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1. Introduction

The concept of fuzzy set was first introduced by L.A.
Zadeh [13] in 1965. Many mathematicians considered fuzzy
metric in different views [3, 6-8, 13]. George and Veeramani
[6] defined fuzzy metric space in a new way. Various def-
initions of fuzzy norms on a linear space were introduced
by different authors [1, 2, 4, 9, 10]. Rano and Bag [11] in-
troduced the definition of fuzzy norm following the notion
introduced by Bag and Samanta[1].

A satisfactory theory of 2-norm on a linear space has been
introduced and developed by Gahler[S]. Somasundaram and
Thangaraj Beaula [12] introduced the concept of 2-fuzzy 2-
normed linear space and gave the notion of ¢-2-norm using
the ideas of Bag and Samanta [1].

In this paper, continuous homogeneous selection and con-

tinuity for the set valued 2-fuzzy 2-generalized inverse in
3-strictly 2-fuzzy 2-convex space are investigated using fuzzy
continuity of metric projection. Hence approximative com-
pactness of 2-fuzzy 2-Banach space is not necessary for the
2-fuzzy 2-upper semi continuity of the set valued 2-fuzzy
2-metric generalized inverse.

2. Preliminaries

Definition 2.1. Let X be a universe of discourse a fuzzy set is
defined as A = {x, s (x) : x € X } which is characterized by a
membership function

Ua (x) : X — [0,1] where uy (x) denotes the degree of mem-
bership of the element x to the set A.

Definition 2.2. Let X be a non empty and F (X) be the set of
all fuzzy setsin X. If f € F (X) then f = {(x,it) /x € X and
U € (0,1]}. Clearly f is bounded function for |f (x)| < 1. Let
K be the space of real numbers then F (X) is a linear space
over the field K where the addition and scalar multiplication
are defined by
fre={(n)+0.m}={x+y),(un)/(xu) € f

and (y,n) € g}
and

kf ={(kf,p)/(x,u) € f}

where k € K.
The linear space F (X) is said to be normed space if for every
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f € F(X) there is associated a non-negative real number || f||
called the norm of f in such a way,

(1) |If1| = 0 if and only if f = 0

For,
1l =0{ll ) ||/ (x;10) € f} =0
Sx=0,ue(0,1]< f=0
)|k = IK[If1l,k € K

For,
kIl = {1k (e, |1/ (e, ) € £k € K
= (k][I 1ll/ (. 1) € £} = KI[I£]
(3 1f+ell < £l +gll for every f.g € F (X)
For,
£+l ={Il G, )+ () || /x.y €X,u,m € (0,1]}
={ll(x+y),(LAn)|/x,y€X,p,n €(0,1]}
<{lGurnm) I+ An) |/ (xp) € f
and (y,n) € g}

= [I£11+llell
Then (F (X),||.]|) is a normed linear space.

Definition 2.3. A 2-fuzzy set on X is a fuzzy set on F (X).

Definition 2.4. Let F (X) be a linear space over the real field
K. A fuzzy subset N of F (X) X F (X) X R (R, the set of real
numbers) is called a 2-fuzzy 2-norm on X (or fuzzy 2-norm on
F (X)) if and only if,

(NI) forallt € Rwitht <O0,N(f1, f>,t) =0.

(N2) forallt € Rwitht > 0,N (f1, f2,t) = 1, ifand only if fi
and f, are linearly dependent.

(N3) N (f1, f2,t) is invariant under any permutation of fi, fa.
(N4) for allt € R, witht > 0,N(f1,cf2,t) = N(f1, fa,t/|c|) if
¢ #0,c € K (field).

(N5) for all s,t € R, N(f1, f>+ f3,5+1) > min{N(f1, f2,5),
N(fi,f3:1)}-

(N6) N (f1, f2,.) : (0,00) — [0, 1] is continuous.

(N7) limy_ye N (f1, f2,1) = 1.

Then (F(X),N) is a fuzzy 2-normed linear space or (X,N) is
a 2-fuzzy 2-normed linear space.

Definition 2.5. A sequence {f,} in a 2-fuzzy normed linear
space (F(X),N) is said to be a convergent sequence if for a
givent > 0and 0 < r < 1 there exist a positive number ng € N
such that

N(fu—f.8t)>1—rforgec F(X)and for every n > ny.

Definition 2.6. A sequence {f,} is said to be a Cauchy se-
quence in a 2-fuzzy normed linear space F (X) if for a given
r> 0 with 0 <r < 1,t >0 there exist a positive number ny
such that

N (fn— fin,8,t) > 1 —r for every n,m > ng and for g € F (X).

Definition 2.7. A 2-fuzzy 2-normed linear space (X, N) is
said to be complete if every Cauchy sequence in X converge
to some point in X.

Definition 2.8. A complete 2-fuzzy 2-normed linear space is
a 2-fuzzy 2-Banach space.

Definition 2.9. Let F (X) be a linear space over the real field
K. A fuzzy subset M of F (X) X F (X) X R,( R the set of real

numbers) is called a 2-fuzzy 2-metric space on X if and only if
(M1) forallt € Rwitht <0,M (f1, f2,h,t) =0.
(M2) for all t € Rwitht > 0,M (fi, f2,h,t) =1 if and only if
f1, f> are linearly dependent.

(M3) M(fl,fz,/’lJ) ZM(fz,fl,h,l).

(M4) M (f1, f2,h,t) *M (f2, f3,h,5) < M (f1, f3,h,t +5).
(M5) M (f1, f2,h,.) : (0,00) — [0,1] is continuous.

Then (F (X),M,*) is a 2-fuzzy metric space or (X,M,x) is
2-fuzzy 2-metric space for all fi, fa, f3,h € F (X).

Definition 2.10. Ler (§(X),N) be a real 2-fuzzy 2-Banach
space. Let S(F(X)) and B(F(X)) denote the unit sphere and
the unit ball of F(X), respectively. Let [§(X)|* denote the
dual space of §(X) and T be a linear bounded operator from
3(X) 10 5(Y).

Let D(T),R(T)and N(T) denote the domain, range and null
space of T, respectively. The 2-fuzzy 2-chebyshev radius and
2-fuzzy 2-chebyshev center of subset A of §(X) are defined as

R(A) = inf sup{inf{r : N(f —g,h,t) > a,a € (0,1)}} (2.1)
gEAfeA

CA)={gecA :;lég{inf{t IN(f—g,ht)>a,ac(0,1)}}} =R(A)
2.2)

Moreover, if A is 2-fuzzy 2-convex then C (A) is a 2-fuzzy 2-

convex set. Then the

2-fuzzy 2-metric projection from § (X) onto € is a mapping

Py F(X)— € is defined by

Pe(f) = {8 € € M(f.8,h.1) =infye {inf {1 :N(f —g.h.1)
>a,0c(0,1)}}

Definition 2.11. A non empty set € is said to be a 2-fuzzy
2-chebyshev set if P (§ (X)) is one point forall f € §(X). A
non empty set € is said to be 2-fuzzy 2-proximinal if P (f) #
& forall f € F(X).

Definition 2.12. A 2-fuzzy 2-Banach space §(X) is said
to be k-strictly 2-fuzzy 2-convex if for any k4 1 elements
f1: 025 fir1 €7 (F (X)),

and if N (fi+ fa+ ...+ fir1,8 k+ 1) =1 then f1, fo,... fir1
are linearly dependent. It is well known that §(X) is a 1-
strictly 2-fuzzy 2-convex space if and only if § (X) is a strictly
2-fuzzy 2-convex space.

Definition 2.13. A non empty subset € of § (X) is said to be
appoximatively 2-fuzzy 2-compact if for any {g,} C € and
f € §(X) satisfying

inf{t : N(f —gn,h,t) > a,a € (0,1)} converges to

infoeq {inf{t : N(f —g,h,t) > o, € (0,1)}} then the se-
quence {gn} has a subsequence converging to an element in

€.

Definition 2.14. Ser-valued mapping G : §(X) — §(Y) is
said to be 2-fuzzy 2-upper semi continuous at fy, if for each
2-fuzzy 2-open set W with G (fo) C W, there exists a 2-fuzzy
2-neighborhood U of fy such that G(f) C W for all f in
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U. G is called 2-fuzzy 2-lower semi continuous at fo, if for
any g € W (fo) and any {f,} in §(X) with f, converges to
fo, there exists g, € W (f,) such that g, converges to g. W
is called 2-fuzzy 2-continuous at fy, if W is 2-fuzzy 2-upper
semicontinous and is 2-fuzzy 2-lower semi continuous at fy.
Definition 2.15. A point f € 7 (§ (X)) is said to be 2-fuzzy
2-H-point if for a sequence {f,} in . (§ (X)) and f, = f,
then f,convergestof. Moreover, if the set of all 2-fuzzy 2-
H-points is equal to .7 (§ (X)) then § (X) is said satisfy the
2-fuzzy 2-H-property.

Definition 2.16. A point fy € D (T) is said to be the 2-fuzzy
2-best approximative solution to the fuzzy operator equation

Tf=gif
inf{r: N(T fo—g,h,t) > o, € (0,1)} = inf{inf{¢ : N(T f — g, h,t)

>a,00€(0,1)}: feD(T)}

inf{¢: N (fo,h,t) > 0 € (0,1)} = min{inf{r : N (f’,h,z)

>a,00€(0,1)}: f €D(T)}
(2.3)

inf{t ‘N (Tf’ —g.,h,r) >a,ae (0, 1)} = inf {inf{t:N(Tf
€

hit) > a,a € (0,1)}}

Definition 2.17. Let § (X),F (Y) be a 2-fuzzy 2-Banach spaces
and T be a linear operator from § (X) to § (Y). The mapping
T':F(Y) = §(X) defined by

T (¢)={foeD(T): fo is a 2—fuzzy 2—best

to T(f)=g}
2.4)

approximative solution

forany g €D (T/) is said to be the 2-fuzzy 2-metric general-

ized inverse of T, where
D(T/):{geg(Y):T(f):g has a 2— fuzzy
2 — best in §(X)}

Definition 2.18. A 2-fuzzy 2-normed linear space is 2-fuzzy
2-compact if every sequence has a convergent subsequence.

2.5)

approximative solution

Definition 2.19. A 2-fuzzy 2-metric space §(X) is 2-fuzzy
2-sequencially compact if every sequence of points in § (X)
has a convergent subsequence.

3. Continuity of 2-fuzzy 2-metric
projection operator and 2-fuzzy
2-approximative compactness

Theorem 3.1. Let 1€ . (F(X)").H={f€FX),t(f) =
0} and the set Ay = {f € F(X),7(f) =1} is a non - empty
2-fuzzy 2-compact set. Then

1014

(i) Zu(f)=[f—1(f)Asforany f € §(X)

(ii) The 2- fuzzy 2-metric projector Py is 2-fuzzy
2-continuous.

Proof. (i) Let f € F(X), choose h € H and g € .7 (F (X))
there exists a scalar & such that f —h = og. On applying 7
on both sides,

T(f)—t(h) = az(g)

which implies ot = % since 7 (h) =0 as h € H, it is obvious

that
o= (S
Again

inf{t N (f—h,g.1) > a,a € (0,1)}

inf{t:N(t(f).g,t)>a,ac(0,1)} . .
z inf{z:N(r(g)é,z)zaﬂe(o,l)} mf{t . N(g?fat) Za,ac

0,1) }
inf{t:N(t(f),g.t)>a,0€(0,1)}

= inf{r:N(7(g),g,t)>c,a€(0,1)}
Thus h € Py (f) if and only if g € A¢, (i.e) T(g) = 1. Hence
P (f) = f —2(f) As for any f € §(X).
(ii) Suppose Py is not 2-fuzzy 2-upper semi continuous at fj,
then there exist a sequence {f, } in § (X) and an open set W
containing Py (fo) such that Py r) (f,) not a subset of W,
where N(T) is the null space of the operator T : § (X) — §(Y)
and f, converging fo. Then there exists h, € Py (r) ()
such that h, ¢ W. By (i), it follows &k, = f, — 7 (f,) g» Where
gn € A;. By hypothesis A is 2-fuzzy 2-compact, it is a 2-fuzzy
2-sequencially compact, there exists a subsequence { gnk} of
{gn} suchthatg, —converges to gy in Ax.
Fix hg = fo — ’C(fo)go then hy € Py (fo) and

Jim by = lim (f, =7 (fu,) &n,)
=fo—7(fo)go=ho

leads to a contradiction since h, ¢ W hence it implies that
Py is 2-fuzzy 2-upper semicontinuous.

Now assume {f,} converges to fo, let ho € Py (f). Then
by (i), there exists go = f — T (fo) go. Again from (i), g, =
Jo—7(fn)go € f@N(T) (fn) and

lim A, = lim (f, — 7 (fa) g0)
= fo—7(fo)go = ho

This leads to the desired requirement that Py is 2-fuzzy 2-
lower semicontinuous at fj. O

3.

3.2)

Definition 3.2. The space A is said to be 2-fuzzy 2-approxima
tively compact with respect to B if every sequence {f,} in A
satisfies the condition

M (g, fn,t) = M(g,A,t) for some g € B has a convergent sub-
sequence.

Definition 3.3. The space A subset of F(X) is 2-fuzzy 2-
relatively compact if its closure is 2-fuzzy 2-compact.
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Theorem 3.4. Suppose that every 2-fuzzy 2-proximinal hyper-
plane of F(X) is

2-fuzzy 2-approximatively compact. Then §(X) has the 2-
fuzzy 2-H-property.

Proof. Let f, 2 f, where {f,} is a sequence in .7 (§ (X))
and f € .7 (F (X)). Then there exists f* € % (F(X)") such
that f* (f) = 1 and the hyperplane Hy+ = {f € § (X): f* (f) =
1} is 2-fuzzy 2-proximinal. Suppose that the sequence {f; }
does not converge to f. Without loss of generality assume that
inf{r:N(f,— f,h,t) > a,00 € (0,1)} > ¢ for every n € N.
Since Hy+ is a proximinal set, there exists g, € Hy+ such that
M (fu,Hps,h,t) =inf{t : N (f, — gn,h,t) > o, @ € (0,1)}.
Since

limy, oo {inf {¢ : N (fs — gn, h,1) > ¢, 00 € (0,1)}}

= limn_,oo{M(fn,Hf*,h,t)} =1

It implies that

M (0,Hy,h,t) =1
= lim {inf{t : N (f,,h,t) > o, 00 € (0,1)}}

n—oo

= lim {inf{7 : N (0 —g,,h,t) > a,a € (0,1)}}

n—yoo

(3.3)

This implies that the sequence {g,} is 2-fuzzy 2-relatively
compact. Hence the sequence {f,} is 2-fuzzy 2-relatively
compact. Then there exists a subsequence { fnk} of {f,} such

that { fnk} is a Cauchy sequence. Since f;, 2 f, then f,
converges to f, a contradiction. Hence,f, converges to f.
This implies that § (X ) has the 2-fuzzy 2-H-Property. O

Theorem 3.5. Let H be a closed subspace of § (X,) and H,
be a closed subspace of § (X2) ; P, is a 2-fuzzy 2-lower semi
continuous on § (X1), P, is a 2-fuzzy 2-lower semi continu-
ous on § (Xa). Then the metric projection operator LU, xH,
is 2-fuzzy 2-lower semi continuous on (§(X1) X §(X2),N)
where

N((flva)vh?t): (f2’h’t)}

Proof. Let (fi,f2,1) be a sequence in H; x H, converging to
(f1,f2) which implies f} , converges to fi and f>, converges

to fo.

min{N (fi,h,t),N

Consider Py, xm, (f1,/2)
{ (81:82) € Hy x Hy :inf{t : N(((f1, f2) — (81,82)) ,h,1) > &} }
(fl f2).(81,82) ,h,t) = inf{inf{r : N ((f1, 2) — (h1,h2) ,8:1) > a}}
{ (g1, gz €H xHy: 1nf{t N( ((fl*gl)A,(fz g2)),h,t) > a} }
((f1,81):(f2,82) sht) = inf{inf{r : N ((fi —h1),(fa— hZ) g1t)>at}
{ g EH] inf {1 : N( fi—g1),h,t) > a} }
= f], g1, h, l mf{mf{t N((f[ 7h1)Ag,f) > (X}}
{ g1 €Hy iinf{t :N((fi —g1),h,1) > a} }
=M(fi, g1,h,t) = inf{inf{t : N ((fi —h1),8,1) > a}}
X{ g2 € Hy 2inf {1 : N ((f2 —g2) hi1) 2 0} }
=M(f2, g2,h,1) = inf{inf{t : N((f2 — 2) . &:1) > a}}
= Py, (/1) X P, (f2) for any (f1, f2) € F (X1) x F (X2)
Then fi, converges to f; and f>, converges to f>. Let
(h1,h2) € Py, <m, (f1,12). Since Py« (f1,12) =
P, (f2), by fia converges to fi and f>, converges to f>
there exists h1 , € Py, (f1,,) and hy , € Py, (f2,0) such that
hy, converges to i and hy , converges to hp. Hence (hy ,h2 )
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P, (fir) x

converges to (hi,h2). Hence Py, «p, is a 2-fuzzy 2-lower
semicontinuous.

Let F (X) be k-strictly convex and H = {f € §(X) : T (f) =
0,7€ 7 (F(X))}. ThenA; ={f€F(X):7(f)=1}isa
non-empty compact set. Then by theorem (3.1) the metric pro-
jector operator Py is 2-fuzzy 2-lower semicontinuous. Let
5 (Y) be strictly convex and M is an approximately compact
closed subspace of § (Y). Then the metric projector operator
Py is 2-fuzzy 2-continuous. Therefore, by theorem (3.5),
it implies that &y s is 2-fuzzy 2-lower semicontinuous on
(F(X),5(Y),N), with norm N. O

4. 2-Fuzzy 2-Continuous selections and
2-Fuzzy 2-Continuity of the set valued
Metric Generalized Inverse

Theorem 4.1. Let § (X) be a 3-strictly 2-fuzzy 2-convex space.
5 (Y) be a 2-fuzzy 2-Banach space, D(T) be a closed subspace
of §(X) and R(T) be an 2-fuzzy 2-approximatively compact
and 2-fuzzy 2-chebyshev subspace of § (Y ). Then

(i) Py

T is 2-fuzzy 2-upper semicontinuous.

(ii) WN(T) is 2-fuzzy 2-continuous if and only if T is 2-
fuzzy 2-continuous.

(iii) 1f Py
homogeneous selection T* of T such that T* is 2-fuzzy
2-continuous on {h € F(Y) :

timinfy..y [diam (€ (7' (19))]
> [diam (C (T/ (h)))} afO” o€ (0,1)}

Proof. (i) Let go € § (V). To prove that T" is 2-fuzzy 2-upper
semicontinuous at gy consider a sequence {g,} in §(¥) con-
verging to go and open set W with T’ (g0o) C W then there
exists a positive number Ny such that T (gn) C W whenever
n > Ny.
Take fy € T'(Pr(ry(80)). by the definition of 2-fuzzy 2-
metric generalized inverse, it is obvious that T (go0) = fo—
7)(fo) - Since T is a bounded linear operator, it is obvious
that N(T) is a closed subspace of D(T).
LetT : E 3 — R(T) defined as
T[fl=Tf

It is clear that R(T) = R(T) and R(_ )=R(T). Suppose that
R(T) # R(T), then there exists ¢ € R(T) such that g ¢ R(T).
Itis easy to see that {g € R(T) : inf{t :N(¢ —g,h,t) > at,cx €
(0, 1)}} = M(g,?R(T)7h7t) =g

This implies that R(T') is not a 2-fuzzy 2-chebyshev subspace
of §(Y), a contradiction to the hypothesis. since R (7T) =
R(T), it follows that R(T') is a 2-fuzzy 2-Banach space and
T is a bounded linear operator with N (T) = {0}. Further
implies that the bounded linear operator T is both injective and

) is 2-fuzzy 2-upper semicontinuous if and only if

is 2-fuzzy 2-continuous,then there exists a

“.1)
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surjective. Hence 7! is a bounded linear operator. Take f, €
T-! (ZPr(r)(8n))- Since §(Y) is 2-fuzzy 2-approximatively
compact and R(T) is a 2-fuzzy 2-chebshev subspace of F (),
itimplies that the metric projection operators Pg(7) is 2-fuzzy
2-continuous and so Pg7)(gn) converges to P (r)(go)-Since

T’ is a bounded linear operator, it follows that

tim {inf {1 : N ([fy — fo 1) > ot € (0,1)})

:,}i_r}‘}o{inf{t N ([fa] = [fol h,t) > @, € (0,1)}} =0
“4.2)

Without loss of generality assume that f, converges to fy.
Since T'(20) = fo— P(r)(fo). itimplies that fo — Py ) (fo)
C W. Hence for any h € Pyr(fo), it follows that fo —
h € W. So there exist 8, € (0,1) and r, € (0,1) such that
B(fo, 6n,t) — B(h,rp,t) C W with r € R. Since §(X) is a 3-
strictly 2-fuzzy 2-convex space, it follows that Py r)(fo) is
2-fuzzy 2-compact.

Since

Pry(fo) C U

he Pyry(fo)
teR

B (h,ry,t) “4.3)

there exist h; € @N(T) (fo), hy € y[\/g) (fo),h[( S y[\/g) (fo)
such that

k

UB (hi,rh,.,t)

i=1

Let28 = min{5h| , 6h27 e 6hk} . Since B (fo, Oy,t) — B (h,rp,t)
C W forany h € Py (fo),

Pry(fo) C (4.4)

k

U B(hirp,t) CW (45)
i=1
teER

Jo=Pnr) (fo) CB(fo,8.1) -

This implies that

Py (fo) = fo— (fo—Pyer) (fo)) C fo

K

U B(hi,rm.t) 4.6)
i=1
teR

_B(f0a57t) -

Since Py r) is 2-fuzzy 2-upper semicontinuous, there exists
no € N such that inf{¢ : N (f,, — fo,h,t) > a,a € (0,1)} < &
for 6 € (0,1) and

@N(T)fncfo— B(f0767l)_ U B(hiyrhﬁl)

1016

4.7)
Since 26 = min{6hl s 6h2, . 6}1](} and B(f(), 8h,t) —B(h,rh,t) -
W for any h € Pyr(fo), it is obvious that
B(fo,90) —Uki: | B (hi,r;) C W. Hence

k
T/(gn):fn_PN(T)(fn)Cfn_ fo—B(fo.8.)— |J B (hi,ra,t)

1=

teR
(4.8)
k
:fn_f0+B(f0757t)_ U B(hi’rhﬂt)
i=1
tER
k
CB(f0.26,0)— |J B(hi,rn.t) CW
i=1
teR

This implies that T is 2-fuzzy 2-upper semicontinuous at
go- Hence T is 2-fuzzy 2-upper semicontinuous. Conversely
assume as a contrary that &y r) is not 2-fuzzy 2-continuous
at go. Then there exists { f,} in § (X) with fo € F(X), and an
open set W such that {f,} converges to fo and Py (r) (fa) C
W with Py ) ¢ (f,)W. Hence there exists Ty(r (fa) €
P 1) (fu) such that 7ty 7y (fu) ¢ W. It asserts to show that
there exists 6 € (0,1) such that

U B(h,28,t) CW 4.9)

he Py (fo)
teR

Or else there exists h, € Py r)(fo) such that B (hn, %,t) ¢
W. Since Pyr)(fo) is 2-fuzzy 2-compact, assume that
hy, converges to ho in Py(py (fo) so choose 11 € (0,1) such
that B (ho,4n,t) C W. Hence there exists ng € N such that
% > 21 and N (hy, — ho,g,t) > 21. Hence for any h €

B(hn()a%at)’thenN(hlloih()?g?t) > !

= o
inf{t, +12: N (h—hpy, 8,11 +12) > o, € (0,1) }
>inf{t; : N (h—hny,8,11) >, € (0,1)} +
inf{tz :N(hno —ho,g,tz) >a,ac (0,1)}

>2n+2n =4n (4.10)

This implies that # € W. Hence B (hno, %,I) C W, a con-

tradiction, Let g, = Tf, and go = T fo. Then T’ (gn)=fn—

when n>ng ngN(T) (fn),

T' (g0) = fo— Py(r) (fo)
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lim g, = go )
Since ‘@N(U (fo) CW,itfollows that T (go) = fo— yN(T) (fo)
C fo— W. It asserts to show that

U

he Py (fo)
teER

fn*ﬂN(T) (fn)¢f07 B(h,a,t) (4.12)

whenever inf {7 : N (f,, — fo,h,t) > o, € (0,1)} < 6.
S that f,— Tty (£) & fo— B(h,5,t
uppose that f, =7y (r) (fa) € fo—U ), . Py (fo) (
tER
Whenever inf {7 : N (f, — fo,h,t) > a,a € (0,1)} < 8. Then

TIN(T) (fa)=fu— (fn
(fo—

— 7IN(T) (fn)) € fu—

U B(h,5.1))

he Py (fo)
teER

(4.13)

-u he Py (fo) B(ho.0+(fa=fo) CU he Py (fo) B8,y cw
teER
a contradiction. Since,

fn_nN(T)(fn)¢f0_U hGgZN( (fo) B(h,ﬁ,t)

T

inf{t:N(fn—fo,h,t))Z o,ac(0,1)} < 6,
it follows that 7' is not 2-fuzzy 2-upper semicontinuous at gy,
a contradiction.

(ii) Let go € §(Y) and g, converges to go. Then, by the
previous argument there exists fy € §(X) and a sequence
{/fa} in§ (X) such that Pgr) (80) = T fo, Pr(r) (8n) =T fus
and f, converges to fy. Then T’ (80) = fo— Pn(r) (fo) and

whenever

T (gn) = fo— D1y (fn)- Since Py r) is 2-fuzzy 2-continuous,
it follows that forany h € Py (r) (fo), there exists h € P (ry (fn)

such that h, converges to hy. Hence, for any fy —h € fo —
Pyt (fo), there exists f, — hy € fu — Py(r) (f2) such that
fn —hy, converges to fo —h. Hencg T is 2-fuzzy 2-lower semi-
continuous at go. Hence by (i), T is 2-fuzzy 2-continuous at
0-
gConversely let go € F(Y) and g, converges to go. Then by the
previous argument, there exist fy € §(X) and {f,,} C §(X)
such that Zg 7 (g0) = T fo, Pr(r)(8n) =T fu. and fy con-

verges to fo. Then T' (g0) = fo— P (fo) and T'(g,) =
fa— Py (fn) since T' is 2-fuzzy 2-continuous, it follow
that for any fo—h € fo — Py(r) (fo), so there exists f, —hy, €
Jn— Pty (fa) such that f, — hy, converges to fo — h. Hence
for any h € Py 7 (fo), there exists h, € Py r) (f) such that
hy converges to ho. This implies that Py(7) is 2-fuzzy 2-
continuous at go . Next to prove the condition (iii) is true.

(iii)(a) Define a mapping G : § (¥) converges to §(X) such

that G(g) =% (T, (g)) if {g,} converges to g then to prove

lim

su
n—oo P

heT' (g) €T (gn)
(4.14)

1017

where g, € §(Y) and g € F(Y). Without loss of generality
assume that

sup  inf {inf{t : N (h, —h,g,t) > ot,oc € (0,1)}} >27
hET/(g) hneT (gn)

for all n € N. Then there exists i(n) € T' (g) such that

inf, v >{inf{t :N(hy—h(n),g,t) > a,ac(0,1)}} >n.

g}l
Since § (X) is a 3-strictly 2-fuzzy 2-convex space, it follows
that Py r) (f) is 2-fuzzy 2-compact. From the previous argu-

ment, there exists f € § (X) such that T (&) =f—Pnr) (f)-

This implies that 7' (g) is 2-fuzzy 2-compact. Hence without
loss of generality assume that & (n) converges to hg. This
implies that hy € T (g) and without loss of generality that

1
inf  {inf{r: N (h,—ho, g, t) > o, € (0,1)}} > =n
ha€T’ (gn) 2

(4.15)

forall n € N. Since Py(r) is 2-fuzzy 2-continuous, by hg €

T (g), there exists k, € T' (g,) such that k, converges to hg,
which contradicts (23) Next to prove that G is 2-fuzzy 2-upper
semicontinuous. Suppose that G is not 2-fuzzy 2-upper semi-
continuous. Then there exist {g,} in §(X),g0 € F(Y) and a

norm open set W, such that ¢’ (T/ (go)) W, %€ (T/ (g,,)) 4
W, g, converges to go. Hence there exists f,, € € (T/ ( g,,))
such that f,, ¢ W. Since PNty 1s 2-fuzzy 2-continuous, it

follows that 7" is 2-fuzzy 2-upper semicontinuous.
Hence, for any € > 0, there exists ng € N such that

e U B(fe (4.16)

£€T (20)
whenever n > ng. This implies that M ({fn} T (g0, h,t)) =0.

Hence there exists f(n) € %(T/ (go)) such that

M{fy},f(n),ht) < L Since T (g0) is 2-fuzzy
2-compact, assume without loss of generality that {f,,} con-

verges to fy. To prove that fy € € (T' (go)). Suppose that

fog e (T’ (go)). Letro=r (T/ (go)), then there exists
ko € T' (g0) and & € (0, 1) such that

inf{t:N(ko— fo. g, t) >, € (0,1)} > rg+ 8
It asserts to show that
lim  sup inf {inf{t:N(h—hy, g, t)>o,ac(0,1)}}=0

" et (g) hET (8)
(4.17)

inf  {inf{¢: N (7, —h,g,t) = a0, € (0,1)}} =0 Otherwise, assume that there exist k, € T’ (g,) and 17 € (0,1)

such that
infhsT/(g){inf{t :N(h—ju,gt) >a,ac(0,1)}}>n
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SincePyr) is 2-fuzzy 2-continuous, it implies that T is 2-fuzzy
2-continuous.
Assume without loss if generality that k, converges to kg

inT (g), a contradiction. Therefore, by (4.14) and (4.17),
assume that

sup inf {inf{t:N(hnfh,g,t)ZO!,aE(0,1)}}>i5
het’ (g) €T () 64

(4.18)

1
su inf {inf{t:N(h—h,,g,t) >, c(0,1)}}>—96
it Gnf{eiN () 0.0} >

for every h, € N. Therefore, by (4.18) and {f,, } converges to
fo and assume that there exist &, € T (gn) such that

1
inf{t: N (ky —ko.g.1) > @, € (0,1)} > 28 (4.19)

inf{r: N (k, —ko,g,t) > a,a € (0,1)} > 6i45
foreveryn € N .

inf{ti+t+t3:N(fu—kn,g,t1i +02+13) > o}

>inf{t; : N(fo —ko,g,t1) > a}

—inf{t2 :N(fn _f07gat2) > a}
—inf{t3 : N (kn — ko, 8. 13) > o}

1 1 / 3
> P 5——5> 2 ,
>r+8— 18— 8 2r (T (g0)) + 58 420
for every n € N. since f;, € €(T (g,)). it follows that

r(7 (@) > (7 (e0)) + 26 (21
for every n € N. Let h € € (T (g0)). Therefore, by (4.18)
there exists /1, € €'(T'(g,)) such that

inf{t : N(h— hy,g,t) > o} > 6%' Since the set T'(gn) is 2-
fuzzy 2-compact, there exist ,e T’ (g,) such that

inf{t : N(@y — hayg,1)) > 0} > 7 (T’ (g,,))

From (4.18), there exists @ (n) € € (T’ (go)) such that

inf{t : N(@(n) — on,8,1)) > a} > &

Since the set T' (go) is 2-fuzzy 2-compact, assume without
loss of generality that @(n) converges to @. Without loss of
generality assume that

inf{t : N(o — wn,8.1) > a} > 5.

Therefore, by h € € (T (go)), it implies that

r(T/(g,,)) > inf{t; +1, : N(w, — hy, 8,11 +12) > ot}

>inf{s; :N(h—hy,g,t1) > a}t+inf{ta : N(w—h,g,t2) > ot}
(4.22)
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> &+ +r(T (50)

>r (T (30)) + 159,

Which contradicts (4.21). This implies that G is 2-fuzzy 2-
upper semi continuous.

(iii)b To prove that if §(X) is a 3-strictly convex space and
h € §(X), then there exists f, € §(X) and a 2-dimensional
space § (X),, such that Py r)(h) C fi +F (X)

Assume that h = 0, let f1, f2, f3,fa € Py(r)(0) such that

f1, /2, f3 are linearly independent. Then (f} + f> + f3+ f4) /4 €
N(T). Therefore, by the Hahn-Banach theorem, there exists
€. (3(X)") such that f* (f1 + f>+ f3+ f4) /4. Then
inf{s+t+u+v:N(fi+fo+fs+fa.gs+t+ut+v)>a}t=
4,

inf{s:N(f1,h,s) > a} =inf{t:N(f»,h,t) > o}
inf{u:N(f3,h,u) > a}
inf{v:N(fy,h,v)>a}=1

Without loss of generality assume that fi = o f| + 0 fo +
03 f3. .

Then f*(fa) = f*(oufi+ofa+o3f3) = 1. Hence oy +
o + a3 = 1. Since f1, f>, f3 are linearly independent, that for
any f € Pyp(0), if

=0 fi+ afr+ osf3, then oz # 0. Hence

(4.23)

(4.24)

This implies that, for any f € Py1)(0),f = A fi + Aafo +
A3 f3, where A; + A, + A3 = 1. Then

f=Mmh—-fH)+la—H)+fH

This implies that Zy7(0) C span{fi — f3,f2 — f3} + f3.
Hence, if §(X) is a 3-strictly 2-fuzzy 2-convex space and
h € §(X), then there exist f, € § (X) and a two-dimensional
space § (X),, such that Py ) (h) C fu +F (X)),

Moreover for any g € F(Y) , there exists f € §(X) such
that T'(g) = f — Py (f). Hence, for any g € F(Y), there
exists f, € §(X) and a two-dimensional space § (X ), such
that T'(g) C fi+ 3 (X),,.

(iii)c To prove that, for any g € F(Y), the set €(T (g)) is a
line segment. In fact, suppose that {h,hy,h3} C T'(g) — fi
and h; ¢ [hy, h3]. Then there exists 1 > 0 such that

(4.25)

1
B (3 (/’ll + hy +h3),n) ﬂ%(X)h C %o {hl,hz,h3}

(4.26)
e (1)~

Since (hy +ha+h3)/3 € €(T'(g)) — fu, there exists h €
€ (T'(g)) — fu such that

!

inf{t:N(%(hl+h2+h3)+fr(h+fh),g,t) >at=r(T (g))
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4.27)

Moreover, by (4.26) there exists 7 € (0, 1) such that
a(3(hi+hy+h3)+ (1= a)h+ fy € €(T ().

inf{r: N ((a <% (hy +h2+h3)) +(1 —a)h+fh> - (h—l—fh),g,t) >a}
(4.28)

= {inf{r : N((3(h1 +ha+h3)) + fi— (h+ fi), 8,1/ ) > a}}

>r(T'(s)),

a contradiction. This implies that the set T’ (g) — f; is a line

segment. Hence the set €'(T (g)) is a line segment.

(iii)d From the proof of (iii)c, it is obvious that the set €’(T”(h))

is a line segment for all 1 € F (X). Let

C(T (h))[f1,h), f(2,h)]
Define

/

7' () = 3 1F(1,), 52, 1) @29)

for any i € F (). To prove that T is 2-fuzzy 2-continuous at
g, where

gelh e F(V)} :tim;yint [diam (¢ (7' () )|
> {diam <‘5 (T/ (8) )} u

Let g, converges to g. Then

Jim inf [dian (4 (7" (1)) )|, > |diam (% (7'(0)) )|,
431)

“ (4.30)

Since the €' (T”(g)) is a line segment for any g € F(Y), there
exist two sequences {f (1,g,)} and {f(2,g,)}. such that

C(T (gn) = [f(1,8n), F(2,80)]

¢(T'(2))1f(1,8),f(2,8)]
Sincege {heF(Y)}:limy_y, [diam (‘5 (T/ (])) ,g,t)} . >

iam (4 (') 6.1)]

It implies that,
Tim inf {2 : N (7 (1,gn) = £ (2.81) 1) > ot}
Zinf{t:N(f(1,8) = f(2,8),h1) > 0}
It asserts to show that

limsup{r:N(f(1,8x) — f(2,8n),h,t) > ot}

Zinf{t:N(f(1,8) = f(2,8),h,1) = ot}

Or else there exists a subsequence {n; } of {n} such that
tim {int {18 (7 (1.gn,) — £ (2.80) ) > )}

4.32)

(4.33)

(4.34)

Since G is 2-fuzzy 2-upper semicontinuous, by the proof of
(iii)a, without loss of generality assume that

lim £(2,8n) = o € [f (1,8) £ (2:8)]

This implies that

Tim {inf {: N (f (1.80,) — f (2.80,) 1) = a}}

=inf{t : N(fi — fo,h,t) > a}
<inf{t:N(f(1,8) - f(2,8),h,t) > a}

which contradicts

]}ij?o{inf{t ZN(f(l,gnk) _f(zvgﬂk) 7h7t) z (X}}

(4.36)

>inf{t:N(f(1,g)
Therefore, by

lim S”pn—m{t:N(f(lagn) _f(27gn)7h7t) > OC}

>inf{t:N(f(1,g)— f(2,8),h,t) > o}
and from (4.33), it follows that

Jim {inf {t : N (f (1,80) = £ (2,84) . 1.1) > 0t}

7f(27g)ah7t) Z (X}

and [f1, 2] = [f(1,8), f(2,8)]- Suppose that T* is not 2-fuzzy
2-continuous at g. Then assume that there exists § € (0,1)
such that

inf{t:N(T"(g.) —T" (g),h,t) > 0} <&
for all n € N. Moreover, since

f(lagnk) _>f1 € [(Lg),
f(2,8m) = f2€1(1,8),

and [f1, /2] = [f(1,8),/(2,8)], /1 = f(1,¢) and fo = f(2,g).
This implies that

1
Bim 7 (o) = Jim - (f (1.8n,) = f (2:80,))

1

= (g + £ (2.8)

=T"(g)

which contradicts inf{t N (T/ (gn)—T (g) ,h,t) > a} >0

For all n € N. Hence it follows that 7" is 2-fuzzy 2-continuous

0020
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on {heF(Y): limy,, [diam (ff (T’ (j)))}

[diam (% (T’ (h)))} }
o
(iii)e To prove that T is a homogeneous selection of T'. Pick
gEF(Y).
Then, by the previous argument, there exists f € § (X) such
that )
T(f)= QR(T)(g) and T (g):f_gzN(T)(f)'
Since

Y

APy (8) =A{heT(Y) :heillel(fT){inf{t :N(g—h,f,t)>a}}} (i) Prery

(4.39)
={heF ()} :heillg(fr)inf{t :N(Ag—h, f,1) > a}

= gR(T) (Ag)

and T(Af) = AT f = A Pg(r)(Ag). Therefore, by the defini-
tion of 2-fuzzy 2-metric generalized inverse,

T(Ag) =Af— Py (AS).

Let € (f — Pner) () = 1. f2).

Then € (Pyr)(f)) = [f — fi.f — f2]. Let

FX)o={Bf+h:heN(T),B R}

Then § (X), is a closed subspace of §(X). Since §(X) isa
3-strictly 2-fuzzy 2-convex space it follows that § (X), is a
3-strictly 2-fuzzy 2-convex space. Moreover, by the Hahn-
Banach theorem, there exists 7y € .7 (§ (X)) such that

(4.40)

N(T)={heF(X)y: 15 (h) =1} (4.41)

Since § (X), is a 3-strictly 2-fuzzy 2-convex space, it implies
that A, is compact. Therefore, by thorem(3.1), it implies that
‘@N(T) (f) = f_Aff, where

A, = {h e S(F(X)g) : 17 (h) = T}

Since € (P (f)) = [f = fi,f — f2] and
Pnery(f) = f — Az, we have

€ (Arj.) = [f1,/2]. Then € (lAff) = [Af1,A 5]

Therefore, by Py ) (Af) = A (ffATf> ,
It implies that

G (Pur) 1) =% (1 (f-4g)) =2% (f - As,)
(4.42)

=(Af—2f1.Af 4]
This implies that
(T (28)) =€ (Af = Pnr) (A1) = A f1AL] (443)

Therefore, by € (f — Pyr) (f)) = [f1, /2] and from (4.43),
T*(Ag) =[Afi+Af]/2and T* (g) = [f1 + f2] /2 It reduces
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to T*(Ag) = AT*(g) and hence there exists a homogeneous
selection T* of T' such that T is a 2-fuzzy 2-continuous on

{heF(Y): limy, [diam (‘5 (T/ (j)))} u
> [diam (‘5 (T/ (h)))}a} -

Corollary 4.2. Let F(X) be a 2-strictly 2-fuzzy 2-convex
space, § (Y) be a 2-fuzzy 2-Banach space,D (T) be a closed
subspace of §(X) and R(T) be an approximatively 2-fuzzy
2-compact chebyshev subspace of §(Y). Then

is 2-fuzzy 2-upper semicontinous if and only if

/! . . .
T is 2-fuzzy 2-upper semincontinous.

(it) Pn(r) is 2-fuzzy 2-continuous if and only if T is 2-
fuzzy 2-continuous.

(iti) If Pn(r) is 2-fuzzy 2-continuous, then there exist a
homogeneous selection T* of T such that T* is 2-fuzzy
2-continuous on § (Y).

Proof. By theorem(3.1) it is obvious that (i) and (ii) are true.
Since is a 2-strictly 2-fuzzy 2-convex space, it follows that
Py 1) (f) is a line segment for all F (X). Then €(T'(g)) is
a singleton for all g € §(Y). Therefore by theorem(4.1) it is
clear that corollary (4.2) is true. O

Corollary 4.3. Let §(X) be a strictly 2-fuzzy 2-convex space,
5 (Y) be a 2-fuzzy 2-Banach space, D(T') be a closed subspace
of §(X), and R(T) be an approximative 2-fuzzy 2-compact
chebyshev subspace of § (Y). Then the following statements
are equivalent:

(i) Pty is 2-fuzzy 2-upper semicontinuous.
(it) Pn(r) is 2-fuzzy 2-continuous.

(iii) T isa 2-fuzzy 2-continuous homogenous single-valued
mapping.

Proof. By corollary (4.1) it is obvious that corollary is true.
O
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