is first countable. If x ∈M, then B(x) = {[0,x+1n) : n ∈ N}
is a countable local base for M at x.

Now, suppose that M is an A C -paracompact. Choose
an angelic paracompact space Y and a bijective mapping p :
M→N 3 p|S : S→ p(S) is a homeomorphism for each angelic
compact subspace A of M. By Corollary 3.8, p is continuous.

Thus, for some nonempty open subset U of N we have that
p−1(U) is open in M. By reason of p is a bijective, M is
infinite. For each y ∈ M, pick an open neighborhood Uy
of y 3 the family {Uy : y ∈ Y} is an infinite open cover for
M. By reason of each Uy contains the element p(0), then
the open cover {Uy : y ∈ Y} cannot have any locally finite
open refinement and thus Y is not paracompact, which is a
contradiction. Therefore, M is A C -normal but not an A C -
paracompact.

Lemma 4.5. If p : M → N is a bijective function, M is an
A C -normal space and any finite subset of M is discrete, then
N is T1.

Proof. By reason of p : M→ N is a bijective function 3 p|S :
S → p(S) is a homeomorphism for each angelic compact
subspace S ⊆ M. Assume M has more than one element
and take a, b are distinct elements of N. Let c and d be
the unique elements of M 3 p(c) = a and p(d) = b. Then
p|{c,d} : {c,d}→ {a,b} is a homeomorphism and {c,d} is a
discrete subspace of M. Thus, p({c}) = {a} and p({d}) =
{b} are both open in {a,b} as a subspace of N. Thus, ∃ an
open neighborhood Ua ⊆ N of a 3Ua∩{a,b}= {a}; hence,
b /∈Ua, and similarly ∃ an open neighborhood Ub ⊆ N of b 3
a /∈Ub. Thus, N is T1.

Example 4.6. R With τp(R,τp) is not an A C -normal space.

Proof. R with τp, here the particular point is p ∈ R, is not
A C -normal. By reason of τp = { /0}∪{U ⊆ R : p ∈U}. We
known that (R,τp) is neither T1 nor normal space and if A⊆R,
then {{x, p} : x ∈ A} is an open cover for S, thus a subset S
of R is an angelic compact iff it is finite. To show (R,τp) is
not A C -normal, suppose that (R,τp) is A C -normal. Take N
is a normal space, p : M→ N be a function 3 the restriction
p|S : S→ p(S) is a homeomorphism for every angelic compact
subspace S of (R,τp). Consider the ensuing two cases for the
space N,

Case (i): M is T1. Take S = {a,b}, where a 6= b; then S
is an angelic compact subspace of (R,τp). By assumption
p|S : S→ p(S) = {p{a}, p{b}} is a homeomorphism. By
reason of p(S) is a finite subspace of M and M is T1, then
p(S) is a discrete subspace of M. Hence, p|S is not continuous
which is contradiction as p|S is a homeomorphism.

Case (ii): M is not T1. To prove the topology on M is
the particular point topology with p(b) as its particular point.
Assume that N is not the particular point topology then ∃ a
non-empty open set U ⊂ N 3 p(b) /∈U . Choose y ∈U and
take x ∈ R is the unique real number 3 p(x) = y. Suppose
{a,b} and a /∈ b because p(x) = y ∈U , p(b) /∈U , and p is
1-1. Take p|a,b : {a,b} → {y, p(b)}. Currently, {y} is open
in the subspace {y, p(b)} of N as {y} = U ∩{y, p(b)}, but
p−1({y}) = {x} and {x} is not open in the subspace {a,b} of
(R,τp), which means p|{a,b} is not continuous. Any particular
point space consisting of more than one point cannot be nor-
mal, so which contradiction as N is normal. Hence, (R,τp) is
not an A C -normal.
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Theorem 4.7. Every angelic compact non-normal space is
not an A C -normal.

Proof. Consider M is an angelic compact non-normal space.
Assume M is an A C -normal, then ∃ a normal space N and a
bijective mapping p : M→ N 3 the restriction p|S : S→ p(S)
is homeomorphism for every angelic compact subspace S⊆M.
By reason of M is an angelic compact, then M ∼= N, and this is
a contradiction as N is normal and M is not an angelic compact
non-normal space. Hence M cannot be an A C -normal.

Theorem 4.8. Let M be an A C -normal space. If every count-
able subspace of M is included in an angelic compact sub-
space, then M is an angelic countably normal.

Proof. Take M is any A C -normal space 3 if S is any count-
able subspace of M, then ∃ an angelic compact subspace E
3 S ⊆ E. Take N is a normal space and p : M → N be a
bijective mapping 3 p|S : S→ p(S) is homeomorphism for
every angelic compact subspace S of M. Presently, take S
is some countable subspace of M. Choose an angelic com-
pact subspace E of M 3 S ⊆ E, next p|E : E → p(E) is
homeomorphism, hence p|S : S→ p(S) is homeomorphism as
(p|E)|S = p|S.

Theorem 4.9. Let M be an A C -normal. If M is a Frechet
Lindelöf space 3 any finite subspace of M is discrete, then M
is an A C 2-paracompact.

Proof. Consider M is A C -normal, then ∃ a normal space N
and a bijection function p : M→ N 3 the restriction p|S : S→
p(S) is homeomorphism for every angelic compact subspace
S⊆M. By Lemma 4.1, Y is T1 and hence T4. By reason of M
is Frechet, then p is continuous. By reason of M is Lindelöf
and p is continuous and onto, then N is Lindelöf. By reason of
any T3 Lindelöf space is an angelic paracompact, then N is T2
angelic paracompact. Therefore, M is an A C 2-paracompact
space.

Theorem 4.10. If (M,τ) is Lindelöf epinormal space then
(M,τ) is an A C 2-paracompact.

Proof. Suppose (M,τ) is some Lindelöf epinormal space.
Choose a coarser topology τ ′ on M 3 (M,τ ′) is T4. By rea-
son of (M,τ) is Lindelöf and τ ′ is coarser than τ we have
(M,τ ′) is T3 and Lindelöf, and hence Hausdorff paracompact.
Therefore, (M,τ ′) is an A C 2-paracompact as the identity
function id : (M,τ)→ (M,τ ′). Hence (M,τ) is an A C 2-
paracompact.

Theorem 4.11. Let (M,τ) be an A C 2-paracompact Frechet
space. Then (M,τ) is an epinormal.

Proof. Take (M,τ) is some A C 2-Paracompact Frechet space
and (M,τ) is normal. Suppose that (M,τ) is not normal. Let
(N,τ ′) be a T2 angelic paracompact space and p : (M,τ)→
(N,τ ′) be a bijective mapping 3 the restriction p|S : S→ p(S)
is homeomorphism for every angelic compact subspace S⊆M.
By reason of M is Frechet, p is continuous; Theorem 3.5,

Define τ∗ = {p−1(U) : U ∈ τ ′}. It is clear τ∗ is a topology
on M coarser than τ 3 p : (M,τ∗)→ (N,τ ′) is continuous. If
W ∈ τ∗, then W is W = p−1(U) here U ∈ τ ′. Thus, p(W ) =
p(p−1(U)) =U , gives p is open and homeomorphism. hence,
(M,τ∗) is T4. hence, (M,τ) is an epinormal.

Corollary 4.12. Let (M,τ) be an A C 2-paracompact Frechet
space, then (M,τ) is completely Hausdorff.

Example 4.13. Any A C 2-paracompact Frechet space is an
epinormal.

Proof. Suppose that two countably infinite sets are termed
as almost disjoint if their intersection is finite. Consider a
subfamily of [ω0]

ω0 = {A ⊂ ω0 : A is infinite } a mad fam-
ily on ω0 if it is a maximal (with respect to inclusion) pair-
wise almost disjoint subfamily. Take A is a pairwise almost
disjoint subfamily of [ω0]

ω0 . The Mrowka space ψ(A) is
describe by ω0 ∪A, every point of ω0 is isolated, and a ba-
sic open neighborhood of W ∈ A has {W} ∪ (W/F), with
F ∈ [ω0] < ω0 = {B ⊆ ω0 : Bis f inite}. since ∃ an almost
disjoint family A⊂ [ω0]

ω0 3 |A|> ω0 and the Mrowka space
ψ(A) is a Tychonoff, separable, first countable, and locally
angelic compact space that is neither countably angelic com-
pact, angelic paracompact, nor normal. A is a mad family
iff ψ(A) is pseudocompact. The Mrowka space ψ(A) is an
A C 2-paracompact, being T2 locally angelic compact. ψ(A)
is also Frechet, being first countable. Hence Mrowka space is
an epinormal.

Remark 4.14. Any minimal Hausdorff A C 2-paracompact
Frechet space is an angelic compact.

Theorem 4.15. Let M be a minimal Hausdorff second count-
able space. The ensuing are equivalent.

(i) M is an A C 2-paracompact.

(ii) M is locally angelic compact.

(iii) M is an angelic compact

(iv) M is an epinormal.

(v) M is metrizable.

(vi) M is lower compact.

(vii) M is minimal T4.

Proof. (i)⇒ (ii) By reason of any second countable space is
first countable and any first countable space is Frechet, then
Theorem 4.5, gives that M is T2 angelic compact and hence
locally angelic compact. (ii)⇒ (iii) By reason of any T2
locally angelic compact space is Tychonoff, by the minimality,
M is an angelic compact. (iii)⇒ (iv) Any T2 angelic compact
space is T4. (iv)⇒ (v) Any epinormal space is T21/2. By
minimilaity, M is angelic compact and hence T3. By reason
of any T3 second countable space is metrizable, the result
follows. (v)⇒ (vi) By minimality, M is T21/2 angelic compact
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and hence lower angelic compact. (vi)⇒ (vii) Again, by
minimality, M is T2 angelic compact and hence T4. By reason
of any minimal T4 space is an angelic compact. (vii)⇒ (i) By
reason of any minimal TT4 space is angelic compact, M will
be T2 angelic paracompact and hence A C 2-paracompact.

Example 4.16. A minimal Hausdorff second countable A C -
paracompact space is Cannot be A C 2-paracompact.

Proof. Let M = {a,b,c j,ai j,bi j : i ∈ N, j ∈ N} here all these
elements are distinct. Characterize the ensuing neighborhood
system on M:

For each i, j ∈ N, ai j is isolated and bi j is isolated.
For each i ∈ N,B(ci) = {V n(ci)} = {ci,ai j,bi j : j ≥ n :

n ∈ N}.
B(a) = {V n(a) = {a,ai j : i≥ n} : n ∈ N}.
B(a) = {V n(b) = {b,bi j : i≥ n} : n ∈ N}.
Denote the unique topology on M caused by the above

neighborhood system by τ . Next τ is minimal Hausdorff and
(M,τ) is cannot compact. By reason of M is countable and
each local base is countable, then the neighborhood system
is a countable base for (M,τ), so it is second countable but
not A C 2-paracompact because it is not T21/2 as the closure
of any open neighborhood of a must intersect the closure of
any open neighborhood of b.

5. Conclusion
Our primary outcomes incorporates the two new ideas

of A C -Paracompact spaces and A C 2-Paracompact spaces.
Likewise demonstrated that, each A C -Paracompactness and
A C 2-Paracompactness has a topological property. We like-
wise explored the A C -normal and its properties.
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