

https://doi.org/10.26637/MJM0803/0044

\mathscr{AC} and \mathscr{AC}_2 -Paracompact spaces

S. Umamaheswari¹* and M. Saraswathi²

Abstract

The reason for this paper is to present the two new ideas of \mathscr{AC} -Paracompact spaces and \mathscr{AC}_2 -Paracompact spaces. Additionally we have demonstrated that each \mathscr{AC} -Paracompactness and \mathscr{AC}_2 -Paracompactness has a topological property. We have likewise presented the \mathscr{AC} -normal and its properties.

Keywords

Angelic spaces, \mathscr{C} -Paracompact, \mathscr{C}_2 -Paracompact, \mathscr{C} -Normal, \mathscr{AC} -Paracompact, \mathscr{AC}_2 -Paracompa normal.

AMS Subject Classification

46A50, 54D10, 54D20.

^{1,2} Department of Mathematics, KKC-Velur 638182, Tamil Nadu, India. *Corresponding author: 1 umamaheswari.maths@gmail.com; 2msmathsnkl@gmail.com Article History: Received 12 April 2020; Accepted 09 June 2020

Contents

1	Introduction
2	Preliminaries
3	\mathscr{AC} and $\mathscr{AC}_2\text{-}Paracompact$ Spaces $\dots\dots\dots$ 983
4	AC-Normal and its Properties985
5	Conclusion
	References

1. Introduction

In 1944, Dieudonne. J [7] presented the paracompact space. The idea of paracompactness [7] is one of the most helpful speculation of compactness. Some notable mathematicians of different occasions have contemplated certain stronger just as more weaker types of paracompactness. *C*-Paracompact and C_2 -Paracompact were characterized by Arhangel **Definition 2.6.** [10] A space (M, τ) is termed as submetrizskii. C -Paracompact and C_2 -Paracompact were concentrated in [17]. Alzahrani S [3] research & -normal topological property. Fermlin's idea of angelic space [6] and a portion of its emanation carry us with he required tools for introducing those outcomes in a mordant idea.

2. Preliminaries

Definition 2.1. [6] A topological space T is termed as an angelic, if for each relatively countably compact subset \mathcal{S} of *T* the ensuing hold: (a) \mathscr{S} is relatively compact (b) If $s \in \overline{\mathscr{S}}$, then there is a sequence in \mathcal{S} that converges to s.

Definition 2.2. [14] A topological space X is paracompact, if each open cover has a locally finite open refinement.

©2020 MJM.

Definition 2.3. [17]

A topological space M is termed as C-paracompact if $\exists a$ paracompact space N and a bijective mapping $p: M \rightarrow N \ni$ the restriction $p|_S: S \to p(S)$ is a homeomorphism for every compact subspace $S \subseteq M$.

Definition 2.4. [17] A topological space M is termed as C_2 paracompact if \exists a Hausdorff paracompact space N and a bijective mapping $p: M \to N \ni$ the restriction $p|_S: S \to p(S)$ is a homeomorphism for every compact subspace $S \subseteq M$.

Definition 2.5. [3] A space M is termed as \mathcal{C} -normal if \exists a normal space N and function $p: M \rightarrow N \ni$ the restriction $p|_S: S \to p(S)$ is homeomorphism for each compact subspace $S \subseteq M$.

able if \exists a metric d on $M \ni$ the topology τ_d on M caused by *d* is coarser than τ , i.e. $\tau_d \subseteq \tau$.

Definition 2.7. [2] A space (M, τ) is supposed to be epinormal if \exists a coarser topology τ' on $X \ni (M, \tau')$ is normal.

Definition 2.8. [4] A topology τ on a nonempty set M is supposed to be minimal Hausdorff if (M, τ) is Hausdorff and has no Hausdorff topology on M strictly coarser than τ .

Definition 2.9. [20] A space M is termed as mildly normal, *k*-normal, if any two disjoint closed domains U and V of $M \exists$ *disjoint open sets* \mathcal{U} , \mathcal{V} *of* $M \ni U \subseteq \mathcal{U}$ *and* $V \subseteq \mathcal{V}$.

Definition 2.10. [17] A topological space (M, τ) is termed as lower compact if \exists a coarser topology τ' on $M \ni (M, \tau')$ is T_2 -compact.

Definition 2.11. [8] Let X be topological space. If $\exists X' = X \times \{1\}$ and $X \cap X' = \emptyset \ni A(X) = X \cup X'$, then A(X) with the unique topology τ is termed as Alexandroff duplicate of X.

3. \mathscr{AC} and \mathscr{AC}_2 -Paracompact Spaces

Definition 3.1. Let M be an angelic space and S be an angelic compact subspace of M. If there is a bijection mapping $p : M \rightarrow N$, N is an angelic paracompact space and the restriction $p|_S : S \rightarrow p(S)$ is a homeomorphism, then M is said to be an \mathscr{AC} -paracompact space.

Definition 3.2. Let M be an angelic space and S be an angelic compact subspace of M. If there is a bijection function p: $M \rightarrow N$, N is a Hausdorff angelic paracompact space and the restriction $p|_S : S \rightarrow p(S)$ is a homeomorphism, then M is said to be an \mathscr{AC}_2 -paracompact space.

Theorem 3.3. Every \mathscr{AC} -paracompact space (\mathscr{AC}_2 -paracompact space) is a topological property.

Proof. Suppose *M* is an \mathscr{AC} -paracompact (\mathscr{AC}_2 -paracompact) space and $M \cong O$. Let *N* be an angelic paracompact (Hausdorff angelic paracompact) space and $p: M \to N$ be a bijective mapping \ni the restriction $p|_S: S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. Let $q: O \to M$ be a homeomorphism. Hence, *N* and $p \circ q: O \to N$ has the topological properties.

Theorem 3.4. Every \mathscr{AC} -paracompact space (\mathscr{AC}_2 -paracompact space) has an additive property.

Proof. Suppose M_{α} is an \mathscr{AC} -paracompact(\mathscr{AC}_2 -paracompact) space for each $\alpha \in A$. To prove that their sum $\bigoplus_{\alpha \in A} M_{\alpha}$ is an \mathscr{AC} -paracompact (\mathscr{AC}_2 -paracompact). For each $\alpha \in \Lambda$, choose an angelic paracompact (Hausdorff angelic paracompact) space N_{α} and bijective mapping $p_{\alpha}: M_{\alpha} \to N_{\alpha}$ $i = p_{\alpha \& \alpha} : S_{\alpha} \to p_{\alpha}(S_{\alpha})$ is a homeomorphism for every angelic compact subspace S_{α} of M_{α} . By reason of N_{α} is an angelic paracompact (Hausdorff angelic paracompact) for each $\alpha \in \Lambda$, then the sum $\bigoplus_{\alpha \in A} N_{\alpha}$ is an angelic paracompact (Hausdorff angelic paracompact). Consider the function sum $\oplus_{\alpha \in \Lambda} p_{\alpha} : \oplus_{\alpha \in \Lambda} M_{\alpha} \to \oplus_{alpha \in \Lambda} N_{\alpha} \text{ described by } \oplus_{\alpha \in \Lambda} p_{\alpha}(m)$ = p(m) if $m \in M_{\beta}, \beta \in \Lambda$. Currently, a subspace $S \subseteq \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is an angelic compact iff the set $\Lambda_0 = \{ \alpha \in \Lambda : S \cap M_\alpha \notin \emptyset \}$ is finite, $S \cap M_{\alpha}$ is an angelic compact in M_{α} for every $\alpha \in$ Λ_0 . If $S \subseteq \bigoplus_{\alpha \in \Lambda} M_{\alpha}$ is an angelic compact, subsequently $(\bigoplus_{\alpha \in \Lambda} M_{\alpha})|_{C}$ is a homeomorphism as $p_{\alpha/C \cap M_{\alpha}}$ is a homeomorphism for every $\alpha \in \Lambda_0$.

Theorem 3.5. If M is an \mathcal{AC} -paracompact (\mathcal{AC}_2 -paracompact), then its Alexandroff duplicate A(M) is also an \mathcal{AC} -paracompact (\mathcal{AC}_2 -paracompact).

Proof. Let M be any \mathscr{AC} -paracompact space. Choose an angelic paracompact space N and a bijective function $p: M \rightarrow N$ $i \geq p|_S: S \rightarrow p(S)$ is a homeomorphism for every angelic compact subspace $S \subseteq M$. Suppose the Alexandroff duplicate spaces A(M) and A(N) of M and N commonly. By reason of N is an angelic paracompact, next A(N) is also an angelic paracompact. Characterize $q: A(M) \rightarrow A(N)$ by q(a) = A(a)if $a \in M$. If $a \in M_0$, consider the unique element b in $M \ni$ $b_0 = a$, then characterize q(a) = (p(b))'. Next q is a bijective mapping. Currently, a subspace $S \subseteq A(M)$ is an angelic compact iff $S \cap M$ is an angelic compact in M and for every open set U in M with $S \cap M \subseteq A(M)$, we state $S \cap M'/U'$ is finite. take $S \subseteq A(M)$ is any angelic compact subspace. To prove $q|_S : S \to q(S)$ is a homeomorphism. Take $a \in S$ is arbitrary. If $a \in S \cap M'$, let $b \in X$ be the unique element \ni b' = a. For the smallest basic open neighborhood $\{(f(b))'\}$ of the point g(a) we state that $\{a\}$ is open in \mathscr{C} and $g(\{a\}) \subseteq$ $\{(f(b))'\}$. If $a \in S \cap M$. Let W be any open set in $N \ni$ $g(a) = f(a) \in W$. Consider $H = (W \cup (W' \setminus \{f(a)'\})) \cap g(C)$ which is a basic open neighborhood of p(a) in q(S). By reason of $p|_{(S \cap M)} : S \cap M \to p(S \cap M)$ is a homeomorphism, then \exists an open set U in M with $a \in U$ and $p|_{S \cap M(U \cap S)} \subseteq W$. Currently, $(U \cup U'/\{a'\})) \cap q(C)$ is open in $\mathscr{C} \ni a \in G$ and $q_{c(G)} \subseteq H$. Thus, $q|_S$ is continuous. Currently, to prove that $q|_S$ is open. Take $K \cap (K'/\{k'\})$, here $k \in K$ and K is open in M, be any basic open set in A(M), then $(K \cap S) \cup ((K' \cap S)/\{k'\})$ is a basic open set in \mathscr{C} . By reason of $M \cap S$ is an angelic compact in *M*.then $q|_{S(K \cap (M \cap C))} = q|_{M \cap S(K \cap (M \cap S))})$ is open in $N \cap p(S \cap M)$ as $p|_{M \cap S}$ is a homeomorphism. Hence $K \cap S$ is open in $N \cap p(N \cap M)$. Also, $p(K' \cap S)/\{k'\}$ is open in $N' \cap q(S)$ be a set of isolated points. Hence $q|_S$ is an open function. Hence, $p|_S$ is a homeomorphism.

Theorem 3.6. If (M, τ') is a submetrizable space of (M, τ) with $\tau' \subseteq \tau$, then (M, τ') is an \mathscr{AC}_2 -paracompact.

Proof. Since τ' is a metrizable topology on $M \ni \tau' \subseteq \tau$. Next (M, τ') is \mathscr{AC}_2 -paracompact and the identity function $id_M : (M, \tau) \to (M, \tau')$ is a continuous function. If *S* is some angelic compact subspace of (M, τ) , then the restriction of the identity mapping on *S* onto $id_M(S)$ is a homemorphism as *S* is an angelic compact, $id_M(S)$ is Hausdorff be a subspace of the metrizable space (M, τ') , and every continuous one-to-one mapping of an angelic compact space onto a Hausdorff space is a homeomorphism. Hence, (M, τ') submetrizable space is an \mathscr{AC}_2 -paracompact.

Theorem 3.7. If M is an \mathscr{AC} -paracompact (\mathscr{AC}_2 -paracompact) Frechet space and $p: M \to N$ is a witness of the \mathscr{AC}_2 -paracompactness) of M, then p is continuous.

Proof. Suppose *S* is any nonempty subset of *M*. Take $n \in p(\overline{S})$ is arbitrary and $m \in M$ be the unique element $\ni p(m) = n$. Then $m \in S$. Choose a sequence $(s_n) \subseteq S \ni s_n \to s$ Let then $T = \{s, s_n : n \in N\}$ is an angelic compact subspace of *M*, being a convergent sequence with its limit, thus $p|_T : T \to p(T)$ is

a homeomorphism. Currently, take $V \subseteq U$ is some open neighbourhood of y; next $V \cap p(T)$ is open in the subspace p(T) including *n*. Thus, $p^{-1}(V) \cap T$ is open in the subspace *T* containing *m*. Thus, $p^{-1}(V) \cap B) \cap \{m_n : n \in N\} \neq \emptyset$, so $((p^{-1}(V) \cap T) \cap A \neq \emptyset$. Hence, $\emptyset \neq p((p^{-1}(V) \cap T) \cap S) \subseteq$ $p((p^{-1}(V) \cap S) = V \cap p(S)$. hence, $n \in (p(\overline{S}))$ and $p(\overline{S}) \subseteq$ $(p(\overline{S}))$ Thus, *p* is continuous.

Corollary 3.8. If M is an \mathcal{AC} -paracompact (\mathcal{AC}_2 -paracompact) first countable space and $p: M \to Y$ is a witness of the \mathcal{AC} -paracompact (\mathcal{AC}_2 -paracompact) of M, then p is continuous.

Corollary 3.9. If M is an \mathscr{AC}_2 -paracompact Frechet space, then X is Hausdorff.

Proof. Since *N* is a *T*₂ angelic paracompact space and *p* : $M \rightarrow N$ be a bijective mapping ∋ the restriction $p|_S : S \rightarrow p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. Through Theorem 3.5, *p* is continuous. Take *A*, *B* are some disjoint angelic compact space; then f(A), f(B) are disjoint angelic compact subspaces of *N*. By reason of *N* is *T*₂, then f(A) and f(B) are disjoint closed subspaces of *N*. By reason of *N* is *T*₂ angelic paracompact, *N* is normal and thus ∃ open subsets *G* and *H* of $Y \ni f(A) \subseteq G$, $f(B) \subseteq H$, and $G \cap H = \emptyset$. By the continuity of *p*, $U = p^{-1}(G)$ and $V = p^{-1}(H)$. Thus, for every disjoint angelic compact subspaces *A* and *B*, ∃ open sets *U* and $V \ni S \subseteq U$, $T \subseteq V$ and $U \cap V = \emptyset$.

Theorem 3.10. If M is a T_1 space \ni the only angelic compact subsets are the finite subsets, then M is \mathscr{AC}_2 paracompact space.

Proof. Suppose *M* is a T_1 space \exists the only angelic compact subspaces of *M* are the finite subsets of *M*. Since T_1 , finally some angelic compact subspace of *M* is discrete. Then, take N = M and let *Y* with the discrete topology. Thus the identity mapping from *M* onto *N*. Hence, \exists a bijection mapping *p* : $M \rightarrow N$, *N* is an angelic Hausdorff paracompact space and the restriction $p|_S : S \rightarrow p(S)$ is a homeomorphism, then *M* is said to be an \mathscr{AC}_2 -paracompact.

Theorem 3.11. Let M be the Hausdorff locally angelic compact space. Then M is an \mathscr{AC}_2 -Paracompact space.

Proof. Since *M* is any Hausdorff locally angelic compact topological space. Then \exists a T_2 angelic compact space *N* and hence *N* is T_2 angelic paracompact, and a bijective function $p: M \to N \ni p$ is continuous. By reason of *p* is continuous, Next for some angelic compact subspace $S \subseteq M$, we have $p|_S: S \to p(S)$ is a homeomorphism because 1 to 1, onto, and continuity are acquired from *p*, and $p|_S$ is closed as *S* is an angelic compact and p(S) is Hausdorff. \Box

Example 3.12. A Tychonoff \mathscr{AC}_2 -paracompact space is not locally compact.

Proof. Consider the quotient space \mathbb{R}/\mathbb{N} . We can describe it as follows: Let $i = \sqrt{-1}$. Let $N = \mathbb{R}/\mathbb{N} \cup i$. Define $p : \mathbb{R} \to Y$ as follows:

$$p(x) = \begin{cases} x; \text{ if } x \in \mathbb{R}/\mathbb{N} \\ i; \text{ if } x \in \mathbb{N} \end{cases}$$

Now consider on \mathbb{R} the usual topology U. Define on *N* the topology $\tau = \{W \subseteq Y : p^{-1}(W) \in U\}$. Then $p : (R,U) \rightarrow (N,\tau)$ is a closed quotient mapping. We can describe the open neighborhoods of each element in as follows: The open neighborhoods of $i \in N$ are $(U/\mathbb{N}) \cup \{i\}$, here *U* is an open set in $(\mathbb{N},U) \ni \mathbb{N} \subseteq U$. The open neighborhoods of any $y \in \mathbb{R}/\mathbb{N}$ are $(y - \varepsilon, y + \varepsilon)\mathbb{N}$ where ε is a positive real number. It is well known that (N,τ) is T_3 , which is neither locally angelic compact nor first countable. Now, by reason of (N,τ) is Lindelöf, being a continuous image of \mathbb{R} with its usual topology, and T_3 , then (N,τ) is angelic paracompact and T_4 . Hence, it is an \mathscr{M}_2 -paracompact.

Definition 3.13. A topological space (M, τ) is termed as lower angelic compact if \exists a coarser topology τ' on $M \ni$ (X, τ') is T_2 angelic compact.

Theorem 3.14. If (M, τ) lower angelic compact space, Then *M* is an \mathscr{AC}_2 -paracompact.

Proof. Suppose τ' is a T_2 angelic compact topology on $M \ni \tau' \subseteq \tau$. Next (M, τ') is T_2 angelic paracompact and the identity mapping $id_M : (M, \tau) \to (M, \tau')$ is a continuous function. If *S* is some angelic compact subspace of (M, τ) , next the restriction of the identity mapping on *S* onto $id_M(S)$ is a homeomorphism as *S* is an angelic compact, $id_M(S)$ is Hausdorff being a subspace of the T_2 space (M, τ') and every continuous 1-1 function of an angelic compact space onto a Hausdorff space is a homeomorphism. Hence, *M* is an \mathscr{AC}_2 -paracompact. \Box

Theorem 3.15. If (M, τ) is an \mathscr{AC}_2 -paracompact countably angelic compact Frechet, then (M, τ) is lower angelic compact.

Proof. Consider a *T*₂ angelic paracompact space (*N*, *τ**) and a bijection function *p* : (*M*, *τ*) → (*N*, *τ**) ∋ the restriction $p|_S : S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By reason of *M* is Frechet, then *p* is continuous. Hence, (*M*, *τ**) is countably angelic compact. By reason of (*M*, *τ**) is also an angelic paracompact, then (*M*, *τ**) is *T*₂ angelic compact. Characterize a topology τ' on *M* as follows: $\tau' = \{p^{-1}(U) : U \in \tau*\}$. Then τ' is coarser than *τ* and $p : (M, \tau') \to (N, \tau*)$ is a bijection continuous function. Let $W \in \tau'$ be arbitrary; then *W* is $p^{-1}(U)$ for some $U \in \tau*$. Thus, $p(W) = p(p^{-1}(U)) = U$. Hence, *p* is open and *p* is a homeomorphism. Thus, (*M*, τ') is *T*₂ angelic compact. Therefore, (*M*, *τ*) is lower angelic compact. \Box

4. *AC*-Normal and its Properties

Definition 4.1. A space M is termed as an \mathscr{AC} -normal if \exists a normal space N and a bijective $p: M \to N \ni$ the restriction $p|_S: S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$.

Definition 4.2. A space *M* is termed as Angelic countably normal if there exists a normal space *N* and a bijective *p* : $M \rightarrow N \ni$ the restriction $p|_S : S \rightarrow p(S)$ is a homeomorphism for each angelic countable subspace $S \subseteq M$.

Example 4.3. An \mathcal{AC} normal space is not an \mathcal{AC}_2 -paracompact.

Proof. Suppose \mathbb{R} with $L = \{\emptyset, \mathbb{R}\} \cup \{(-\infty, x) : x \in \mathbb{R}\}$. In this space (\mathbb{R}, L), any two nonempty closed sets are intersect; thus, (\mathbb{R}, L) is normal and thus \mathscr{AC} -normal. (\mathbb{R}, L) is not Hausdorff as any two nonempty open sets must intersect. A subset *S* ⊂ \mathbb{R} is angelic compact iff it has a maximum element. Suppose that (\mathbb{R}, L) is \mathscr{AC}_2 -paracompact. Take *N* is Hausdorff paracompact space and *p* : *R* → *Y* be a bijection \ni *p*|_{*S*} : *S* → *p*(*S*) is homeomorphism for every angelic compact in (\mathbb{R}, L) and *S* as a subspace is not Hausdorff because any two nonempty open sets in *S* must intersect. However, *S* will be homeomorphic to *p*(*S*) and *p*(*S*) is Hausdorff, being a subspace of a Hausdorff space, and this is a contradiction. Thus, (\mathbb{R}, L) cannot be \mathscr{AC}_2 -paracompact space.

Example 4.4. An infinite *AC* normal space is not an *AC*-paracompact space.

Proof. Let $M = [0, \infty)$. Define $\tau = \{\emptyset, M\} \cup \{[0, x) : x \in \mathbb{N}\}$ $\mathbb{R}, 0 < x$. Consider (\mathbb{R}, L) is just the angelic subspace of (\mathbb{R},L) . (i.e), $\tau = L_M = L_{[0,\infty)}$. Now consider (M, τ_0) , where τ_0 is the particular point topology. We have that τ is coarser than τ_0 because any nonempty open set in τ must contain 0. Thus, (M, τ_0) cannot be an angelic paracompact. Observe that (M, τ) is normal because there are no two nonempty closed disjoint subsets. Thus, (M, τ) is an \mathscr{AC} -normal. Now, a subset S of M is an angelic compact iff S has maximal element. If S has maximal element, then any open cover for S will be covered by one member of the open cover, the one that contains the maximal element. If S has no maximal element, then S cannot be finite. If *S* is unbounded above, then $\{[0,n) : n \in N\}$ would be an open cover for S has no finite subcover. If S is bounded above, let y = supS and pick an increasing sequence $(c_n) \subseteq S \ni c_n \to y$, where the convergence is taken in the usual metric topology on *M*. Then $\{[0, c_n) : n \in N\}$ would be an open cover for S that has no finite subcover. Thus, S would not be an angelic compact. (M, τ) is Frechet. That is because M is first countable. If $x \in M$, then $B(x) = \{[0, x+1n) : n \in N\}$ is a countable local base for *M* at *x*.

Now, suppose that *M* is an \mathscr{AC} -paracompact. Choose an angelic paracompact space *Y* and a bijective mapping *p* : $M \rightarrow N \ni p|_S : S \rightarrow p(S)$ is a homeomorphism for each angelic compact subspace *A* of *M*. By Corollary 3.8, *p* is continuous. Thus, for some nonempty open subset U of N we have that $p^{-1}(U)$ is open in M. By reason of p is a bijective, M is infinite. For each $y \in M$, pick an open neighborhood U_y of $y \ni$ the family $\{U_y : y \in Y\}$ is an infinite open cover for M. By reason of each U_y contains the element p(0), then the open cover $\{U_y : y \in Y\}$ cannot have any locally finite open refinement and thus Y is not paracompact, which is a contradiction. Therefore, M is \mathscr{AC} -normal but not an \mathscr{AC} -paracompact.

Lemma 4.5. If $p : M \to N$ is a bijective function, M is an \mathscr{AC} -normal space and any finite subset of M is discrete, then N is T_1 .

Proof. By reason of $p: M \to N$ is a bijective function $\ni p|_S : S \to p(S)$ is a homeomorphism for each angelic compact subspace $S \subseteq M$. Assume *M* has more than one element and take *a*, *b* are distinct elements of *N*. Let *c* and *d* be the unique elements of $M \ni p(c) = a$ and p(d) = b. Then $p|_{\{c,d\}} : \{c,d\} \to \{a,b\}$ is a homeomorphism and $\{c,d\}$ is a discrete subspace of *M*. Thus, $p(\{c\}) = \{a\}$ and $p(\{d\}) = \{b\}$ are both open in $\{a,b\}$ as a subspace of *N*. Thus, \exists an open neighborhood $U_a \subseteq N$ of $a \ni U_a \cap \{a,b\} = \{a\}$; hence, $b \notin U_a$, and similarly \exists an open neighborhood $U_b \subseteq N$ of $b \ni a \notin U_b$. Thus, N is T_1 .

Example 4.6. \mathbb{R} With $\tau_p(\mathbb{R}, \tau_p)$ is not an \mathscr{AC} -normal space.

Proof. \mathbb{R} with τ_p , here the particular point is $p \in \mathbb{R}$, is not \mathscr{AC} -normal. By reason of $\tau_p = \{\emptyset\} \cup \{U \subseteq \mathbb{R} : p \in U\}$. We known that (\mathbb{R}, τ_p) is neither T_1 nor normal space and if $A \subseteq \mathbb{R}$, then $\{\{x, p\} : x \in A\}$ is an open cover for *S*, thus a subset *S* of *R* is an angelic compact iff it is finite. To show (\mathbb{R}, τ_p) is not \mathscr{AC} -normal, suppose that (\mathbb{R}, τ_p) is \mathscr{AC} -normal. Take *N* is a normal space, $p : M \to N$ be a function \ni the restriction $p|_S : S \to p(S)$ is a homeomorphism for every angelic compact subspace *S* of (\mathbb{R}, τ_p) . Consider the ensuing two cases for the space *N*,

Case (i): *M* is T_1 . Take $S = \{a, b\}$, where $a \neq b$; then *S* is an angelic compact subspace of (\mathbb{R}, τ_p) . By assumption $p|_S : S \to p(S) = \{p\{a\}, p\{b\}\}$ is a homeomorphism. By reason of p(S) is a finite subspace of *M* and *M* is T_1 , then p(S) is a discrete subspace of *M*. Hence, $p|_S$ is not continuous which is contradiction as $p|_S$ is a homeomorphism.

Case (ii): *M* is not T_1 . To prove the topology on *M* is the particular point topology with p(b) as its particular point. Assume that *N* is not the particular point topology then \exists a non-empty open set $U \subset N \ni p(b) \notin U$. Choose $y \in U$ and take $x \in \mathbb{R}$ is the unique real number $\ni p(x) = y$. Suppose $\{a,b\}$ and $a \notin b$ because $p(x) = y \in U$, $p(b) \notin U$, and *p* is 1-1. Take $p|_{a,b} : \{a,b\} \to \{y,p(b)\}$. Currently, $\{y\}$ is open in the subspace $\{y,p(b)\}$ of *N* as $\{y\} = U \cap \{y,p(b)\}$, but $p^{-1}(\{y\}) = \{x\}$ and $\{x\}$ is not open in the subspace $\{a,b\}$ of (\mathbb{R}, τ_p) , which means $p|_{\{a,b\}}$ is not continuous. Any particular point space consisting of more than one point cannot be normal, so which contradiction as *N* is normal. Hence, (\mathbb{R}, τ_p) is not an \mathscr{AC} -normal. \Box **Theorem 4.7.** Every angelic compact non-normal space is not an AC-normal.

Proof. Consider *M* is an angelic compact non-normal space. Assume *M* is an \mathscr{AC} -normal, then \exists a normal space *N* and a bijective mapping $p: M \to N \ni$ the restriction $p|_S: S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By reason of *M* is an angelic compact, then $M \cong N$, and this is a contradiction as *N* is normal and *M* is not an angelic compact non-normal space. Hence *M* cannot be an \mathscr{AC} -normal. \Box

Theorem 4.8. Let M be an \mathcal{AC} -normal space. If every countable subspace of M is included in an angelic compact subspace, then M is an angelic countably normal.

Proof. Take *M* is any *AC*-normal space ∋ if *S* is any countable subspace of *M*, then ∃ an angelic compact subspace *E* ∋ *S* ⊆ *E*. Take *N* is a normal space and *p* : *M* → *N* be a bijective mapping ∋ *p*|*s* : *S* → *p*(*S*) is homeomorphism for every angelic compact subspace *S* of *M*. Presently, take *S* is some countable subspace of *M*. Choose an angelic compact subspace *E* of *M* ∋ *S* ⊆ *E*, next *p*|*_E* : *E* → *p*(*E*) is homeomorphism, hence *p*|*_S* : *S* → *p*(*S*) is homeomorphism as $(p|_E)|_S = p|_S$.

Theorem 4.9. Let M be an \mathscr{AC} -normal. If M is a Frechet Lindelöf space \ni any finite subspace of M is discrete, then M is an \mathscr{AC}_2 -paracompact.

Proof. Consider *M* is \mathscr{AC} -normal, then \exists a normal space *N* and a bijection function $p: M \to N \ni$ the restriction $p|_S: S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By Lemma 4.1, *Y* is T_1 and hence T_4 . By reason of *M* is Frechet, then *p* is continuous. By reason of *M* is Lindelöf and *p* is continuous and onto, then *N* is Lindelöf. By reason of any T_3 Lindelöf space is an angelic paracompact, then *N* is T_2 angelic paracompact. Therefore, *M* is an \mathscr{AC}_2 -paracompact space.

Theorem 4.10. If (M, τ) is Lindelöf epinormal space then (M, τ) is an \mathscr{AC}_2 -paracompact.

Proof. Suppose (M, τ) is some Lindelöf epinormal space. Choose a coarser topology τ' on $M \ni (M, \tau')$ is T_4 . By reason of (M, τ) is Lindelöf and τ' is coarser than τ we have (M, τ') is T_3 and Lindelöf, and hence Hausdorff paracompact. Therefore, (M, τ') is an \mathscr{AC}_2 -paracompact as the identity function $id : (M, \tau) \to (M, \tau')$. Hence (M, τ) is an \mathscr{AC}_2 -paracompact.

Theorem 4.11. Let (M, τ) be an \mathscr{AC}_2 -paracompact Frechet space. Then (M, τ) is an epinormal.

Proof. Take (M, τ) is some \mathscr{AC}_2 -Paracompact Frechet space and (M, τ) is normal. Suppose that (M, τ) is not normal. Let (N, τ') be a T_2 angelic paracompact space and $p: (M, \tau) \to$ (N, τ') be a bijective mapping \ni the restriction $p|_S: S \to p(S)$ is homeomorphism for every angelic compact subspace $S \subseteq M$. By reason of M is Frechet, p is continuous; Theorem 3.5, Define $\tau * = \{p^{-1}(U) : U \in \tau'\}$. It is clear $\tau *$ is a topology on M coarser than $\tau \ni p : (M, \tau *) \to (N, \tau')$ is continuous. If $W \in \tau *$, then W is $W = p^{-1}(U)$ here $U \in \tau'$. Thus, $p(W) = p(p^{-1}(U)) = U$, gives p is open and homeomorphism. hence, $(M, \tau *)$ is T_4 . hence, (M, τ) is an epinormal. \Box

Corollary 4.12. Let (M, τ) be an \mathscr{AC}_2 -paracompact Frechet space, then (M, τ) is completely Hausdorff.

Example 4.13. Any \mathscr{AC}_2 -paracompact Frechet space is an epinormal.

Proof. Suppose that two countably infinite sets are termed as almost disjoint if their intersection is finite. Consider a subfamily of $[\omega_0]^{\omega_0} = \{A \subset \omega_0 : A \text{ is infinite }\}$ a mad family on ω_0 if it is a maximal (with respect to inclusion) pairwise almost disjoint subfamily. Take A is a pairwise almost disjoint subfamily of $[\omega_0]^{\omega_0}$. The Mrowka space $\psi(A)$ is describe by $\omega_0 \cup A$, every point of ω_0 is isolated, and a basic open neighborhood of $W \in A$ has $\{W\} \cup (W/F)$, with $F \in [\omega_0] < \omega_0 = \{B \subseteq \omega_0 : Bisfinite\}$. since \exists an almost disjoint family $A \subset [\omega_0]^{\omega_0} \ni |A| > \omega_0$ and the Mrowka space $\psi(A)$ is a Tychonoff, separable, first countable, and locally angelic compact space that is neither countably angelic compact, angelic paracompact, nor normal. A is a mad family iff $\psi(A)$ is pseudocompact. The Mrowka space $\psi(A)$ is an \mathscr{AC}_2 -paracompact, being T_2 locally angelic compact. $\psi(A)$ is also Frechet, being first countable. Hence Mrowka space is an epinormal.

Remark 4.14. Any minimal Hausdorff \mathscr{AC}_2 -paracompact Frechet space is an angelic compact.

Theorem 4.15. *Let M be a minimal Hausdorff second countable space. The ensuing are equivalent.*

- (i) M is an \mathscr{AC}_2 -paracompact.
- (ii) M is locally angelic compact.
- (iii) M is an angelic compact
- (iv) M is an epinormal.
- (v) M is metrizable.
- (vi) M is lower compact.
- (vii) M is minimal T_4 .

Proof. $(i) \Rightarrow (ii)$ By reason of any second countable space is first countable and any first countable space is Frechet, then Theorem 4.5, gives that *M* is T_2 angelic compact and hence locally angelic compact. $(ii) \Rightarrow (iii)$ By reason of any T_2 locally angelic compact space is Tychonoff, by the minimality, *M* is an angelic compact. $(iii) \Rightarrow (iv)$ Any T_2 angelic compact space is T_4 . $(iv) \Rightarrow (v)$ Any epinormal space is $T_{21/2}$. By minimilaity, *M* is angelic compact and hence T_3 . By reason of any T_3 second countable space is metrizable, the result follows. $(v) \Rightarrow (vi)$ By minimality, *M* is $T_{21/2}$ angelic compact

and hence lower angelic compact. $(vi) \Rightarrow (vii)$ Again, by minimality, *M* is T_2 angelic compact and hence T_4 . By reason of any minimal T_4 space is an angelic compact. $(vii) \Rightarrow (i)$ By reason of any minimal TT_4 space is angelic compact, *M* will be T_2 angelic paracompact and hence \mathscr{AC}_2 -paracompact. \Box

Example 4.16. A minimal Hausdorff second countable \mathscr{AC} -paracompact space is Cannot be \mathscr{AC}_2 -paracompact.

Proof. Let $M = \{a, b, c_j, a_{ij}, b_{ij} : i \in \mathbb{N}, j \in \mathbb{N}\}$ here all these elements are distinct. Characterize the ensuing neighborhood system on M:

For each $i, j \in N$, a_{ij} is isolated and b_{ij} is isolated.

For each $i \in N, B(c_i) = \{V^n(c_i)\} = \{c_i, a_{ij}, b_{ij} : j \ge n : n \in \mathbb{N}\}.$

 $\mathscr{B}(a) = \{ V^n(a) = \{a, a_{ij} : i \ge n\} : n \in \mathbb{N} \}.$ $\mathscr{B}(a) = \{ V^n(b) = \{b, b_{ij} : i \ge n\} : n \in \mathbb{N} \}.$

Denote the unique topology on M caused by the above neighborhood system by τ . Next τ is minimal Hausdorff and (M, τ) is cannot compact. By reason of M is countable and each local base is countable, then the neighborhood system is a countable base for (M, τ) , so it is second countable but not \mathscr{AC}_2 -paracompact because it is not $T_{21/2}$ as the closure of any open neighborhood of a must intersect the closure of any open neighborhood of b.

5. Conclusion

Our primary outcomes incorporates the two new ideas of \mathscr{AC} -Paracompact spaces and \mathscr{AC}_2 -Paracompact spaces. Likewise demonstrated that, each \mathscr{AC} -Paracompactness and \mathscr{AC}_2 -Paracompactness has a topological property. We likewise explored the \mathscr{AC} -normal and its properties.

References

- Al-Montasherey K., New results about the Alexandroff duplicate space, MSc, King Abdulaziz University, Jeddah, Saudi Arabia, (2015).
- [2] AlZahrani S, Kalantan L., Epinormality, J Nonlinear Sci Appl., 9 (2016), 5398–5402.
- [3] AlZahrani S, Kalantan L., C-normal topological property, Filomat, 31 (2017), 407–411.
- [4] Berri MP, Minimal topological spaces, *T Am Math Soc.*, 108(1963), 97–105.
- [5] Bourbaki N, Topologie general, *Topologie General*, (1951), 858–1142.
- [6] Bourgain. J, Fermlin. D.H and Talagrand. M, Pointwise compact sets of Baire-measurable functions, *Amer. J.Math.*, 100 (1978), 845–886.
- [7] Dieudonne.J, Une generalization despaces compacts, J.Math. Pures et. Appl., 23(1944), 65–76.
- [8] Engelking R, On the double circumference of Alexandroff, *Bull Acad Pol Sci Ser Astron Math Phys*, 16(8) (1968), 629–634.
- [9] Engelking. R, General Topology, Heldermann, Berlin, 1989.

- [10] Gruenhage G, Generalized Metric Spaces. In: Kunen K, Editor. Handbook of Set-Theoretic Topology, Amsterdam, the Netherlands: North-Holland, (1984), 423–510.
- [11] Kalantan L, Results about k-normality, Topol. Appl., 125(2002), 47–62.
- ^[12] Kalantan L, Alhomieyed M, *CC*-normal topological spaces, *Turk. J. Math.*, 41(2017), 749–755.
- ^[13] Mrowka S, On completely regular spaces, *Fund. Math.*, 41(1954), 105–106.
- [14] Munkers. R James, *Topology*, Second Edition, Pearson Education Pte. Ltd., Singapore.
- [15] Parhomenko AS, On condensations into compact spaces, Bull. Acad. Sci. URSS. Ser. Math., 5(1941), 225–232.
- Porter. J.R, Stephenson. R.M, *Minimal Hausdorff spaces Then and now. In: Aull CE, Lowen R, editors. Handbook of the History of General Topology*, Dordrecht, the Netherlands: Kluwer Academic Publishers, (1998), 669-687.
- [17] Saeed. M.M, Kalantan. L and Alzumi. H, C Paracompactness and C₂- Paracompactness, *Turk. J. Math.*, 43(2019), 9–20.
- [18] Shchepin. E.V, Real valued functions and spaces close to normal, *Sib J Math.*, 13(1972), 1182–1196.
- ^[19] Singal. M.K and Arya. S.P, On nearly paracompact spaces, *Matemati CkiVesnik* 6(21)(1969), 3–16.
- [20] Singal M, Singal. A.R, Mildly normal spaces, *Kyungpook Math J.*, 3 (1973), 29–31.
- [21] Steen L, Seebach JA, Counterexamples in Topology, Mineola, NY, USA: USA; Dover Publications, 1995.
- ^[22] VanDouwen EK, *The Integers and Topology. In: Kunen K, Editor. Handbook of Set-Theoretic Topology*, Amsterdam, the Netherlands: North-Holland, (1984), 111–167.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******