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1. Introduction

In 1944, Dieudonne. J [7] presented the paracompact
space. The idea of paracompactness [7] is one of the most
helpful speculation of compactness. Some notable mathe-
maticians of different occasions have contemplated certain
stronger just as more weaker types of paracompactness. % -

Definition 2.2. [14] A topological space X is paracompact,
if each open cover has a locally finite open refinement.

Definition 2.3. [17]

A topological space M is termed as € -paracompact if 3 a
paracompact space N and a bijective mapping p: M — N >
the restriction p|s : S — p(S) is a homeomorphism for every
compact subspace S C M.

Definition 2.4. [17] A topological space M is termed as 6»-
paracompact if 3 a Hausdorff paracompact space N and a
bijective mapping p : M — N 3 the restriction p|s : S — p(S)
is a homeomorphism for every compact subspace S C M.

Definition 2.5. [3] A space M is termed as € -normal if 3
a normal space N and function p : M — N > the restriction

pls : S — p(S) is homeomorphism for each compact subspace
SCM.

Paracompact and 6>-Paracompact were characterized by ArhangelDefinition 2.6. [10] A space (M, ) is termed as submetriz-

skii. ¢ -Paracompact and %>-Paracompact were concentrated
in [17]. Alzahrani S [3] research € -normal topological prop-
erty. Fermlin’s idea of angelic space [6] and a portion of
its emanation carry us with he required tools for introducing
those outcomes in a mordant idea.

2. Preliminaries

Definition 2.1. [6] A topological space T is termed as an
angelic, if for each relatively countably compact subset . of
T the ensuing hold: (a) .7 is relatively compact (b) If s € .7,
then there is a sequence in . that converges to s.

able if 3 a metric d on M > the topology t; on M caused by
d is coarser than 7, i.e.T; C T.

Definition 2.7. [2] A space (M, 1) is supposed to be epinor-
mal if 3 a coarser topology T on X > (M, 7') is normal.

Definition 2.8. [4] A topology T on a nonempty set M is
supposed to be minimal Hausdorff if (M, ) is Hausdorff and
has no Hausdorff topology on M strictly coarser than T.

Definition 2.9. [20] A space M is termed as mildly normal,
k-normal, if any two disjoint closed domains U and V of M 3
disjoint open sets %, V of M >U C U andV C V.



Definition 2.10. [17] A topological space (M, 7) is termed
as lower compact if 3 a coarser topology T on M > (M, 7")
is Thy—compact.

Definition 2.11. [8] Let X be topological space. If 3 X' =
Xx{1}and XNX' =03 A(X) =XUX/, then A(X) with the
unique topology 7T is termed as Alexandroff duplicate of X.

3. &/¢ and </¢,-Paracompact Spaces

Definition 3.1. Let M be an angelic space and S be an angelic
compact subspace of M. If there is a bijection mapping p :
M — N, N is an angelic paracompact space and the restriction
pls : S — p(S) is a homeomorphism, then M is said to be an
&/ € -paracompact space.

Definition 3.2. Let M be an angelic space and S be an angelic
compact subspace of M. If there is a bijection function p :
M — N, N is a Hausdorff angelic paracompact space and
the restriction pls : S — p(S) is a homeomorphism, then M is
said to be an o/ € >-paracompact space.

Theorem 3.3. Every o/ € -paracompact space (/€ »-paraco-
mpact space) is a topological property.

Proof. Suppose M is an o7/ ¢ -paracompact (.7 6 »-paracomp-
act) space and M = 0. Let N be an angelic paracompact
(Hausdorff angelic paracompact) space and p: M — N be a
bijective mapping > the restriction p|s : S — p(S) is home-
omorphism for every angelic compact subspace S C M. Let
q: O — M be ahomeomorphism. Hence, N and pog: O — N
has the topological properties. U

Theorem 3.4. Every o/ € -paracompact space (/€ »-paraco-
mpact space) has an additive property.

Proof. Suppose My, is an &7 6 -paracompact(.e/ 6 »-paracom-
pact) space for each o € A. To prove that their sum B gecsaMy
is an o7 € -paracompact (.7 6’ »-paracompact). For each o € A,
choose an angelic paracompact ( Hausdorff angelic para-
compact) space Ny and bijective mapping py : My — Ny
S Pasy : Sa — Pa(Se) is @ homeomorphism for every an-
gelic compact subspace Sy of My. By reason of Ny is an
angelic paracompact (Hausdorff angelic paracompact) for
each a € A, then the sum @yeca Ny is an angelic paracompact
(Hausdorff angelic paracompact). Consider the function sum
SacaPa:BacaAMa — DaiphacaNe described by Sgenpa(m)
=p(m)ifme Mg, B € A. Currently, a subspace S C ®geprMy
is an angelic compact iff the set Ag = {t € A: SNMy ¢ 0}
is finite, SN My is an angelic compact in My, for every o €
Ao. If S C ®geaMy is an angelic compact, subsequently
(DacAMq)|c is a homeomorphism as pg ey, is @ homeo-
morphism for every o € Ag. O

Theorem 3.5. If M is an &/ 6 -paracompact (/'€ »-paracomp-
act), then its Alexandroff duplicate A(M) is also an /6 -
paracompact (/6 »-paracompact).
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Proof. Let M be any o/ € -paracompact space. Choose an an-
gelic paracompact space N and a bijective function p : M — N
3 pls: S — p(S) is a homeomorphism for every angelic com-
pact subspace S C M. Suppose the Alexandroff duplicate
spaces A(M) and A(N) of M and N commonly. By reason
of N is an angelic paracompact, next A(N) is also an angelic
paracompact. Characterize g : A(M) — A(N) by g(a) = A(a)
if a € M. If a € My, consider the unique element b in M >
bo = a, then characterize g(a) = (p(b))’. Next g is a bijec-
tive mapping. Currently, a subspace S C A(M) is an angelic
compact iff SN M is an angelic compact in M and for every
open set U in M with SNM C A(M), we state SNM' /U’ is
finite. take S C A(M) is any angelic compact subspace. To
prove gls : S — ¢(S) is a homeomorphism. Take a € S is
arbitrary. If a € SNM’, let b € X be the unique element >
b' = a. For the smallest basic open neighborhood {(f())'}
of the point g(a) we state that {a} is open in ¢ and g({a}) C
{(f(b))'}. If a€ SNM. Let W be any open set in N >
g(a) = f(a) e W. Consider H = (WU W'/{f(a)'}))Ng(C)
which is a basic open neighborhood of p(a) in ¢(S). By reason
of p|(SAM) : SNM — p(SNM) is a homeomorphism, then 3
an open set U in M with a € U and p| srm(uns) ©W. Currently,
(UUU'/{d'}))Nq(C) is openin ¢ > a € G and g.() C H.
Thus, g|s is continuous. Currently, to prove that ¢|g is open.
Take KN (K'/{k'}), here k € K and K is open in M ,be any
basic open set in A(M),then (KNS)U((K'NS)/{k'}) is a
basic open set in 4. By reason of M NS is an angelic com-
pact in M.then qlsknwmnc)) = qlmnsknmns))) is open in
NN p(SNM) as p|uns is a homeomorphism. Hence KNS
is open in NN p(NNM). Also, p(K'NS)/{k'}) is open in
N"Ng(S) be a set of isolated points. Hence g|s is an open
function. Hence, p|s is a homeomorphism. O

Theorem 3.6. If (M,7') is a submetrizable space of (M,T)
with T C 7, then (M, 7') is an /6 »-paracompact.

Proof. Since 7’ is a metrizable topology on M > 7/ C 7. Next
(M, 1) is o/€»-paracompact and the identity function idy :
(M,7) — (M, 7') is a continuous function. If § is some angelic
compact subspace of (M, 7), then the restriction of the identity
mapping on S onto idy(S) is a homemorphism as S is an
angelic compact, idy(S) is Hausdorff be a subspace of the
metrizable space (M,7’), and every continuous one-to-one
mapping of an angelic compact space onto a Hausdorff space
is a homeomorphism. Hence, (M, 7’) submetrizable space is
an .o/ € »-paracompact. O

Theorem 3.7. If M is an o/ 6 -paracompact (/€ »- paracomp-
act) Frechet space and p : M — N is a witness of the /6 -

paracompactness (/€ »-paracompactness) of M, then p is

continuous.

Proof. Suppose S is any nonempty subset of M. Take n € p(S)
is arbitrary and m € M be the unique element > p(m) = n.
Then m € S. Choose a sequence (s,) C S 3 s, — s Let then
T ={s,s, :n € N} is an angelic compact subspace of M, being
a convergent sequence with its limit, thus p|7 : T — p(T) is



a homeomorphism. Currently, take V C U is some open
neighbourhood of y; next VN p(T) is open in the subspace
p(T) including n. Thus, p~!(V)NT is open in the subspace
T containing m. Thus, p~'(V)NB)N{m, :n € N} # 0, so
((p~"(V)NT)NA #0. Hence, 0 # p((p~' (V)NT)NS) C
p((p~'(V)NS) =V Np(S). hence, n € (p(S)) and p(S) C

(p(S)) Thus, p is continuous. O

Corollary 3.8. If M is an o/ € -paracompact (/€ »-paracom-
pact) first countable space and p : M — Y is a witness of
the o/ € -paracompact (/6 »-paracompact) of M, then p is
continuous.

Corollary 3.9. If M is an </€»-paracompact Frechet space,
then X is Hausdorff.

Proof. Since N is a T, angelic paracompact space and p :
M — N be a bijective mapping 3 the restriction p|s : S — p(S)
is homeomorphism for every angelic compact subspace S C M.
Through Theorem 3.5, p is continuous. Take A, B are some
disjoint angelic compact space; then f(A), f(B) are disjoint
angelic compact subspaces of N. By reason of N is 7>, then
f(A) and f(B) are disjoint closed subspaces of N. By reason
of N is T, angelic paracompact, N is normal and thus 3 open
subsets Gand H of Y 3 f(A) CG, f(B) CH,and GNH =0.
By the continuity of p, U = p~'(G) and V = p~'(H). Thus,
for every disjoint angelic compact subspaces A and B, 3 open
setsUandVoSSCU, TCVandUNV =0. O

Theorem 3.10. If M is a T space > the only angelic compact
subsets are the finite subsets, then M is o/€ paracompact
space.

Proof. Suppose M is a T space 3 the only angelic compact
subspaces of M are the finite subsets of M. Since T, finally
some angelic compact subspace of M is discrete. Then, take
N = M and let Y with the discrete topology. Thus the identity
mapping from M onto N. Hence, 3 a bijection mapping p :
M — N, N is an angelic Hausdorff paracompact space and
the restriction p|s : S — p(S) is a homeomorphism, then M is
said to be an .o/6’»-paracompact. O

Theorem 3.11. Let M be the Hausdorff locally angelic com-
pact space. Then M is an /€ y-Paracompact space.

Proof. Since M is any Hausdorff locally angelic compact
topological space. Then 3 a 7> angelic compact space N and
hence N is T, angelic paracompact, and a bijective function
p:M — N > pis continuous. By reason of p is continuous,
Next for some angelic compact subspace S C M, we have
pls : S — p(S) is a homeomorphism because 1 to 1, onto, and
continuity are acquired from p, and p|s is closed as S is an
angelic compact and p(S) is Hausdorff. O

Example 3.12. A Tychonoff </¢»-paracompact space is not
locally compact.
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Proof. Consider the quotient space R/N. We can describe it
as follows: Leti =+/—1. Let N=R/NUi. Define p: R - Y
as follows:

x; ifxe R/N
px)=1"".
i;ifxeN

Now consider on R the usual topology U. Define on N the
topology T={W CY : p~!'(W) € U}. Then p: (R,U) —
(N,7) is a closed quotient mapping. We can describe the
open neighborhoods of each element in as follows: The open
neighborhoods of i € N are (U/N) U {i}, here U is an open
set in (N,U) > N C U. The open neighborhoods of any
y€R/Nare (y—¢€,y+ €)N where € is a positive real number.
It is well known that (N, ) is T3, which is neither locally
angelic compact nor first countable. Now, by reason of (N, T)
is Lindelof, being a continuous image of R with its usual
topology, and T3, then (N, 1) is angelic paracompact and 7y.
Hence, it is an &7/¢";-paracompact. O

Definition 3.13. A topological space (M,7T) is termed as
lower angelic compact if 3 a coarser topology ©" on M >
(X,7') is T angelic compact.

Theorem 3.14. If (M, t) lower angelic compact space, Then
M is an o/ €»-paracompact.

Proof. Suppose 7' is a T» angelic compact topology on M >
7' C 7. Next (M, 7') is T» angelic paracompact and the identity
mapping idy : (M, ) — (M, 1) is a continuous function. If §
is some angelic compact subspace of (M, 7), next the restric-
tion of the identity mapping on S onto idy(S) is a homeomor-
phism as S is an angelic compact, idy(S) is Hausdorff being
a subspace of the 75 space (M, 7’) and every continuous 1-1
function of an angelic compact space onto a Hausdorff space is
a homeomorphism. Hence, M is an &/ ¢»-paracompact. [

Theorem 3.15. If (M, ) is an o&/€»-paracompact countably
angelic compact Frechet, then (M, ) is lower angelic com-
pact.

Proof. Consider a T, angelic paracompact space (N, Tx) and
a bijection function p : (M, 1) — (N, 7%) 3 the restriction
pls : S — p(S) is homeomorphism for every angelic compact
subspace S C M. By reason of M is Frechet, then p is continu-
ous. Hence, (M, ) is countably angelic compact. By reason
of (M, t+) is also an angelic paracompact, then (M, T%) is
1> angelic compact. Characterize a topology ' on M as fol-
lows: T = {p~!(U) : U € t*}. Then 7’ is coarser than T and
p:(M,7") — (N,T%) is a bijection continuous function. Let
W € 7’ be arbitrary; then W is p~! (U) for some U € Tx. Thus,
p(W) = p(p~!'(U)) = U. Hence, p is open and p is a home-
omorphism. Thus, (M, ') is 7> angelic compact. Therefore,
(M, ) is lower angelic compact. O



4. «/%-Normal and its Properties

Definition 4.1. A space M is termed as an /€ -normal if 3
a normal space N and a bijective p : M — N 3 the restriction
pls : S — p(S) is homeomorphism for every angelic compact
subspace S C M.

Definition 4.2. A space M is termed as Angelic countably
normal if there exists a normal space N and a bijective p :
M — N 3 the restriction plg : S — p(S) is a homeomorphism
for each angelic countable subspace S C M.

Example 4.3. An o/6 normal space is not an &€ »-paracom-
pact.

Proof. Suppose R with L = {0,R} U{(—oe0,x) : x € R}. In
this space (R, L), any two nonempty closed sets are intersect;
thus, (R,L) is normal and thus &/%-normal. (R,L) is not
Hausdorff as any two nonempty open sets must intersect.
A subset S C R is angelic compact iff it has a maximum
element. Suppose that (R, L) is /¢ ’>-paracompact. Take N is
Hausdorff paracompact space and p : R — Y be a bijection >
pls : S — p(S) is homeomorphism for every angelic compact
subspace S of R. Let S = (—o0,0]; then S is an angelic compact
in (R,L) and S as a subspace is not Hausdorff because any
two nonempty open sets in S must intersect. However, S will
be homeomorphic to p(S) and p(S) is Hausdorff, being a
subspace of a Hausdorff space, and this is a contradiction.
Thus, (R,L) cannot be .76 >-paracompact space. O

Example 4.4. An infinite &/¢ normal space is not an /6 -
paracompact space.

Proof. Let M = [0,00). Define 7 = {0,M}U{[0,x) : x €
R,0 < x}. Consider (R,L) is just the angelic subspace of
(R,L). (i.e), t=Ly = L(p,«.)- Now consider (M, 1), where
Ty is the particular point topology. We have that 7 is coarser
than 7y because any nonempty open set in T must contain 0.
Thus, (M, 1) cannot be an angelic paracompact. Observe that
(M, T) is normal because there are no two nonempty closed
disjoint subsets. Thus, (M, T) is an &/¢-normal. Now, a sub-
set S of M is an angelic compact iff S has maximal element. If
S has maximal element, then any open cover for S will be cov-
ered by one member of the open cover, the one that contains
the maximal element. If S has no maximal element, then S
cannot be finite. If S is unbounded above, then {[0,n) : n € N}
would be an open cover for S has no finite subcover. If § is
bounded above, let y = supS and pick an increasing sequence
(cn) €S 3 ¢, — y, where the convergence is taken in the usual
metric topology on M. Then {[0,¢,) : n € N} would be an
open cover for S that has no finite subcover. Thus, S would not
be an angelic compact. (M, 7) is Frechet. That is because M
is first countable. If x € M, then B(x) = {[0,x+ In) :n € N}
is a countable local base for M at x.

Now, suppose that M is an .o/ ¢-paracompact. Choose
an angelic paracompact space Y and a bijective mapping p :
M — N 3 p|s:S— p(S) is ahomeomorphism for each angelic
compact subspace A of M. By Corollary 3.8, p is continuous.
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Thus, for some nonempty open subset U of N we have that
p~'(U) is open in M. By reason of p is a bijective, M is
infinite. For each y € M, pick an open neighborhood U,
of y > the family {U, : y € Y} is an infinite open cover for
M. By reason of each U, contains the element p(0), then
the open cover {U, : y € Y} cannot have any locally finite
open refinement and thus Y is not paracompact, which is a
contradiction. Therefore, M is .2/¢’-normal but not an /6 -
paracompact. O

Lemma 4.5. If p: M — N is a bijective function, M is an
/6 -normal space and any finite subset of M is discrete, then
NisTy.

Proof. By reason of p: M — N is a bijective function 3 p|s :
S — p(S) is a homeomorphism for each angelic compact
subspace S C M. Assume M has more than one element
and take a, b are distinct elements of N. Let ¢ and d be
the unique elements of M > p(c) = a and p(d) = b. Then
Plic.ay : {¢;d} — {a,b} is a homeomorphism and {c,d} is a
discrete subspace of M. Thus, p({c}) = {a} and p({d}) =
{b} are both open in {a,b} as a subspace of N. Thus, 3 an
open neighborhood U, C N of a 3 U,N{a,b} = {a}; hence,
b ¢ U,, and similarly 3 an open neighborhood U, C N of b >
a ¢ Ub. Thus, N is T1. O

Example 4.6. R With 7,(R, T,,) is not an /€ -normal space.

Proof. R with 7, here the particular point is p € R, is not
/¢ -normal. By reason of 7, = {0} U{U CR: pcU}. We
known that (R, 7,,) is neither 77 nor normal space and if A C R,
then {{x,p} : x € A} is an open cover for S, thus a subset §
of R is an angelic compact iff it is finite. To show (R, t,) is
not 276’ -normal, suppose that (R, 7,,) is .&/¢’-normal. Take N
is a normal space, p : M — N be a function > the restriction
pls : S — p(S) is ahomeomorphism for every angelic compact
subspace S of (R, 7,). Consider the ensuing two cases for the
space N,

Case (i): M is Ty. Take S = {a,b}, where a # b; then S
is an angelic compact subspace of (R,7,). By assumption
pls : S = p(S) = {p{a}, p{b}} is a homeomorphism. By
reason of p(S) is a finite subspace of M and M is Tj, then
p(S) is a discrete subspace of M. Hence, p|s is not continuous
which is contradiction as p|s is a homeomorphism.

Case (ii): M is not T;. To prove the topology on M is
the particular point topology with p(b) as its particular point.
Assume that N is not the particular point topology then 3 a
non-empty open set U C N 5 p(b) ¢ U. Choose y € U and
take x € R is the unique real number > p(x) = y. Suppose
{a,b} and a ¢ b because p(x) =y € U, p(b) ¢ U, and p is
1-1. Take p|sp : {a,b} — {y,p(b)}. Currently, {y} is open
in the subspace {y,p(b)} of N as {y} =U N {y,p(b)}, but
p~1({y}) = {x} and {x} is not open in the subspace {a,b} of
(R, 7,), which means p|, ;) is not continuous. Any particular
point space consisting of more than one point cannot be nor-
mal, so which contradiction as N is normal. Hence, (R, 7,) is
not an .&/¢-normal. O



Theorem 4.7. Every angelic compact non-normal space is
not an </€ -normal.

Proof. Consider M is an angelic compact non-normal space.
Assume M is an ./¢’-normal, then 3 a normal space N and a
bijective mapping p : M — N > the restriction p|s : S — p(S)
is homeomorphism for every angelic compact subspace S C M.
By reason of M is an angelic compact, then M = N, and this is
a contradiction as N is normal and M is not an angelic compact
non-normal space. Hence M cannot be an /¢ -normal. [J

Theorem 4.8. Let M be an &/ 6’ -normal space. If every count-
able subspace of M is included in an angelic compact sub-
space, then M is an angelic countably normal.

Proof. Take M is any o/ ¢-normal space > if S is any count-
able subspace of M, then 3 an angelic compact subspace E
> S CE. Take N is a normal space and p: M — N be a
bijective mapping 3 p|s : S — p(S) is homeomorphism for
every angelic compact subspace S of M. Presently, take S
is some countable subspace of M. Choose an angelic com-
pact subspace E of M 5 S C E, next p|g : E — p(E) is
homeomorphism, hence p|s : § — p(S) is homeomorphism as
(ple)ls = pls. O

Theorem 4.9. Let M be an /6 -normal. If M is a Frechet
Lindelof space > any finite subspace of M is discrete, then M
is an o/ € »-paracompact.

Proof. Consider M is &/ % -normal, then 3 a normal space N
and a bijection function p : M — N > the restriction p|s : S —
p(S) is homeomorphism for every angelic compact subspace
S C M. By Lemma 4.1, Y is 7] and hence 74. By reason of M
is Frechet, then p is continuous. By reason of M is Lindelof
and p is continuous and onto, then N is Lindelof. By reason of
any 73 Lindelof space is an angelic paracompact, then N is 7>
angelic paracompact. Therefore, M is an .o/ ¢’>-paracompact
space. O

Theorem 4.10. If (M, ) is Lindeldf epinormal space then
(M, ) is an &/ € »-paracompact.

Proof. Suppose (M, 7) is some Lindelof epinormal space.
Choose a coarser topology T’ on M > (M, 7') is Ty. By rea-
son of (M, 1) is Lindelsf and 7’ is coarser than T we have
(M,7) is T3 and Lindeldf, and hence Hausdorff paracompact.
Therefore, (M, 7') is an /€»-paracompact as the identity
function id : (M,t) — (M,7’). Hence (M,7) is an &/€>-
paracompact. O

Theorem 4.11. Let (M, 1) be an /€ >-paracompact Frechet
space. Then (M, 7) is an epinormal.

Proof. Take (M, 7) is some /¢ »-Paracompact Frechet space
and (M, 7) is normal. Suppose that (M, T) is not normal. Let
(N,7') be a T, angelic paracompact space and p : (M, T) —
(N,7') be a bijective mapping > the restriction p|g: S — p(S)
is homeomorphism for every angelic compact subspace S C M.
By reason of M is Frechet, p is continuous; Theorem 3.5,
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Define t = {p~!(U) : U € 7'}. Tt s clear 7% is a topology
on M coarser than T > p : (M, T+) — (N, 7’) is continuous. If
W € Tx, then W is W = p~!(U) here U € 7. Thus, p(W) =
p(p~'(U)) =U, gives p is open and homeomorphism. hence,
(M, t%) is Ty. hence, (M, 1) is an epinormal. O

Corollary 4.12. Let (M, 7) be an o/ € »-paracompact Frechet
space, then (M, T) is completely Hausdorff.

Example 4.13. Any o/€»-paracompact Frechet space is an
epinormal.

Proof. Suppose that two countably infinite sets are termed
as almost disjoint if their intersection is finite. Consider a
subfamily of [my]® = {A C wp : A isinfinite } a mad fam-
ily on @y if it is a maximal (with respect to inclusion) pair-
wise almost disjoint subfamily. Take A is a pairwise almost
disjoint subfamily of [ep]®. The Mrowka space y(A) is
describe by wyUA, every point of @y is isolated, and a ba-
sic open neighborhood of W € A has {W}U (W/F), with
F € [an] < mp = {B C ay : Bisfinite}. since 3 an almost
disjoint family A C [wg]®® > |A| > oy and the Mrowka space
y(A) is a Tychonoff, separable, first countable, and locally
angelic compact space that is neither countably angelic com-
pact, angelic paracompact, nor normal. A is a mad family
iff w(A) is pseudocompact. The Mrowka space y(A) is an
/€ »-paracompact, being 7> locally angelic compact. y(A)
is also Frechet, being first countable. Hence Mrowka space is
an epinormal. O

Remark 4.14. Any minimal Hausdorff </ € »-paracompact
Frechet space is an angelic compact.

Theorem 4.15. Let M be a minimal Hausdorff second count-
able space. The ensuing are equivalent.

(i) M is an /€ »-paracompact.
(ii) M is locally angelic compact.
(iii) M is an angelic compact
(iv) M is an epinormal.

(v) M is metrizable.

(vi) M is lower compact.
(vii) M is minimal Ty.

Proof. (i) = (ii) By reason of any second countable space is
first countable and any first countable space is Frechet, then
Theorem 4.5, gives that M is T, angelic compact and hence
locally angelic compact. (ii) = (iii) By reason of any T»
locally angelic compact space is Tychonoff, by the minimality,
M is an angelic compact. (iii) = (iv) Any T» angelic compact
space is Ty. (iv) = (v) Any epinormal space is T;/,. By
minimilaity, M is angelic compact and hence 73. By reason
of any 73 second countable space is metrizable, the result
follows. (v) = (vi) By minimality, M is T5; /> angelic compact
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and hence lower angelic compact. (vi) = (vii) Again, by
minimality, M is T, angelic compact and hence 7;. By reason
of any minimal 7 space is an angelic compact. (vii) = (i) By
reason of any minimal T7} space is angelic compact, M will
be T, angelic paracompact and hence .«7'¢’>-paracompact. [

Example 4.16. A minimal Hausdor{f second countable <76 -
paracompact space is Cannot be </ € »-paracompact.

Proof. Let M = {a,b,cj,a;j,b;j:i € N, j € N} here all these
elements are distinct. Characterize the ensuing neighborhood
system on M:

For each i, j € N, a;; is isolated and b;; is isolated.

For each i € N,B(C,') = {Vn(C,')} = {c[,a,-j,b;j rj>n:
n €N}

HBla) ={V"(a) ={a,a;j:i>n} :nec N}

HBla) ={V"(b) ={b,bjj:i>n}:ne N}

Denote the unique topology on M caused by the above
neighborhood system by 7. Next 7 is minimal Hausdorff and
(M, 1) is cannot compact. By reason of M is countable and
each local base is countable, then the neighborhood system
is a countable base for (M, 7), so it is second countable but
not .«/6>-paracompact because it is not 75, /2 as the closure
of any open neighborhood of a must intersect the closure of
any open neighborhood of b. O

5. Conclusion

Our primary outcomes incorporates the two new ideas
of &/€-Paracompact spaces and 276 >-Paracompact spaces.
Likewise demonstrated that, each .o7¢’-Paracompactness and
o/ € »-Paracompactness has a topological property. We like-
wise explored the .27/6’-normal and its properties.
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