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Abstract
In this paper we study the existence of positive solutions for an initial value problem of a delay-state-dependent
nonlinear differential equation. The continuous dependence of the unique solution on the initial data and the
delay-state-dependent function will be proved. Some especial cases and examples will be given.
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1. Introduction
Many authors studied the the differential and integral equa-

tions with deviating arguments only the in time itself, however,
the case of the deviating arguments depend on both the state
variable x and the time t is important in theory and practice,
see for example [1]-[4], [7], [10], [11], [13]-[19].

In [4], the author studied the existence of a unique solution
x ∈C[a,b] and its continuous dependence on the initial data
of the intimal value problem of the self-refereed differential
equation

d
dt

x(t) = f (t,x(x(t))), t ∈ (0,T ] and x(0) = xo

where f ∈ ( C[a,b],C[a,b] ).

In [8], the authors studied the existence of solutions x ∈
C[0,T ] and the continuous dependence of the unique solution
on the initial data and the function g of the initial value
problem of functional integro-differential equation of self-
reference ( φ(t) = t) and state-dependence ( φ(t)≤ t)

d
dt

x(t) = f (t,x(
∫

φ(t)

0
g(t,x(t)))ds)), t ∈ (0,T ]

and x(0) = xo

where g : [0,T ] × R+ → [0,T ] is continuous and
g(t,x(t)) ≤ 1. The authors in [9] proved, when g : [0,T ]×
R+ → [0,T ] is continuous and g(t,x(t)) ≤ t, the exis-
tence of positive solutions x ∈ C[0,T ] and the continuous
dependence of the unique solution on the initial data and the
function g of the initial value problem

d
dt

x(t) = f (t,x(g(t,x(t)))), a.e., t ∈ (0,T ], (1.1)

x(0) = x0 ∈ [0,T ]. (1.2)

Let C[0,T ] be the class of continuous functions defined on
[0,T ] with norm

||x|| = sup
t∈[0,T ]

|x(t)|, x ∈C[0,T ].
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Let g : [0,T ] × R+ → [0,T ] be continuous and
g(t,x(t)) ≤ x(t). Consider the initial value problem of the
delay-state-dependent nonlinear differential equation

d
dt

x(t) = f (t,x(g(t,x(t)))), a.e., t ∈ (0,T ] (1.3)

x(0) = x0 ∈ [0,T ]. (1.4)

Our aim in this work is to prove the existence of positive
solutions x ∈C[0,T ] of the initial value problem (1.3)-(1.4).
The continuous dependence of the unique solution on the
initial data xo and the delay-state-dependent function g will
be studied.

2. Main Results
In this section, we deal with the existence and uniqueness

of solution for the initial value problem (1.3)- (1.4). Also we
prove that the solution depends continuously on the initial
data and the function g. Now, we consider the following
assumptions to establish the existence results:

(1) f : [0,T ]× [0,T ]→ R satisfies Carathéodory condition
i.e. f is measurable in t for all x ∈C[0,T ] and continu-
ous in x for almost all t ∈ [0,T ]

(2) There exists a measurable bounded function m(t) and a
constant b≥ 0 such that | f (t,x)| ≤ m(t)+b|x|

(3) g : [0,T ] × R+ → [0,T ] is continuous such that
g(t,x(t)))≤ x(t)

(4) L = M+b T < 1.

(5) LT + |x(0)| ≤ T.

Some examples for the function g

(1) g(t,x(t)) = x(t)
1+ax2(t) , a≥ 0

(2) g(t,x(t)) = x(t) e−ax2(t)

1+bsin2 x(t)
, a,b≥ 0

(3) g(t,x(t)) = x(t)

1+ae−x2(t)
, a≥ 0.

2.1 Existence theorem
Theorem 2.1. Let the assumptions (1)−(5) be satisfied, then
the initial value problem (1.3), (1.4) has at least one solution
x ∈ SL ⊂C[0,T ].

Proof. Let x be a solution of the problem (1)-(2). Integrat-
ing the differential equation (1) we obtain the corresponding
integral equation

x(t) = x0+
∫ t

0
f (s,x(g(t,x(s))) ds > 0, t ∈ [0,T ]. (2.1)

Define the set SL by

SL =
{

x ∈C[0,T ] : |x(t2)−x(t1)| ≤ L|t2− t1|
}
⊂C[0,T ].

where L = M+b T.

It clear that SL is nonempty, closed, bounded and convex
subset of C[0,T ].
Define the operator F associated with equation (1.3) by

Fx(t) = x0 +
∫ t

0
f (s,x(g(s,x(s))))ds t ∈ [0,T ]

Firstly, we prove that F is uniformly bounded. Let x ∈C[0,T ],
then we get

|Fx(t)| ≤ |x0|+
∫ t

0
| f (s,x(g(s,x(s))))|ds t ∈ [0,T ]

≤ |x0|+
∫ t

0
{m(s)+b|x(g(s,x(s))))|}ds

≤ |x0|+
∫ t

0
{M+b|x(g(s,x(s))))|}ds.

But

|x(φ(x(t))))|− |x0| ≤ L|x(g(t,x(t))))− x(0)| ≤ L|g(t,x(t))|,

then

|x(φ(x(t))))| ≤ L|g(t,(t))|+ |x0|. (2.2)

Using (2.2) we obtain

|Fx(t)| ≤ |x0|+
∫ t

0
{M+b(L|x(s)|+ |x0|)}ds

≤ |x0|+
∫ t

0
{M+b (LT + |x0|)}ds

≤ |x0|+(M+b(LT + |x0|))t
≤ |x0|+(M+bT )T

≤ LT + |x0| ≤ T.

This proves that the class functions {Fx} is uniformly bounded.
Secondly, we will show that F : SL→ SL and the class of func-
tions {Fx} is equi-continuous.
Let x∈ SL and t1, t2 ∈ [0,T ] with t1 < t2 such that |t2,−t1|< δ ,
then

|Fx(t2)−Fx(t1)| = |
∫ t2

t1
f (s,x(g(s,x(s))))ds|

≤
∫ t2

t1
| f (s,x(g(s,x(s))))|ds

≤
∫ t2

t1
{M+b|x(g(s,x(s))))|}ds

≤
∫ t2

t1
{M+b(L|g(s,x(s))|+ |x0|)}ds

≤
∫ t2

t1
(M+b(L|x(s)|+ |x0|))ds

≤
∫ t2

t1
(M+bT )ds ≤ L|t2− t1|.
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This proves that F : SL→ SL and the class of functions {Fx}
is equi-continuous.
Now by Arzela-Ascoli Theorem [5] F is compact.
Finally, let {xn} ⊂ SL such that xn→ x on [0,T ], then we have

|xn(g(t,xn(t)))− x(g(t,x(t)))|
= |xn(g(t,xn(t)))− xn(g(t,x(t)))

+ xn(g(t,x(t)))− x(g(t,x(t)))|
≤ |xn(g(t,xn(t)))− xn(g(t,x(t)))|
+ |xn(g(t,x(t)))− x(g(t,x(t)))|
≤ L|g(t,xn(t))−g(t,x(t))|
+ |xn(g(t,x(t)))− x(g(t,x(t)))|

which implies that

xn(g(t,xn(t)))→ x(g(t,x(t))) in SL.

Also, from the continuity the function f we obtain

f
(
t,xn(g(t,xn(t)))

)
→ f

(
t,x(g(t,x(t)))

)
.

Using assumption (2) and Lebesgues dominated convergence
theorem [6] we deduce that

lim
n→∞

xn(t) = x0 + lim
n→∞

∫ t

0
f
(
s,xn(g(t,xn(t)))

)
ds

= x0 +
∫ t

0
f
(
s,x(g(t,x(t)))

)
ds.

Then F is continuous.
Now all conditions of Schauder fixed point Theorem [5], are
satisfied, then the operator F has at least one fixed point x∈ SL.
Consequently there exist at leat one solution x ∈C[0,T ] of the
integral equation equation (2.1).

Now, to complete the proof, differentiating the integral equa-
tion (3) we obtain the differential equation (1).
Also letting t = 0 in (3) we obtain the initial data (2).
This completes the proof of the equivalence between the ini-
tial value problem (1)-(2) and the integral equation (3).
Hence the initial value problem (1)-(2) has at least one positive
solution x ∈C[0,T ] which completes the proof.

Now, we have the following corollary which generalize the
results in [4].

Corollary 2.2. Let the assumptions of Theorem 1.3 be satis-
fied, if g(t,x(t)) = x(t), then the integral equation

x(t) = x0 +
∫ t

0
f (s,x(x(s)))ds, t ∈ [0,T ],

has at least one solution x ∈C[0,T ]. Consequently the initial
value problem

dx(t)
dt

= f (t,x(x(t))) a.e. t ∈ (0,T ]

x(0) = x0

has at least one solution x ∈ AC[0,T ].

2.2 Uniqueness of the solution
In this section we prove the uniqueness of the solution for the
integral equation (2.1). For this aim we assume that:

(1′) | f (t,x)− f (t,y)| ≤ b |x− y|

(2′) | f (t,0)| ≤M,

(3′) |g(t,x)−g(t,y)| ≤ k|x− y|

Theorem 2.3. Let the assumptions (1),(3),(4) of Theorem 2.1
and (1′), (2′) and (3′) be satisfied, if bT (L k+1) < 1, then
the solution of equation (2.1) is unique.

Proof. Assumption (2) of Theorem 2.1 can be deduced from
assumptions (1′) and (2′). By putting y = 0 in (1′) we get

| f (t,x)| ≤ b |x|+ | f (t,0)|

hence we deduce that all assumptions of Theorem 2.1 are
satisfied. Then the solution of equation (2.1) exists. Now let
x, y be two solutions of (2.1), then

|x(t)− y(t)|

=
∣∣∫ t

0
f (s,x(g(s,x(s)))ds

−
∫ t

0
f (s,y(g(s,y(s))))ds

∣∣
≤

∫ t

0
| f (s,x(g(s,x(s))))− f (s,y(g(s,y(s))))|ds

≤ b
∫ t

0
|x(g(s,x(s)))− y(g(s,y(s))|ds

≤ b
∫ t

0
|x(g(s,x(s)))− x(g(s,y(s)))|ds

+ b
∫ t

0
|x(g(s,y(s)))− y(g(s,y(s)))|ds

≤ bL
∫ t

0
|g(s,x(s))−g(s,y(s))|ds

+ b
∫ t

0
|x(g(s,y(s)))− y(g(s,x(s)))|ds

≤ b L k
∫ t

0
|x(s)− y(s)|ds

+ b
∫ t

0
|x(g(s,y(s)))− y(g(s,y(s)))|ds

≤ b L k T‖x− y‖+b T‖x− y‖
= b T (L k+1)‖x− y‖,

then we obtain

‖x− y‖ ≤ b T (L k+1) ‖x− y‖.

Since b T (Lk+1)< 1, then we deduce that x(t) = y(t) and
hence the solution of (2.1) is unique.
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2.3 Continuous dependence
Here we prove that the solution of equation (2.1) depends
continuously of the initial data x0.

Definition 2.4.

The solution of the integral equation (2.1) depends contin-
uously on the initial data x0
if ∀ ε > 0 ∃ δ (ε)> 0 such that,

|x0− x∗0| ≤ δ ⇒‖x− x∗‖ ≤ ε (2.3)

where x∗ is the unique solution of the equation where x∗ is the
unique solution of the integral equation

x∗(t) = x∗0+
∫ t

0
f (s,x∗(g(s,(x∗(s))))ds, t ∈ [0,T ]. (2.4)

Theorem 2.5. Let the assumptions of Theorem 2.3 be satisfied,
then the solution of (2.1) depends continuously on the initial
data x0.

Proof. Let x, x∗ be the solution of the integral equation
(3) and (2.4). Then, we have

|x(t)− x∗(t)|

= |x0 +
∫ t

0
f (s,x(g(s,x(s))))ds− x∗0

+
∫ t

0
f (s,x∗(g(s,x∗(s))))ds|

≤ |x0− x∗0|

+
∫ t

0
| f (s,x(g(s,x(s)))− f (s,x∗(g(s,x∗(s))))|ds

≤ |x0− x∗0|+b
∫ t

0
|x(g(s,x(s)))− x∗(g(s,x∗(s)))|ds

≤ |x0− x∗0|+b L
∫ t

0
|g(s,x(s))−g(s,x∗(s))|ds

+ b
∫ t

0
|x(g(s,x∗(s)))− x∗(g(s,x∗(s)))|ds

≤ |x0− x∗0|+b L k
∫ t

0
|x(s)− x∗(s)|ds

+ b
∫ t

0
|x(g(s,(x∗(s)))− x∗(g(s,x∗(s)))|ds

≤ δ +b L k ‖x− x∗‖ T +b‖x− x∗‖ T

and
‖x− x∗‖ ≤ δ +b T (L k +1)‖x− x∗‖,

then

‖x− x∗‖ ≤ δ

(1−b T (L k +1))
.

Since b T (L k + 1) < 1 it follows that the solution of (2.1)
depends continuously on the initial data x0.

Definition 2.6.

The solution of the integral equation (2.1) depends contin-
uously on the function g
i f , ∀ ε > 0. ∃ δ (ε)> 0 such that

|g(t,x(t)−g∗(t,x(t)| ≤ δ ⇒‖x− x∗‖ ≤ ε (2.5)

where x∗ is the unique solution of the integral equation

x∗(t) = x0 +
∫ t

0
f (s,x∗(g∗(s,(x∗(s))))ds, t ∈ [0,T ]. (2.6)

Theorem 2.7. Let the assumptions of Theorem 2.3 be satisfied,
then the solution of (2.1) depends continuously on the function
g.

Proof. Let x, x∗ be the solution of the integral equation (3)
and (2.6). Then, we have Let x, x∗ be the solution of the
integral equation (3) and (2.4). Then, we have

|x(t)− x∗(t)|

= |x0 +
∫ t

0
f (s,x(g(s,x(s))))ds

− x0 +
∫ t

0
f (s,x∗(g∗(s,x∗(s))))ds|

≤
∫ t

0
| f (s,x(g(s,x(s)))− f (s,x∗(g∗(s,x∗(s))))|ds

≤ b
∫ t

0
|x(g(s,x(s)))− x∗(g∗(s,x∗(s)))|ds

≤ b
∫ t

0
|x(g(s,x(s)))− x(g∗(s,x∗(s)))|ds

+ b
∫ t

0
|x(g∗(s,x∗(s)))− x∗(g∗(s,x∗(s)))|ds

≤ b L
∫ t

0
|g(s,x(s))−g∗(s,x∗(s))|ds

+ b
∫ t

0
|x(g∗(s,x∗(s)))− x∗(g∗(s,x∗(s)))|ds

≤ b L
∫ t

0
|g(s,x(s))−g(s,x∗(s))|ds

+ b L
∫ t

0
|g(s,x∗(s))−g∗(s,x∗(s))|ds

+ b T‖x− x∗‖
≤ b L T k ‖x− x∗‖+b L T δ

+ b T ‖x− x∗‖

and

‖x− x∗‖ ≤ b L T δ +b T (L k +1)‖x− x∗‖,

then

‖x− x∗‖ ≤ b L T δ

(1−b T (L k +1))
.

Since b T (L k + 1) < 1 it follows that the solution of (2.1)
depends continuously on the function g.
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3. Example
Example 3.1. Consider the nonlinear differential equation

dx
dt

=
1
5
(1+ t)+

1
7

x
(

x(t) e−x2(t)

1+ sin2 x(t)

)
, t ∈ (0,2], (3.1)

with the initial condition

x(0) =
1
5
. (3.2)

Set

f (t,x(φ(x(t)))) =
1
5
(1+ t)+

1
7

x
(

x(t) e−x2(t)

1+ sin2 x(t)

)
thus

| f (t,x)| ≤ 1
5
(1+ t)+

1
7
|x|

here we have m(t)= 1
5 (1+t) which is measurable and bounded

function with bound M = 3/5 and b = 1/7, x(0) = 1
5 ,

then L2 = M + b T = 31/35 < 1 and LT + |x(0)| ≈ 1.97 <
T = 2.
Therefore, by applying to Theorem 2.1, the initial value prob-
lem (3.1)-(3.2) has a continuous solution.

Example 3.2. Consider the nonlinear differential equation

dx
dt

=
1
9

t3 sin(t2)+
1
4

x
(

x(t)
1+ x2(t)

)
, t ∈ (0,1], (3.3)

with the initial condition

x(0) =
1
2
. (3.4)

Set

f (t,x(φ(x(t)))) =
1
9

t3 sin(t2)+
1
4

x
(

x(t)
1+ x2(t)

)
thus

| f (t,x)| ≤ 1
9

t3|sin(t2)|+ 1
4
|x|

here we have m(t) = 1
9 t3|sin(t2)| which is measurable and

bounded function with bound M = 1/9 and b= 1/4, x(0)= 1
2 ,

then L2 = M+b T = 13/36 < 1 and LT + |x(0)|= 31
36 < T =

1.
Therefore, by applying to Theorem 2.1, the initial value prob-
lem (3.3)-(3.4) has a continuous solution.

4. Conclusion
In this paper, we prove the existence, the uniqueness and

the continuous dependence of positive continuous solution
x∈C[0,T ] of an initial value problem of a delay-self-reference
nonlinear differential equation under a suitable assumptions.
Here we relax the assumptions and generalize the results in
[4,8], also we introduced some examples and applications to
indicate our results.
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