

https://doi.org/10.26637/MJM0803/0048

# Some aspects of 2-fuzzy 2-metric projection operator of 2-fuzzy 2-Banach spaces

Thangaraj Beaula<sup>1</sup>\* and R. Abirami<sup>2</sup>

#### Abstract

In this paper, continuous homogeneous selection and continuity for the set valued 2-fuzzy 2-generalized inverse in 3-strictly 2-fuzzy 2-convex space are investigated using fuzzy continuity of metric projection. Hence approximative compactness of 2-fuzzy 2-Banach space is not necessary for the 2-fuzzy 2-upper semi continuity of the set valued 2-fuzzy 2-metric generalized inverse.

#### **Keywords**

2-fuzzy 2-H-Property, 2-fuzzy 2-Continuous Selections, 2-fuzzy 2-Chebyshev Subspace, 2-fuzzy 2-Metric Generalized Inverse.

### **AMS Subject Classification**: 03E72, 46A19, 46B20, 46B50.

<sup>1,2</sup> PG and Research Department of Mathematics T.B.M.L. College,(Affiliated to Bharathidasan University,Trichy), Porayar, Tamil Nadu, India. \*Corresponding author: <sup>1</sup> edwinbeaula@yahoo.co.in Article History: Received 12 March 2020; Accepted 24 June 2020 ©2020 MJM.

#### Contents

- 2 Preliminaries......1012

#### 1. Introduction

The concept of fuzzy set was first introduced by L.A. Zadeh [13] in 1965. Many mathematicians considered fuzzy metric in different views [3, 6–8, 13]. George and Veeramani [6] defined fuzzy metric space in a new way. Various definitions of fuzzy norms on a linear space were introduced by different authors [1, 2, 4, 9, 10]. Rano and Bag [11] introduced the definition of fuzzy norm following the notion introduced by Bag and Samanta[1].

A satisfactory theory of 2-norm on a linear space has been introduced and developed by Gahler[5]. Somasundaram and Thangaraj Beaula [12] introduced the concept of 2-fuzzy 2-normed linear space and gave the notion of  $\alpha$ -2-norm using the ideas of Bag and Samanta [1].

In this paper, continuous homogeneous selection and con-

tinuity for the set valued 2-fuzzy 2-generalized inverse in 3-strictly 2-fuzzy 2-convex space are investigated using fuzzy continuity of metric projection. Hence approximative compactness of 2-fuzzy 2-Banach space is not necessary for the 2-fuzzy 2-upper semi continuity of the set valued 2-fuzzy 2-metric generalized inverse.

#### 2. Preliminaries

**Definition 2.1.** Let X be a universe of discourse a fuzzy set is defined as  $A = \{x, \mu_A(x) : x \in X\}$  which is characterized by a membership function

 $\mu_A(x): X \to [0,1]$  where  $\mu_A(x)$  denotes the degree of membership of the element x to the set A.

**Definition 2.2.** Let X be a non empty and F(X) be the set of all fuzzy sets in X. If  $f \in F(X)$  then  $f = \{(x,\mu) | x \in X \text{ and } \mu \in (0,1]\}$ . Clearly f is bounded function for  $|f(x)| \le 1$ . Let K be the space of real numbers then F(X) is a linear space over the field K where the addition and scalar multiplication are defined by

 $f + g = \{(x, \mu) + (y, \eta)\} = \{(x + y), (\mu, \eta)/(x, \mu) \in f \text{ and } (y, \eta) \in g\}$ and

$$kf = \{(kf, \mu) / (x, \mu) \in f\}$$

where  $k \in K$ .

The linear space F(X) is said to be normed space if for every

 $f \in F(X)$  there is associated a non-negative real number ||f||called the norm of f in such a way, (1) ||f|| = 0 if and only if f = 0For.  $||f|| = 0 \Leftrightarrow \{||(x,\mu)||/(x,\mu) \in f\} = 0$  $\Leftrightarrow x = 0, \mu \in (0, 1] \Leftrightarrow f = 0$  $(2)||kf|| = |k|||f||, k \in K$ For,  $||kf|| = \{ ||k(x,\mu)|| / (x,\mu) \in f, k \in K \}$  $= \{ |k| ||x, \mu|| / (x, \mu) \in f \} = |k| ||f||$ (3) ||f+g|| < ||f|| + ||g|| for every  $f, g \in F(X)$ For,  $||f+g|| = \{||(x,\mu)+(y,\eta)||/x, y \in X, \mu, \eta \in (0,1]\}$  $= \{ \| (x+y), (\mu \wedge \eta) \| / x, y \in X, \mu, \eta \in (0,1] \}$  $\leq \{ \| (x, \mu \land \eta) \| + \| (y, \mu \land \eta) \| / (x, \mu) \in f \}$ and  $(y, \eta) \in g$ 

 $= \|f\| + \|g\|$ Then  $(F(X), \|.\|)$  is a normed linear space.

**Definition 2.3.** A 2-fuzzy set on X is a fuzzy set on F(X).

**Definition 2.4.** Let F(X) be a linear space over the real field *K*. A fuzzy subset *N* of  $F(X) \times F(X) \times R$  (*R*, the set of real numbers) is called a 2-fuzzy 2-norm on *X* (or fuzzy 2-norm on F(X)) if and only if,

(N1) for all  $t \in R$  with  $t \leq 0, N(f_1, f_2, t) = 0$ .

(N2) for all  $t \in R$  with  $t \ge 0, N(f_1, f_2, t) = 1$ , if and only if  $f_1$  and  $f_2$  are linearly dependent.

(N3)  $N(f_1, f_2, t)$  is invariant under any permutation of  $f_1, f_2$ . (N4) for all  $t \in R$ , with  $t \ge 0, N(f_1, cf_2, t) = N(f_1, f_2, t/|c|)$  if  $c \ne 0, c \in K$  (field).

(N5) for all  $s, t \in \mathbb{R}$ ,  $N(f_1, f_2 + f_3, s + t) \ge \min\{N(f_1, f_2, s), N(f_1, f_3, t)\}$ .

(N6)  $N(f_1, f_2, .) : (0, \infty) \to [0, 1]$  is continuous.

(*N7*)  $\lim_{t\to\infty} N(f_1, f_2, t) = 1.$ 

Then (F(X),N) is a fuzzy 2-normed linear space or (X,N) is a 2-fuzzy 2-normed linear space.

**Definition 2.5.** A sequence  $\{f_n\}$  in a 2-fuzzy normed linear space (F(X), N) is said to be a convergent sequence if for a given t > 0 and 0 < r < 1 there exist a positive number  $n_0 \in N$  such that

 $N(f_n - f, g, t) > 1 - r$  for  $g \in F(X)$  and for every  $n \ge n_0$ .

**Definition 2.6.** A sequence  $\{f_n\}$  is said to be a Cauchy sequence in a 2-fuzzy normed linear space F(X) if for a given r > 0 with 0 < r < 1, t > 0 there exist a positive number  $n_0$  such that

 $N(f_n - f_m, g, t) > 1 - r$  for every  $n, m \ge n_0$  and for  $g \in F(X)$ .

**Definition 2.7.** A 2-fuzzy 2-normed linear space (X, N) is said to be complete if every Cauchy sequence in X converge to some point in X.

**Definition 2.8.** A complete 2-fuzzy 2-normed linear space is a 2-fuzzy 2-Banach space.

**Definition 2.9.** Let F(X) be a linear space over the real field *K*. A fuzzy subset *M* of  $F(X) \times F(X) \times R$ , (*R* the set of real

numbers) is called a 2-fuzzy 2-metric space on X if and only if (M1) for all  $t \in R$  with  $t \leq 0, M(f_1, f_2, h, t) = 0$ . (M2) for all  $t \in R$  with  $t > 0, M(f_1, f_2, h, t) = 1$  if and only if

(M2) for all  $i \in K$  with i > 0, M  $(f_1, f_2, n, t) = 1$  if and only if  $f_1, f_2$  are linearly dependent.

 $(M3) M(f_1, f_2, h, t) = M(f_2, f_1, h, t).$ 

 $(M4) M(f_1, f_2, h, t) * M(f_2, f_3, h, s) \le M(f_1, f_3, h, t + s).$ 

(M5)  $M(f_1, f_2, h, .) : (0, \infty) \to [0, 1]$  is continuous.

Then (F(X), M, \*) is a 2-fuzzy metric space or (X, M, \*) is 2-fuzzy 2-metric space for all  $f_1, f_2, f_3, h \in F(X)$ .

**Definition 2.10.** Let  $(\mathfrak{F}(X), N)$  be a real 2-fuzzy 2-Banach space. Let  $S(\mathfrak{F}(X))$  and  $B(\mathfrak{F}(X))$  denote the unit sphere and the unit ball of  $\mathfrak{F}(X)$ , respectively. Let  $[\mathfrak{F}(X)]^*$  denote the dual space of  $\mathfrak{F}(X)$  and T be a linear bounded operator from  $\mathfrak{F}(X)$  to  $\mathfrak{F}(Y)$ .

Let D(T), R(T) and N(T) denote the domain, range and null space of T, respectively. The 2-fuzzy 2-chebyshev radius and 2-fuzzy 2-chebyshev center of subset A of  $\mathfrak{F}(X)$  are defined as

$$R(A) = \inf_{g \in A} \sup_{f \in A} \{ \inf\{t : N(f - g, h, t) \ge \alpha, \alpha \in (0, 1) \} \}$$
(2.1)

$$C(A) = \{g \in A : \sup_{f \in A} \{\inf\{t : N(f - g, h, t) \ge \alpha, \alpha \in (0, 1)\}\} = R(A)$$
(2.2)

 $\begin{array}{ll} \textit{Moreover, if A is 2-fuzzy 2-convex then } C(A) \textit{ is a 2-fuzzy 2-convex set.} & \textit{Then the} \\ \textit{2-fuzzy 2-metric projection from } \mathfrak{F}(X) \textit{ onto } \mathscr{C} \textit{ is a mapping} \\ \mathscr{P}_{\mathscr{C}}: \mathfrak{F}(X) \to \mathscr{C} \textit{ is defined by} \\ \mathscr{P}_{\mathscr{C}}(f) = \{g \in \mathscr{C}: \mathrm{M}(f,g,h,t) = \inf_{g \in \mathscr{C}} \{\inf\{t: N(f-g,h,t) \\ \geq \alpha, \alpha \in (0,1)\}\}\}. \end{array}$ 

**Definition 2.11.** A non empty set  $\mathscr{C}$  is said to be a 2-fuzzy 2-chebyshev set if  $\mathscr{P}_{\mathscr{C}}(\mathfrak{F}(X))$  is one point for all  $f \in \mathfrak{F}(X)$ . A non empty set  $\mathscr{C}$  is said to be 2-fuzzy 2-proximinal if  $\mathscr{P}_{\mathscr{C}}(f) \neq \emptyset$  for all  $f \in \mathfrak{F}(X)$ .

**Definition 2.12.** A 2-fuzzy 2-Banach space  $\mathfrak{F}(X)$  is said to be k-strictly 2-fuzzy 2-convex if for any k + 1 elements  $f_1, f_2, \dots, f_{k+1} \in \mathscr{S}(\mathfrak{F}(X)),$ 

and if  $N(f_1 + f_2 + ... + f_{k+1}, g, k+1) = 1$  then  $f_1, f_2, ..., f_{k+1}$ are linearly dependent. It is well known that  $\mathfrak{F}(X)$  is a 1strictly 2-fuzzy 2-convex space if and only if  $\mathfrak{F}(X)$  is a strictly 2-fuzzy 2-convex space.

**Definition 2.13.** A non empty subset  $\mathscr{C}$  of  $\mathfrak{F}(X)$  is said to be appoximatively 2-fuzzy 2-compact if for any  $\{g_n\} \subset \mathscr{C}$  and  $f \in \mathfrak{F}(X)$  satisfying

 $\inf\{t: N(f-g_n,h,t) \ge \alpha, \alpha \in (0,1)\}$  converges to

 $\inf_{g \in \mathscr{C}} \{\inf\{t : N(f-g,h,t) \ge \alpha, \alpha \in (0,1)\}\}$  then the sequence  $\{g_n\}$  has a subsequence converging to an element in  $\mathscr{C}$ .

**Definition 2.14.** Set-valued mapping  $G : \mathfrak{F}(X) \to \mathfrak{F}(Y)$  is said to be 2-fuzzy 2-upper semi continuous at  $f_0$ , if for each 2-fuzzy 2-open set W with  $G(f_0) \subset W$ , there exists a 2-fuzzy 2-neighborhood U of  $f_0$  such that  $G(f) \subset W$  for all f in U. G is called 2-fuzzy 2-lower semi continuous at  $f_0$ , if for any  $g \in W(f_0)$  and any  $\{f_n\}$  in  $\mathfrak{F}(X)$  with  $f_n$  converges to  $f_0$ , there exists  $g_n \in W(f_n)$  such that  $g_n$  converges to g. W is called 2-fuzzy 2-continuous at  $f_0$ , if W is 2-fuzzy 2-upper semicontinuous and is 2-fuzzy 2-lower semi continuous at  $f_0$ .

**Definition 2.15.** A point  $f \in \mathscr{S}(\mathfrak{F}(X))$  is said to be 2-fuzzy 2-H-point if for a sequence  $\{f_n\}$  in  $\mathscr{S}(\mathfrak{F}(X))$  and  $f_n \xrightarrow{\omega} f$ , then  $f_n$  convergestof. Moreover, if the set of all 2-fuzzy 2-H-points is equal to  $\mathscr{S}(\mathfrak{F}(X))$  then  $\mathfrak{F}(X)$  is said satisfy the 2-fuzzy 2-H-property.

**Definition 2.16.** A point  $f_0 \in D(T)$  is said to be the 2-fuzzy 2-best approximative solution to the fuzzy operator equation Tf = g, if

$$\inf \{t : N(Tf_0 - g, h, t) \ge \alpha, \alpha \in (0, 1)\} = \inf \{\inf \{t : N(Tf - g, h, t) \\ \ge \alpha, \alpha \in (0, 1)\} : f \in D(T)\}$$

$$\inf\{t : N(f_0, h, t) \ge \alpha, \alpha \in (0, 1)\} = \min\{\inf\{t : N(f', h, t) \\ \ge \alpha, \alpha \in (0, 1)\} : f' \in D(T)\}$$
(2.3)

$$\begin{split} \inf \left\{ t : N\left(Tf^{'} - g, h, t\right) \geq \alpha, \alpha \in (0, 1) \right\} &= \inf_{f \in D(T)} \{\inf\{t : N(Tf - g \\ h, t) \geq \alpha, \alpha \in (0, 1)\} \} \end{split}$$

**Definition 2.17.** Let  $\mathfrak{F}(X)$ ,  $\mathfrak{F}(Y)$  be a 2-fuzzy 2-Banach spaces and T be a linear operator from  $\mathfrak{F}(X)$  to  $\mathfrak{F}(Y)$ . The mapping  $T': \mathfrak{F}(Y) \to \mathfrak{F}(X)$  defined by

$$T'(g) = \{f_0 \in D(T) : f_0 \text{ is } a \ 2 - fuzzy \ 2 - best$$
  
approximative solution to 
$$T(f) = g\}$$
  
(2.4)

for any  $g \in D(T')$  is said to be the 2-fuzzy 2-metric generalized inverse of T, where

$$D(T') = \{g \in \mathfrak{F}(Y) : T(f) = g \text{ has } a \ 2 - fuzzy \\ 2 - best \quad approximative \quad solution \quad in \quad \mathfrak{F}(X)\}$$
(2.5)

**Definition 2.18.** A 2-fuzzy 2-normed linear space is 2-fuzzy 2-compact if every sequence has a convergent subsequence.

**Definition 2.19.** A 2-fuzzy 2-metric space  $\mathfrak{F}(X)$  is 2-fuzzy 2-sequencially compact if every sequence of points in  $\mathfrak{F}(X)$  has a convergent subsequence.

## 3. Continuity of 2-fuzzy 2-metric projection operator and 2-fuzzy 2-approximative compactness

**Theorem 3.1.** Let  $\tau \in \mathscr{S}(\mathfrak{F}(X)^*)$ ,  $H = \{f \in \mathfrak{F}(X), \tau(f) = \tilde{0}\}$  and the set  $A_{\tau} = \{f \in \mathfrak{F}(X), \tau(f) = \tilde{1}\}$  is a non - empty 2-fuzzy 2-compact set. Then

- (i)  $\mathscr{P}_{H}(f) = f \tau(f)A_{\tau}$  for any  $f \in \mathfrak{F}(X)$
- (ii) The 2- fuzzy 2-metric projector  $\mathscr{P}_H$  is 2-fuzzy 2-continuous.

*Proof.* (i) Let  $f \in \mathfrak{F}(X)$ , choose  $h \in H$  and  $g \in \mathscr{S}(\mathfrak{F}(X))$  there exists a scalar  $\alpha$  such that  $f - h = \alpha g$ . On applying  $\tau$  on both sides,

$$\tau(f) - \tau(h) = \alpha \tau(g)$$

which implies  $\alpha = \frac{\tau(f)}{\tau(g)}$  since  $\tau(h) = \tilde{0}$  as  $h \in H$ , it is obvious that

$$f-h = \left(\frac{\tau\left(f\right)}{\tau\left(g\right)}\right)g$$

Again

$$\inf\{t: N(f-h,g,t) \ge \alpha, \alpha \in (0,1)\} \\ \ge \frac{\inf\{t: N(\tau(f),g,t) \ge \alpha, \alpha \in (0,1)\}}{\inf\{t: N(\tau(g),g,t) \ge \alpha, \alpha \in (0,1)\}} \inf\{t: N(g,f,t) \ge \alpha, \alpha \in (0,1)\} \\ \ge \frac{\inf\{t: N(\tau(g),g,t) \ge \alpha, \alpha \in (0,1)\}}{\inf\{t: N(\tau(g),g,t) \ge \alpha, \alpha \in (0,1)\}} \\ \text{Thus } h \in \mathscr{P}_{\mathbf{u}}(f) \text{ if and only if } g \in A_{\tau_{\tau_{t}}}(i,e) \ \tau(g) = 1. \text{ Hence}$$

Thus  $h \in \mathscr{P}_H(f)$  if and only if  $g \in A_\tau$ , (i.e)  $\tau(g) = 1$ . Hence  $\mathscr{P}_H(f) = f - \tau(f)A_\tau$  for any  $f \in \mathfrak{F}(X)$ .

(ii) Suppose  $\mathscr{P}_H$  is not 2-fuzzy 2-upper semi continuous at  $f_0$ , then there exist a sequence  $\{f_n\}$  in  $\mathfrak{F}(X)$  and an open set Wcontaining  $\mathscr{P}_H(f_0)$  such that  $\mathscr{P}_{N(T)}(f_n)$  not a subset of W, where N(T) is the null space of the operator  $T : \mathfrak{F}(X) \to \mathfrak{F}(Y)$ and  $f_n$  converging  $f_0$ . Then there exists  $h_n \in \mathscr{P}_{N(T)}(f_n)$ such that  $h_n \notin W$ . By (i), it follows  $h_n = f_n - \tau(f_n)g_n$  where  $g_n \in A_{\tau}$ . By hypothesis  $A_{\tau}$  is 2-fuzzy 2-compact, it is a 2-fuzzy 2-sequencially compact, there exists a subsequence  $\{g_{n_k}\}$  of  $\{g_n\}$  such that  $g_{n_k}$  converges to  $g_0$  in  $A_{\tau}$ . Fix  $h_0 = f_0 - \tau(f_0)g_0$  then  $h_0 \in \mathscr{P}_H(f_0)$  and

$$\lim_{k \to \infty} h_{n_k} = \lim_{n \to \infty} \left( f_{n_k} - \tau \left( f_{n_k} \right) g_{n_k} \right)$$
  
=  $f_0 - \tau \left( f_0 \right) g_0 = h_0$  (3.1)

leads to a contradiction since  $h_n \notin W$  hence it implies that  $\mathscr{P}_H$  is 2-fuzzy 2-upper semicontinuous.

Now assume  $\{f_n\}$  converges to  $f_0$ , let  $h_0 \in \mathscr{P}_H(f_0)$ . Then by (i), there exists  $g_0 = f - \tau(f_0)g_0$ . Again from (i),  $g_n = f_n - \tau(f_n)g_0 \in \mathscr{P}_{N(T)}(f_n)$  and

$$\lim_{n \to \infty} h_n = \lim_{n \to \infty} (f_n - \tau(f_n) g_0)$$
  
=  $f_0 - \tau(f_0) g_0 = h_0$  (3.2)

This leads to the desired requirement that  $\mathscr{P}_H$  is 2-fuzzy 2-lower semicontinuous at  $f_0$ .

**Definition 3.2.** The space A is said to be 2-fuzzy 2-approxima tively compact with respect to B if every sequence  $\{f_n\}$  in A satisfies the condition

 $M(g, f_n, t) \rightarrow M(g, A, t)$  for some  $g \in B$  has a convergent subsequence.

**Definition 3.3.** The space A subset of  $\mathfrak{F}(X)$  is 2-fuzzy 2-relatively compact if its closure is 2-fuzzy 2-compact.



**Theorem 3.4.** Suppose that every 2-fuzzy 2-proximinal hyperplane  $\mathfrak{F}(X)$ ofis 2-fuzzy 2-approximatively compact. Then  $\mathfrak{F}(X)$  has the 2fuzzy 2-H-property.

*Proof.* Let  $f_n \xrightarrow{\omega} f$ , where  $\{f_n\}$  is a sequence in  $\mathscr{S}(\mathfrak{F}(X))$ and  $f \in \mathscr{S}(\mathfrak{F}(X))$ . Then there exists  $f^* \in \mathscr{S}(\mathfrak{F}(X)^*)$  such that  $f^*(f) = 1$  and the hyperplane  $H_{f^*} = \{f \in \mathfrak{F}(X) : f^*(f) = f^*(f) \}$  $\tilde{1}$  is 2-fuzzy 2-proximinal. Suppose that the sequence  $\{f_n\}$ does not converge to f. Without loss of generality assume that  $\inf\{t: N(f_n - f, h, t) \ge \alpha, \alpha \in (0, 1)\} > \varepsilon \text{ for every } n \in N.$ Since  $H_{f^*}$  is a proximinal set, there exists  $g_n \in H_{f^*}$  such that  $M(f_n, H_{f^*}, h, t) = \inf\{t : N(f_n - g_n, h, t) \ge \alpha, \alpha \in (0, 1)\}.$ Since  $\lim_{n \to \infty} \{\inf\{t : N(f_n - g_n, h, t) \ge \alpha, \alpha \in (0, 1)\}\} = \lim_{n \to \infty} \{M(f_n, H_{f^*}, h, t)\} = 1.$ 

$$=\lim_{n\to\infty} \{M(f_n, H_{f^*}, h, t)\} =$$

It implies that

$$M(0, H_{f^*}, h, t) = 1$$
  
=  $\lim_{n \to \infty} \{\inf\{t : N(f_n, h, t) \ge \alpha, \alpha \in (0, 1)\}\}$   
=  $\lim_{n \to \infty} \{\inf\{t : N(0 - g_n, h, t) \ge \alpha, \alpha \in (0, 1)\}\}$  (3.3)

This implies that the sequence  $\{g_n\}$  is 2-fuzzy 2-relatively compact. Hence the sequence  $\{f_n\}$  is 2-fuzzy 2-relatively compact. Then there exists a subsequence  $\{f_{n_k}\}$  of  $\{f_n\}$  such that  $\{f_{n_k}\}$  is a Cauchy sequence. Since  $f_{n_k} \xrightarrow{\omega} f$ , then  $f_{n_k}$ converges to f, a contradiction. Hence,  $f_n$  converges to f. This implies that  $\mathfrak{F}(X)$  has the 2-fuzzy 2-H-Property. 

**Theorem 3.5.** Let  $H_1$  be a closed subspace of  $\mathfrak{F}(X_1)$  and  $H_2$ be a closed subspace of  $\mathfrak{F}(X_2)$ ;  $\mathscr{P}_{H_1}$  is a 2-fuzzy 2-lower semi continuous on  $\mathfrak{F}(X_1)$ ,  $\mathscr{P}_{H_2}$  is a 2-fuzzy 2-lower semi continuous on  $\mathfrak{F}(X_2)$ . Then the metric projection operator  $\mathscr{P}_{H_1 \times H_2}$ is 2-fuzzy 2-lower semi continuous on  $(\mathfrak{F}(X_1) \times \mathfrak{F}(X_2), N)$ where

$$N((f_1, f_2), h, t) = \min\{N(f_1, h, t), N(f_2, h, t)\}$$

*Proof.* Let  $(f_{1,n}, f_{2,n})$  be a sequence in  $H_1 \times H_2$  converging to  $(f_1, f_2)$  which implies  $f_{1,n}$  converges to  $f_1$  and  $f_{2,n}$  converges to  $f_2$ .

$$\begin{array}{l} \text{Consider } \mathscr{P}_{H_1 \times H_2}\left(f_1, f_2\right) \\ = \left\{\begin{array}{c} (g_1, g_2) \in H_1 \times H_2 : \inf\{t : N(((f_1, f_2) - (g_1, g_2)), h, t) \geq \alpha\} \\ = M((f_1, f_2), (g_1, g_2), h, t) = \inf\{\inf\{t' : N((f_1, f_2) - (h_1, h_2), g, t) \geq \alpha\}\} \end{array}\right\} \\ = \left\{\begin{array}{c} (g_1, g_2) \in H_1 \times H_2 : \inf\{t : N(((f_1 - g_1), (f_2 - g_2)), h, t) \geq \alpha\} \\ = M((f_1, g_1), (f_2, g_2), h, t) = \inf\{\inf\{t' : N((f_1 - h_1), (f_2 - h_2), g, t) \geq \alpha\}\} \end{array}\right\} \\ = \left\{\begin{array}{c} g_1 \in H_1 : \inf\{t : N((f_1 - g_1), h, t) \geq \alpha\} \\ = M(f_1, g_1, h, t) = \inf\{\inf\{t' : N((f_1 - g_1), h, t) \geq \alpha\} \\ = M(f_1, g_1, h, t) = \inf\{\inf\{t' : N((f_1 - h_1), g, t) \geq \alpha\}\} \end{array}\right\} \\ = \left\{\begin{array}{c} g_1 \in H_1 : \inf\{t : N((f_1 - g_1), h, t) \geq \alpha\} \\ = M(f_1, g_1, h, t) = \inf\{\inf\{t' : N((f_2 - g_2), h, t) \geq \alpha\} \\ = M(f_1, g_1, h, t) = \inf\{\inf\{t' : N((f_2 - g_2), h, t) \geq \alpha\} \end{array}\right\} \\ \times \left\{\begin{array}{c} g_2 \in H_2 : \inf\{t : N((f_2 - g_2), h, t) \geq \alpha\} \\ = M(f_2, g_2, h, t) = \inf\{\inf\{t' : N((f_2 - h_2), g, t) \geq \alpha\} \end{array}\right\} \\ = \mathscr{P}_{H_1}(f_1) \times \mathscr{P}_{H_2}(f_2) \text{ for any } (f_1, f_2) \in \mathfrak{F}(X_1) \times \mathfrak{F}(X_2) \\ \text{ Then } f_{1,n} \text{ converges to } f_1 \text{ and } f_{2,n} \text{ converges to } f_2. \text{ Let } (h_1, h_2) \in \mathscr{P}_{H_1 \times H_2}(f_1, f_2). \text{ Since } \mathscr{P}_{H_1 \times H_2}(f_1, f_2) = \mathscr{P}_{H_1}(f_1) \times \mathscr{P}_{H_2}(f_2), \text{ by } f_{1,n} \text{ converges to } f_1 \text{ and } f_{2,n} \text{ converges to } f_2 \\ \text{ there exists } h_{1,n} \in \mathscr{P}_{H_1}(f_{1,n}) \text{ and } h_{2,n} \in \mathscr{P}_{H_2}(f_{2,n}) \text{ such that } h_{1,n} \text{ converges to } h_1 \text{ and } h_{2,n} \text{ converges to } h_2. \text{ Hence } (h_{1,n}, h_{2,n}) \end{array}\right\}$$

converges to  $(h_1, h_2)$ . Hence  $\mathscr{P}_{H_1 \times H_2}$  is a 2-fuzzy 2-lower semicontinuous.

Let  $\mathfrak{F}(X)$  be k-strictly convex and  $H = \{f \in \mathfrak{F}(X) : \tau(f) =$  $\tilde{0}, \tau \in \mathscr{S}(\mathfrak{F}(X)^*)$ . Then  $A_{\tau} = \{f \in \mathfrak{F}(X) : \tau(f) = \tilde{1}\}$  is a non-empty compact set. Then by theorem (3.1) the metric projector operator  $\mathscr{P}_H$  is 2-fuzzy 2-lower semicontinuous. Let  $\mathfrak{F}(Y)$  be strictly convex and *M* is an approximately compact closed subspace of  $\mathfrak{F}(Y)$ . Then the metric projector operator  $\mathcal{P}_M$  is 2-fuzzy 2-continuous. Therefore, by theorem (3.5), it implies that  $\mathscr{P}_{H \times M}$  is 2-fuzzy 2-lower semicontinuous on  $(\mathfrak{F}(X),\mathfrak{F}(Y),N)$ , with norm *N*. 

#### 4. 2-Fuzzy 2-Continuous selections and 2-Fuzzy 2-Continuity of the set valued Metric Generalized Inverse

**Theorem 4.1.** Let  $\mathfrak{F}(X)$  be a 3-strictly 2-fuzzy 2-convex space.  $\mathfrak{F}(Y)$  be a 2-fuzzy 2-Banach space, D(T) be a closed subspace of  $\mathfrak{F}(X)$  and R(T) be an 2-fuzzy 2-approximatively compact and 2-fuzzy 2-chebyshev subspace of  $\mathfrak{F}(Y)$ . Then

- (i)  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-upper semicontinuous if and only if T' is 2-fuzzy 2-upper semicontinuous.
- (ii)  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous if and only if T' is 2fuzzy 2-continuous.
- (iii) If  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous, then there exists a homogeneous selection  $T^*$  of T' such that  $T^*$  is 2-fuzzy 2-continuous on  $\{h \in \mathfrak{F}(Y) :$  $\liminf_{k \to h} \left[ diam \left( C \left( T'(k) \right) \right) \right]_{\alpha}$   $\geq \left[ diam \left( C \left( T'(h) \right) \right) \right]_{\alpha} \text{ for } \alpha \in (0,1) \}.$

*Proof.* (i) Let  $g_0 \in \mathfrak{F}(Y)$ . To prove that T' is 2-fuzzy 2-upper semicontinuous at  $g_0$  consider a sequence  $\{g_n\}$  in  $\mathfrak{F}(Y)$  converging to  $g_0$  and open set W with  $T'(g_0) \subset W$  then there exists a positive number  $N_0$  such that  $T'(g_n) \subset W$  whenever  $n > N_0$ .

Take  $f_0 \in T'(\mathscr{P}_{R(T)}(g_0))$ , by the definition of 2-fuzzy 2metric generalized inverse, it is obvious that  $T'(g_0) = f_0 - f_0$  $\mathscr{P}_{N(T)}(f_0)$ . Since T is a bounded linear operator, it is obvious that N(T) is a closed subspace of D(T).

Let  $\overline{T}: \frac{D(T)}{N(T)} \to R(T)$  defined as

$$\bar{T}\left[f\right] = Tf \tag{4.1}$$

It is clear that  $R(\overline{T}) = R(T)$  and  $R(\overline{T}) = R(T)$ . Suppose that  $R(\overline{T}) \neq R(T)$ , then there exists  $g' \in R(\overline{T})$  such that  $g' \notin R(T)$ . It is easy to see that  $\{g \in R(T) : inf\{t : N(g'-g,h,t) \ge \alpha, \alpha \in d\}$  $(0,1)\}\} = M(g', R(T), h, t) = \emptyset.$ 

This implies that R(T) is not a 2-fuzzy 2-chebyshev subspace of  $\mathfrak{F}(Y)$ , a contradiction to the hypothesis. since R(T) =R(T), it follows that R(T) is a 2-fuzzy 2-Banach space and  $\overline{T}$  is a bounded linear operator with  $N(\overline{T}) = \{0\}$ . Further implies that the bounded linear operator  $\overline{T}$  is both injective and



surjective. Hence  $\overline{T}^{-1}$  is a bounded linear operator. Take  $f_n \in \overline{T}^{-1}(\mathscr{P}_{R(T)}(g_n))$ . Since  $\mathfrak{F}(Y)$  is 2-fuzzy 2-approximatively compact and R(T) is a 2-fuzzy 2-chebshev subspace of  $\mathfrak{F}(Y)$ , it implies that the metric projection operators  $\mathscr{P}_{R(T)}$  is 2-fuzzy 2-continuous and so  $\mathscr{P}_{R(T)}(g_n)$  converges to  $\mathscr{P}_{R(T)}(g_0)$ . Since  $\overline{T}'$  is a bounded linear operator, it follows that

$$\lim_{n \to \infty} \{ \inf\{t : N([f_n - f_0], h, t) \ge \alpha, \alpha \in (0, 1) \} \}$$
  
= 
$$\lim_{n \to \infty} \{ \inf\{t : N([f_n] - [f_0], h, t) \ge \alpha, \alpha \in (0, 1) \} \} = 0$$
  
(4.2)

Without loss of generality assume that  $f_n$  converges to  $f_0$ . Since  $T'(g_0) = f_0 - \mathscr{P}_{N(T)}(f_0)$ , it implies that  $f_0 - \mathscr{P}_{N(T)}(f_0) \subset W$ . Hence for any  $h \in \mathscr{P}_{N(T)}(f_0)$ , it follows that  $f_0 - h \in W$ . So there exist  $\delta_h \in (0, 1)$  and  $r_h \in (0, 1)$  such that  $B(f_0, \delta_h, t) - B(h, r_h, t) \subset W$  with  $t \in R$ . Since  $\mathfrak{F}(X)$  is a 3-strictly 2-fuzzy 2-convex space, it follows that  $\mathscr{P}_{N(T)}(f_0)$  is 2-fuzzy 2-compact. Since

$$\mathcal{P}_{N(T)}(f_0) \subset \bigcup_{\substack{h \in \mathcal{P}_{N(T)}(f_0)\\t \in R}} B(h, r_h, t)$$
(4.3)

there exist  $h_1 \in \mathscr{P}_{N(T)}(f_0), h_2 \in \mathscr{P}_{N(T)}(f_0), h_K \in \mathscr{P}_{N(T)}(f_0)$  such that

$$\mathscr{P}_{N(T)}(f_0) \subset \bigcup_{i=1}^k B\left(h_i, r_{h_i}, t\right)$$
(4.4)

Let  $2\delta = \min{\{\delta_{h_1}, \delta_{h_2}, \dots, \delta_{h_k}\}}$ . Since  $B(f_0, \delta_h, t) - B(h, r_h, t) \subset W$  for any  $h \in \mathscr{P}_{N(T)}(f_0)$ ,

$$f_{0} - \mathscr{P}_{N(T)}(f_{0}) \subset B(f_{0}, \delta, t) - \bigcup_{\substack{i=1\\t \in R}}^{k} B(h_{i}, r_{h_{i}}, t) \subset W \quad (4.5)$$

This implies that

$$\mathcal{P}_{N(T)}(f_0) = f_0 - \left(f_0 - P_{N(T)}(f_0)\right) \subset f_0$$
$$-B(f_0, \delta, t) - \bigcup_{\substack{i=1\\t \in R}}^{K} B\left(h_i, r_{h_i}, t\right) (4.6)$$

Since  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-upper semicontinuous, there exists  $n_0 \in N$  such that  $\inf \{t : N(f_n - f_0, h, t) \ge \alpha, \alpha \in (0, 1)\} < \delta$  for  $\delta \in (0, 1)$  and

$$\mathcal{P}_{N(T)}f_n \subset f_0 - \begin{pmatrix} B(f_0, \delta, t) - \bigcup_{\substack{i=1\\t \in R}}^k B(h_i, r_{h_i}, t) \end{pmatrix} \quad when \quad n > 0$$

Since  $2\delta = \min\{\delta_{h_1}, \delta_{h_2}, \dots, \delta_{h_k}\}$  and  $B(f_0, \delta_h, t) - B(h, r_h, t) \subset W$  for any  $h \in \mathscr{P}_{N(T)}(f_0)$ , it is obvious that  $B(f_0, \delta) - \bigcup_{i=1}^k B(h_i, r_{h_i}) \subset W$ . Hence

(4.7)

$$T'(g_n) = f_n - P_{N(T)}(f_n) \subset f_n - \begin{pmatrix} f_0 - B(f_0, \delta, t) - \bigcup_{\substack{i=1\\t \in R}}^k B(h_i, r_{h_i}, t) \\ i \in R \end{pmatrix}$$

$$(4.8)$$

$$= f_n - f_0 + B(f_0, \delta, t) - \bigcup_{\substack{i=1\\t \in R}}^k B(h_i, r_{h_i}, t)$$
$$\subset B(f_0, 2\delta, t) - \bigcup_{\substack{i=1\\t \in R}}^k B(h_i, r_{h_i}, t) \subset W$$

This implies that T' is 2-fuzzy 2-upper semicontinuous at  $g_0$ . Hence T' is 2-fuzzy 2-upper semicontinuous. Conversely assume as a contrary that  $\mathscr{P}_{N(T)}$  is not 2-fuzzy 2-continuous at  $g_0$ . Then there exists  $\{f_n\}$  in  $\mathfrak{F}(X)$  with  $f_0 \in \mathfrak{F}(X)$ , and an open set W such that  $\{f_n\}$  converges to  $f_0$  and  $\mathscr{P}_{N(T)}(f_n) \subset W$  with  $\mathscr{P}_{N(T)} \not\subset (f_n) W$ . Hence there exists  $\pi_{N(T)}(f_n) \in \mathscr{P}_{N(T)}(f_n)$  such that  $\pi_{N(T)}(f_n) \notin W$ . It asserts to show that there exists  $\delta \in (0, 1)$  such that

$$\bigcup_{\substack{h \in \mathscr{P}_{N(T)}(f_0)\\t \in R}} B(h, 2\delta, t) \subset W$$
(4.9)

Or else there exists  $h_n \in \mathscr{P}_{N(T)}(f_0)$  such that  $B(h_n, \frac{1}{n}, t) \not\subset W$ . W. Since  $\mathscr{P}_{N(T)}(f_0)$  is 2-fuzzy 2-compact, assume that  $h_n$  converges to  $h_0$  in  $\mathscr{P}_{N(T)}(f_0)$  so choose  $\eta \in (0,1)$  such that  $B(h_0, 4\eta, t) \subset W$ . Hence there exists  $n_0 \in N$  such that  $\frac{1}{n_0} > 2\eta$  and  $N(h_{n_0} - h_0, g, t) > 2\eta$ . Hence for any  $h \in B(h_{n_0}, \frac{1}{n_0}, t)$ , then  $N(h_{n_0} - h_0, g, t) \ge \frac{1}{n_0}$ inf  $[t_n + t_0] \ge N(h - h_0, g, t) \ge \alpha, \alpha \in (0, 1)$ 

$$\inf \{t_1 + t_2 : N(h - h_{n_0}, g, t_1 + t_2) \ge \alpha, \alpha \in (0, 1)\}$$
  
$$\ge \inf \{t_1 : N(h - h_{n_0}, g, t_1) \ge \alpha, \alpha \in (0, 1)\} +$$
  
$$\inf \{t_2 : N(h_{n_0} - h_0, g, t_2) \ge \alpha, \alpha \in (0, 1)\}$$

$$> 2\eta + 2\eta = 4\eta \tag{4.10}$$

This implies that  $h \in W$ . Hence  $B\left(h_{n_0}, \frac{1}{n_0}, t\right) \subset W$ , a contradiction, Let  $g_n = Tf_n$  and  $g_0 = Tf_0$ . Then  $T'(g_n) = f_n - n_0 \mathscr{P}_{N(T)}(f_n)$ ,

$$T'(g_0) = f_0 - P_{N(T)}(f_0)$$
(4.11)

 $\lim g_n = g_0$ Since  $\mathscr{P}_{N(T)}(f_0) \subset W$ , it follows that  $T'(g_0) = f_0 - \mathscr{P}_{N(T)}(f_0)$  $\subset f_0 - W$ . It asserts to show that

$$f_{n} - \pi_{N(T)}(f_{n}) \notin f_{0} - \bigcup_{\substack{h \in \mathscr{P}_{N(T)}(f_{0}) \\ t \in R}} B(h, \delta, t)$$
(4.12)

whenever  $\inf \{t : N(f_n - f_0, h, t) \ge \alpha, \alpha \in (0, 1)\} < \delta.$ Suppose that  $f_n - \pi_{N(T)}(f_n) \notin f_0 - \bigcup_{h \in \mathscr{P}_{N(T)}(f_0)} B(h, \delta, t)$ 

Whenever  $\inf \{t : N(f_n - f_0, h, t) \ge \alpha, \alpha \in (0, 1)\} < \delta$ . Then

$$\pi_{N(T)}(f_n) = f_n - \left(f_n - \pi_{N(T)}(f_n)\right) \in f_n - \left(f_0 - \bigcup_{\substack{h \in \mathscr{P}_{N(T)}(f_0)\\t \in R}} B(h, \delta, t)\right)$$
(4.13)

$$= \bigcup_{\substack{h \in \mathscr{P}_{N(T)}(f_0) \\ t \in R}} B(h, \delta, t) + (f_n - f_0) \subset \bigcup_{\substack{h \in \mathscr{P}_{N(T)}(f_0) \\ t \in R}} B(h, \delta, t) \subset W$$

a contradiction. Since,

 $f_{n}-\pi_{N(T)}\left(f_{n}\right)\notin f_{0}-\bigcup_{h\in\mathscr{P}_{N(T)}\left(f_{0}\right)}B\left(h,\delta,t\right)$ whenever  $\inf \{t : N(f_n - f_0, h, t) \ge \alpha, \alpha \in (0, 1)\} < \delta$ , it follows that T' is not 2-fuzzy 2-upper semicontinuous at  $g_0$ ,

a contradiction. (ii) Let  $g_0 \in \mathfrak{F}(Y)$  and  $g_n$  converges to  $g_0$ . Then, by the previous argument there exists  $f_0 \in \mathfrak{F}(X)$  and a sequence  $\{f_n\}$  in  $\mathfrak{F}(X)$  such that  $\mathscr{P}_{R(T)}(g_0) = Tf_0, \mathscr{P}_{R(T)}(g_n) = Tf_n,$ and  $f_n$  converges to  $f_0$ . Then  $T'(g_0) = f_0 - \mathscr{P}_{N(T)}(f_0)$  and  $T'(g_n) = f_n - \mathscr{P}_{N(T)}(f_n)$ . Since  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous, it follows that for any  $h \in \mathscr{P}_{N(T)}(f_0)$ , there exists  $h \in \mathscr{P}_{N(T)}(f_n)$ such that  $h_n$  converges to  $h_0$ . Hence, for any  $f_0 - h \in f_0$  –  $\mathscr{P}_{N(T)}(f_0)$ , there exists  $f_n - h_n \in f_n - \mathscr{P}_{N(T)}(f_n)$  such that  $f_n - h_n$  converges to  $f_0 - h$ . Hence T' is 2-fuzzy 2-lower semicontinuous at  $g_0$ . Hence by (i), T' is 2-fuzzy 2-continuous at  $g_{0}$ .

Conversely let  $g_0 \in \mathfrak{F}(Y)$  and  $g_n$  converges to  $g_0$ . Then by the previous argument, there exist  $f_0 \in \mathfrak{F}(X)$  and  $\{f_n\} \subset \mathfrak{F}(X)$ such that  $\mathscr{P}_{R(T)}(g_0) = Tf_0$ ,  $\mathscr{P}_{R(T)}(g_n) = Tf_n$ , and  $f_n$  converges to  $f_0$ . Then  $T'(g_0) = f_0 - \mathscr{P}_{N(T)}(f_0)$  and  $T'(g_n) =$  $f_n - \mathscr{P}_{N(T)}(f_n)$  since T' is 2-fuzzy 2-continuous, it follow that for any  $f_0 - h \in f_0 - \mathscr{P}_{N(T)}(f_0)$ , so there exists  $f_n - h_n \in$  $f_n - \mathscr{P}_{N(T)}(f_n)$  such that  $f_n - h_n$  converges to  $f_0 - h$ . Hence for any  $h \in \mathscr{P}_{N(T)}(f_0)$ , there exists  $h_n \in \mathscr{P}_{N(T)}(f_n)$  such that  $h_n$  converges to  $h_0$ . This implies that  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2continuous at  $g_0$ . Next to prove the condition (iii) is true.

(iii)(a) Define a mapping  $G : \mathfrak{F}(Y)$  converges to  $\mathfrak{F}(X)$  such that  $G(g) = \mathscr{C}(T'(g))$ , if  $\{g_n\}$  converges to g then to prove

where  $g_n \in \mathfrak{F}(Y)$  and  $g \in \mathfrak{F}(Y)$ . Without loss of generality assume that

$$\sup_{h\in T'(g)} \inf_{h_n\in T'(g_n)} \{\inf\{t: N(h_n - h, g, t) \ge \alpha, \alpha \in (0, 1)\}\} \ge 2\eta$$

for all  $n \in N$ . Then there exists  $h(n) \in T'(g)$  such that  $\inf_{h_n \in T'(g_n)} \{\inf \{t : N(h_n - h(n), g, t) \ge \alpha, \alpha \in (0, 1)\} \} \ge \eta.$ Since  $\mathfrak{F}(X)$  is a 3-strictly 2-fuzzy 2-convex space, it follows that  $\mathscr{P}_{N(T)}(f)$  is 2-fuzzy 2-compact. From the previous argument, there exists  $f \in \mathfrak{F}(X)$  such that  $T'(g) = f - \mathscr{P}_{N(T)}(f)$ . This implies that T'(g) is 2-fuzzy 2-compact. Hence without loss of generality assume that h(n) converges to  $h_0$ . This implies that  $h_0 \in T'(g)$  and without loss of generality that

$$\inf_{h_n \in T'(g_n)} \{ \inf \{ t : N(h_n - h_0, g, t) \ge \alpha, \alpha \in (0, 1) \} \} \ge \frac{1}{2} \eta$$
(4.15)

for all  $n \in N$ . Since  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous, by  $h_0 \in$ T(g), there exists  $k_n \in T'(g_n)$  such that  $k_n$  converges to  $h_0$ , which contradicts (23) Next to prove that G is 2-fuzzy 2-upper semicontinuous. Suppose that G is not 2-fuzzy 2-upper semicontinuous. Then there exist  $\{g_n\}$  in  $\mathfrak{F}(X), g_0 \in \mathfrak{F}(Y)$  and a norm open set W, such that  $\mathscr{C}\left(T^{'}\left(g_{0}\right)\right)\subset W, \mathscr{C}\left(T^{'}\left(g_{n}\right)\right) \not\subset$  $W, g_n$  converges to  $g_0$ . Hence there exists  $f_n \in \mathscr{C}(T'(g_n))$ such that  $f_n \notin W$ . Since  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous, it follows that T' is 2-fuzzy 2-upper semicontinuous. Hence, for any  $\varepsilon > 0$ , there exists  $n_0 \in N$  such that

$$f_n \in \bigcup_{f \in T'(g_0)} B(f, \varepsilon) \tag{4.16}$$

whenever  $n > n_0$ . This implies that  $M\left(\{f_n\}, T'(g_0, h, t)\right) = 0$ . Hence there exists  $f(n) \in \mathscr{C}(T'(g_0))$  such that  $M(\lbrace f_n \rbrace, f(n), h, t) < \frac{1}{n}$ . Since  $T'(g_0)$  is 2-fuzzy 2-compact, assume without loss of generality that  $\{f_n\}$  converges to  $f_0$ . To prove that  $f_0 \in \mathscr{C}(T'(g_0))$ . Suppose that  $f_0 \notin \mathscr{C}\left(T'(g_0)\right)$ . Let  $r_0 = r\left(T'(g_0)\right)$ , then there exists  $k_0 \in T'(g_0)$  and  $\delta \in (0,1)$  such that

$$\inf \{t : N(k_0 - f_0, \mathbf{g}, \mathbf{t}) \ge \alpha, \alpha \in (0, 1)\} \ge r_0 + \delta$$

It asserts to show that

$$\lim_{n \to \infty} \sup_{h_n \in T'(g_n)} \inf_{h \in T'(g)} \{ \inf \{ t : N(h - h_n, g, t) \ge \alpha, \alpha \in (0, 1) \} \} = 0$$
(4.17)

 $\lim_{n \to \infty} \sup \inf \{\inf\{t: N(h_n - h, g, t) \ge \alpha, \alpha \in (0, 1)\}\} = 0 \text{ Otherwise, assume that there exist } k_n \in T'(g_n) \text{ and } \eta \in (0, 1)$  $\sum_{n \to \infty}^{n \to \infty} h \in T'(g) h_n \in T'(g_n)$ 

(4.14) such that  

$$\inf_{h\in T'(g)} \{ \inf\{t : N(h-j_n,g,t) \ge \alpha, \alpha \in (0,1) \} \} \ge \eta$$



Since  $P_{N(T)}$  is 2-fuzzy 2-continuous, it implies that T is 2-fuzzy 2-continuous.

Assume without loss if generality that  $k_n$  converges to  $k_0$  in T'(g), a contradiction. Therefore, by (4.14) and (4.17), assume that

$$\sup_{h \in T'(g)} \inf_{h_n \in T'(g_n)} \{ \inf\{t : N(h_n - h, g, t) \ge \alpha, \alpha \in (0, 1) \} \} > \frac{1}{64} \delta$$
(4.18)

 $\sup_{h \in T'(gn)} \inf_{h \in T'(g)} \{ \inf\{t : N(h - h_n, g, t) \ge \alpha, \alpha \in (0, 1) \} \} > \frac{1}{64} \delta$ 

for every  $h_n \in N$ . Therefore, by (4.18) and  $\{f_n\}$  converges to  $f_0$  and assume that there exist  $k_n \in T'(g_n)$  such that

$$\inf\{t : N(k_n - k_0, g, t) \ge \alpha, \alpha \in (0, 1)\} > \frac{1}{64}\delta \quad (4.19)$$
$$\inf\{t : N(k_n - k_0, g, t) \ge \alpha, \alpha \in (0, 1)\} > \frac{1}{64}\delta$$

for every  $n \in N$ .

$$inf\{t_1 + t_2 + t_3 : N(f_n - k_n, g, t_1 + t_2 + t_3) \ge \alpha\}$$
  

$$\ge \inf\{t_1 : N(f_0 - k_0, g, t_1) \ge \alpha\}$$
  

$$- \inf\{t_2 : N(f_n - f_0, g, t_2) \ge \alpha\}$$
  

$$- \inf\{t_3 : N(k_n - k_0, g, t_3) \ge \alpha\}$$

$$\geq r_{0} + \delta - \frac{1}{16}\delta - \frac{1}{16}\delta \geq r\left(T'(g_{0})\right) + \frac{3}{4}\delta \qquad (4.20)$$

for every  $n \in N$ . since  $f_n \in \mathscr{C}(T'(g_n))$ , it follows that

$$r\left(T'\left(g_{n}\right)\right) > r\left(T'\left(g_{0}\right)\right) + \frac{3}{4}\delta$$

$$(4.21)$$

for every  $n \in N$ . Let  $h \in \mathcal{C}(T'(g_0))$ . Therefore, by (4.18) there exists  $h_n \in \mathcal{C}(T'(g_n))$  such that

 $\inf\{t : N(h - h_n, g, t) \ge \alpha\} > \frac{\delta}{64}.$  Since the set  $T'(g_n)$  is 2-fuzzy 2-compact, there exist  $\omega_{n\in}T'(g_n)$  such that  $\inf\{t : N(\omega_n - h_n, g, t)) \ge \alpha\} > r\left(T'(g_n)\right)$ From (4.18), there exists  $\omega(n) \in \mathscr{C}(T'(g_0))$  such that  $\inf\{t : N(\omega(n) - \omega_n, g, t)) \ge \alpha\} > \frac{\delta}{64}$ 

Since the set  $T'(g_0)$  is 2-fuzzy 2-compact, assume without loss of generality that  $\omega(n)$  converges to  $\omega$ . Without loss of generality assume that

 $\inf\{t: N(\omega - \omega_n, g, t) \ge \alpha\} > \frac{\delta}{60}.$ Therefore, by  $h \in \mathscr{C}(T'(g_0))$ , it implies that  $r(T'(g_n)) \ge \inf\{t_1 + t_2 : N(\omega_n - h_n, g, t_1 + t_2) \ge \alpha\}$ 

$$> \inf\{t_1 : N(h-h_n, g, t_1) \ge \alpha\} + \inf\{t_2 : N(\omega-h, g, t_2) \ge \alpha\}$$

$$(4.22)$$

$$>rac{\delta}{64}+rac{\delta}{60}+r(T^{'}(g_{0}))\ >r\left(T^{'}\left(g_{0}
ight)
ight)+rac{1}{16}\delta,$$

Which contradicts (4.21). This implies that G is 2-fuzzy 2-upper semi continuous.

(iii)b To prove that if  $\mathfrak{F}(X)$  is a 3-strictly convex space and  $h \in \mathfrak{F}(X)$ , then there exists  $f_n \in \mathfrak{F}(X)$  and a 2-dimensional space  $\mathfrak{F}(X)_h$  such that  $\mathscr{P}_{N(T)}(h) \subset f_h + \mathfrak{F}(X)$ 

Assume that h = 0, let  $f_1, f_2, f_3, f_4 \in \mathscr{P}_{N(T)}(0)$  such that  $f_1, f_2, f_3$  are linearly independent. Then  $(f_1 + f_2 + f_3 + f_4)/4 \in N(T)$ . Therefore, by the Hahn-Banach theorem, there exists  $f^* \in \mathscr{S}(\mathfrak{F}(X)^*)$  such that  $f^*(f_1 + f_2 + f_3 + f_4)/4$ . Then  $\inf\{s+t+u+v: N(f_1+f_2+f_3+f_4,g,s+t+u+v) \ge \alpha\} = 4$ ,

$$inf\{s: N(f_1, h, s) \ge \alpha\} = inf\{t: N(f_2, h, t) \ge \alpha\}$$
$$inf\{u: N(f_3, h, u) \ge \alpha\}$$
$$inf\{v: N(f_4, h, v) \ge \alpha\} = \tilde{1}$$
(4.23)

Without loss of generality assume that  $f_4 = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$ .

Then  $f^*(f_4) = f^*(\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3) = \tilde{1}$ . Hence  $\alpha_1 + \alpha_2 + \alpha_3 = 1$ . Since  $f_1, f_2, f_3$  are linearly independent, that for any  $f \in \mathscr{P}_{N(T)}(0)$ , if

 $f_3 = \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3$ , then  $\alpha_3 \neq 0$ . Hence

$$f = \left(-\frac{\alpha_1}{\alpha_3}\right) f_1 + \left(-\frac{\alpha_1}{\alpha_3}\right) f_2 + \frac{1}{\alpha_3} f_3$$

$$\left(-\frac{\alpha_1}{\alpha_3}\right) + \left(-\frac{\alpha_1}{\alpha_3}\right) + \frac{1}{\alpha_3} = 1$$
(4.24)

This implies that, for any  $f \in \mathscr{P}_{N(T)}(0), f = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3$ , where  $\lambda_1 + \lambda_2 + \lambda_3 = \tilde{1}$ . Then

$$f = \lambda_1 (f_1 - f_3) + \lambda_2 (f_2 - f_3) + f_3$$
(4.25)

This implies that  $\mathscr{P}_{N(T)}(0) \subset span\{f_1 - f_3, f_2 - f_3\} + f_3$ . Hence, if  $\mathfrak{F}(X)$  is a 3-strictly 2-fuzzy 2-convex space and  $h \in \mathfrak{F}(X)$ , then there exist  $f_2 \in \mathfrak{F}(X)$  and a two-dimensional space  $\mathfrak{F}(X)_h$  such that  $\mathscr{P}_{N(T)}(h) \subset f_n + \mathfrak{F}(X)_h$ .

Moreover for any  $g \in \mathfrak{F}(Y)$ , there exists  $f \in \mathfrak{F}(X)$  such that  $T'(g) = f - \mathscr{P}_{N(T)}(f)$ . Hence, for any  $g \in \mathfrak{F}(Y)$ , there exists  $f_h \in \mathfrak{F}(X)$  and a two-dimensional space  $\mathfrak{F}(X)_h$  such that  $T'(g) \subset f_h + \mathfrak{F}(X)_h$ .

(iii) To prove that, for any  $g \in \mathfrak{F}(Y)$ , the set  $\mathscr{C}(T'(g))$  is a line segment. In fact, suppose that  $\{h_1, h_2, h_3\} \subset T'(g) - f_h$  and  $h_1 \notin [h_2, h_3]$ . Then there exists  $\eta > 0$  such that

$$B\left(\frac{1}{3}(h_{1}+h_{2}+h_{3}),\eta\right)\cap\mathfrak{F}(X)_{h}\subset\mathscr{C}_{0}\left\{h_{1},h_{2},h_{3}\right\}$$
$$\subset\mathscr{C}\left(T'(g)\right)-f_{h}$$
(4.26)

Since  $(h_1 + h_2 + h_3)/3 \in \mathscr{C}(T'(g)) - f_h$ , there exists  $h \in \mathscr{C}(T'(g)) - f_h$  such that

$$\inf\{t: N(\frac{1}{3}(h_1+h_2+h_3)+f_h-(h+f_h), g, t) \ge \alpha\} = r(T'(g))$$

(4.27)

Moreover, by (4.26) there exists  $t \in (0,1)$  such that  $\alpha(\frac{1}{3}(h_1+h_2+h_3))+(1-\alpha)h+f_h \in \mathscr{C}(T'(g)),$ 

$$\inf\{t: N\left(\left(\alpha\left(\frac{1}{3}(h_{1}+h_{2}+h_{3})\right)+(1-\alpha)h+f_{h}\right)-(h+f_{h}), g, t\right) \ge \alpha\}$$

$$(4.28)$$

$$=\{\inf\{t: N((\frac{1}{3}(h_{1}+h_{2}+h_{3}))+f_{h}-(h+f_{h}), g, t/\alpha) \ge \alpha\}\}$$

$$> r\left(T'(g)\right),$$

a contradiction. This implies that the set  $T'(g) - f_h$  is a line segment. Hence the set  $\mathscr{C}(T'(g))$  is a line segment.

(iii)d From the proof of (iii)c, it is obvious that the set  $\mathscr{C}(T'(h))$  is a line segment for all  $h \in \mathfrak{F}(X)$ . Let

$$\mathscr{C}(T^{'}(h))[f1,h),f(2,h)]$$

Define

$$T'(h) = \frac{1}{2}[f(1,h), f(2,h)]$$
(4.29)

for any  $h \in \mathfrak{F}(Y)$ . To prove that T' is 2-fuzzy 2-continuous at g, where

$$g\varepsilon\{h\in\mathfrak{F}(Y)\}: lim_{j\to h}\inf\left[diam\left(\mathscr{C}\left(T'(j)\right)\right)\right]_{\alpha}$$

$$\geq \left[diam\left(\mathscr{C}\left(T'(g)\right)\right)\right]_{\alpha}$$
(4.30)

Let  $g_n$  converges to g. Then

$$\lim_{n \to \infty} \inf \left[ diam \left( \mathscr{C} \left( T'(g_n) \right) \right) \right]_{\alpha} \ge \left[ diam \left( \mathscr{C} \left( T'(g) \right) \right) \right]_{\alpha}$$
(4.31)

Since the  $\mathscr{C}(T'(g))$  is a line segment for any  $g \in \mathfrak{F}(Y)$ , there exist two sequences  $\{f(1,g_n)\}$  and  $\{f(2,g_n)\}$ . such that

$$\mathscr{C}(T'(g_n)) = [f(1,g_n), f(2,g_n)]$$
(4.32)

$$\begin{split} & \mathscr{C}(T'(g))[f(1,g),f(2,g)]\\ & \text{Since } g \in \{h \in \mathfrak{F}(Y)\}: \lim_{k \to h} \left[ diam \left( \mathscr{C}\left(T'\left(j\right)\right),g,t \right) \right]_{\alpha} \geq \\ & \left[ diam \left( \mathscr{C}\left(T'\left(h\right)\right),g,t \right) \right]_{\alpha}\\ & \text{It implies that,} \end{split}$$

$$\lim_{t \to \infty} \inf \{ t : N(f(1,g_n) - f(2,g_n), h, t) \ge \alpha \}$$
  
$$\ge \inf \{ t : N(f(1,g) - f(2,g), h, t) \ge \alpha \}$$
(4.33)

It asserts to show that

n

$$\limsup_{n \to \infty} \{t : N(f(1,g_n) - f(2,g_n),h,t) \ge \alpha\}$$
$$\ge \inf\{t : N(f(1,g) - f(2,g),h,t) \ge \alpha\}$$

Or else there exists a subsequence  $\{n_k\}$  of  $\{n\}$  such that

$$\lim_{n \to \infty} \{ \inf \{ t : N(f(1,g_{n_k}) - f(2,g_{n_k}),h,t) \ge \alpha \} \} 
< \inf \{ t : N(f(1,g) - f(2,g),h,t) \ge \alpha \}$$
(4.34)

Since G is 2-fuzzy 2-upper semicontinuous, by the proof of (iii)a, without loss of generality assume that

$$\lim_{k \to \infty} f(1, g_{n_k}) = f_1 \in [f(1, g), f(2, g)]$$
(4.35)

$$\lim_{k\to\infty} f\left(2,g_{n_k}\right) = f_2 \in \left[f\left(1,g\right), f\left(2,g\right)\right]$$

This implies that

$$\lim_{k\to\infty} \{\inf \{t: N\left(f\left(1, g_{n_k}\right) - f\left(2, g_{n_k}\right), h, t\right) \geq \alpha\}\}$$

$$= \inf\{t : N(f_1 - f_2, h, t) \ge \alpha\}$$

$$\leq \inf\{t : N(f(1,g) - f(2,g), h, t) \ge \alpha\}$$
(4.36)

which contradicts

$$\lim_{k\to\infty} \{\inf\{t: N(f(1,g_{n_k})-f(2,g_{n_k}),h,t)\geq\alpha\}\}$$

$$> \inf\{t: N(f(1,g) - f(2,g),h,t) \ge \alpha\}$$

Therefore, by

$$\begin{split} \lim \sup_{n \to \infty} \{t : N(f(1,g_n) - f(2,g_n),h,t) \geq \alpha\} \\ \geq \inf\{t : N(f(1,g) - f(2,g),h,t) \geq \alpha\} \end{split}$$

and from (4.33), it follows that

$$\lim_{k\to\infty} \{\inf \{t: N(f(1,g_n) - f(2,g_n),h,t) \ge \alpha\}\}$$

$$= \inf\{t : N(f(1,g) - f(2,g), h, t) \ge \alpha\}$$
(4.37)

and  $[f_1, f_2] = [f(1,g), f(2,g)]$ . Suppose that  $T^*$  is not 2-fuzzy 2-continuous at g. Then assume that there exists  $\delta \in (0,1)$  such that

$$\inf\left\{t:N\left(T^{*}\left(g_{n}\right)-T^{*}\left(g\right),h,t\right)\geq\alpha\right\}<\delta$$

for all  $n \in N$ . Moreover, since

$$f(1,g_{nk}) \to f_1 \in [(1,g),(2,g)],$$
  
 $f(2,g_{nk}) \to f_2 \in [(1,g),(2,g)],$ 

and  $[f_1, f_2] = [f(1,g), f(2,g)], f_1 = f(1,g)$  and  $f_2 = f(2,g)$ . This implies that

$$\lim_{k \to \infty} T^*(g_{nk}) = \lim_{k \to \infty} \frac{1}{2} \left( f\left(1, g_{n_k}\right) - f\left(2, g_{n_k}\right) \right)$$
  
=  $\frac{1}{2} \left( f_1 + f_2 \right)$   
=  $\frac{1}{2} \left[ f\left(1, g\right) + f\left(2, g\right) \right]$   
=  $T^*(g)$  (4.38)

which contradicts inf  $\{t : N(T'(g_n) - T'(g), h, t) \ge \alpha\} \ge \delta$ For all  $n \in N$ . Hence it follows that T' is 2-fuzzy 2-continuous

on 
$$\{h \in \mathfrak{F}(Y) : \lim_{k \to h} \left[ diam\left( \mathscr{C}\left(T'(j)\right) \right) \right]_{\alpha} \geq \left[ diam\left( \mathscr{C}\left(T'(h)\right) \right) \right]_{\alpha} \}$$

(iii)e To prove that  $T^*$  is a homogeneous selection of T'. Pick  $g \in \mathfrak{F}(Y)$ .

Then, by the previous argument, there exists  $f \in \mathfrak{F}(X)$  such that

 $T(f) = \mathscr{P}_{R(T)}(g)$  and  $T'(g) = f - \mathscr{P}_{N(T)}(f)$ . Since

$$\lambda \mathscr{P}_{R(T)}(g) = \lambda \{h \in \mathfrak{F}(Y) : \inf_{h \in R(T)} \{\inf \{t : N(g-h, f, t) \ge \alpha\}\}\}$$
(4.39)

$$= \{h \in \mathfrak{F}(Y)\} : \inf_{h \in R(T)} \inf \{t : N(\lambda g - h, f, t) \ge \alpha\}$$
$$= \mathscr{P}_{R(T)}(\lambda g)$$

and  $T(\lambda f) = \lambda T f = \lambda \mathscr{P}_{R(T)}(\lambda g)$ . Therefore, by the definition of 2-fuzzy 2-metric generalized inverse,

 $T(\lambda g) = \lambda f - \mathscr{P}_{R(T)}(\lambda f).$ Let  $\mathscr{C}(f - \mathscr{P}_{N(T)}(f)) = [f_1, f_2].$ Then  $\mathscr{C}(\mathscr{P}_{N(T)}(f)) = [f - f_1, f - f_2].$  Let

$$\mathfrak{F}(X)_0 = \{\beta f + h : h \in N(T), \beta \in R\}$$

$$(4.40)$$

Then  $\mathfrak{F}(X)_0$  is a closed subspace of  $\mathfrak{F}(X)$ . Since  $\mathfrak{F}(X)$  is a 3-strictly 2-fuzzy 2-convex space it follows that  $\mathfrak{F}(X)_0$  is a 3-strictly 2-fuzzy 2-convex space. Moreover, by the Hahn-Banach theorem, there exists  $\tau_f \in \mathscr{S}(\mathfrak{F}(X)_0^*)$  such that

$$N(T) = \{h \in \mathfrak{F}(X)_0 : \tau_f(h) = \tilde{1}\}$$

$$(4.41)$$

Since  $\mathfrak{F}(X)_0$  is a 3-strictly 2-fuzzy 2-convex space, it implies that  $A_{\tau_f}$  is compact. Therefore, by thorem(3.1), it implies that  $\mathscr{P}_{N(T)}(f) = f - A_{\tau_f}$ , where

$$A_{\tau_f} = \{h \in S(\mathfrak{F}(X)_0) : \tau_f(h) = \tilde{1}\}$$

Since  $\mathscr{C}\left(\mathscr{P}_{N(T)}(f)\right) = [f - f_1, f - f_2]$  and  $\mathscr{P}_{N(T)}(f) = f - A_{\tau_f}$ , we have  $\mathscr{C}\left(A_{\tau_f}\right) = [f_1, f_2]$ . Then  $\mathscr{C}\left(\lambda A_{\tau_f}\right) = [\lambda f_1, \lambda f_2]$ Therefore, by  $\mathscr{P}_{N(T)}(\lambda f) = \lambda \left(f - A_{\tau_f}\right)$ , It implies that

$$\mathscr{C}\left(\mathscr{P}_{N(T)}\left(\lambda f\right)\right) = \mathscr{C}\left(\lambda\left(f - A_{\tau_{f}}\right)\right) = \lambda\mathscr{C}\left(f - A_{\tau_{f}}\right)$$
(4.42)

$$= [\lambda f - \lambda f_1, \lambda f - \lambda f_2]$$

This implies that

$$\mathscr{C}\left(T'\left(\lambda g\right)\right) = \mathscr{C}\left(\lambda f - \mathscr{P}_{N(T)}\left(\lambda f\right)\right) = \left[\lambda f_{1}, \lambda f_{2}\right] (4.43)$$

Therefore, by  $\mathscr{C}(f - \mathscr{P}_{N(T)}(f)) = [f_1, f_2]$  and from (4.43),  $T^*(\lambda g) = [\lambda f_1 + \lambda f_2]/2$  and  $T^*(g) = [f_1 + f_2]/2$  It reduces

to  $T^{*}(\lambda g) = \lambda T^{*}(g)$  and hence there exists a homogeneous selection  $T^{*}$  of T' such that T' is a 2-fuzzy 2-continuous on  $\{h \in \mathfrak{F}(Y) : \lim_{k \to h} \left[ diam \left( \mathscr{C} \left( T'(j) \right) \right) \right]_{\alpha} \ge \left[ diam \left( \mathscr{C} \left( T'(h) \right) \right) \right]_{\alpha} \}$ 

**Corollary 4.2.** Let  $\mathfrak{F}(X)$  be a 2-strictly 2-fuzzy 2-convex space,  $\mathfrak{F}(Y)$  be a 2-fuzzy 2-Banach space, D(T) be a closed subspace of  $\mathfrak{F}(X)$  and R(T) be an approximatively 2-fuzzy 2-compact chebyshev subspace of  $\mathfrak{F}(Y)$ . Then

- (i)  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-upper semicontinous if and only if T' is 2-fuzzy 2-upper semincontinous.
- (ii)  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous if and only if T' is 2-fuzzy 2-continuous.
- (iii) If  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous, then there exist a homogeneous selection  $T^*$  of T' such that  $T^*$  is 2-fuzzy 2-continuous on  $\mathfrak{F}(Y)$ .

*Proof.* By theorem(3.1) it is obvious that (i) and (ii) are true. Since is a 2-strictly 2-fuzzy 2-convex space, it follows that  $\mathscr{P}_{N(T)}(f)$  is a line segment for all  $\mathfrak{F}(X)$ . Then  $\mathscr{C}(T'(g))$  is a singleton for all  $g \in \mathfrak{F}(Y)$ . Therefore by theorem(4.1) it is clear that corollary (4.2) is true.

**Corollary 4.3.** Let  $\mathfrak{F}(X)$  be a strictly 2-fuzzy 2-convex space,  $\mathfrak{F}(Y)$  be a 2-fuzzy 2-Banach space, D(T) be a closed subspace of  $\mathfrak{F}(X)$ , and R(T) be an approximative 2-fuzzy 2-compact chebyshev subspace of  $\mathfrak{F}(Y)$ . Then the following statements are equivalent:

- (i)  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-upper semicontinuous.
- (ii)  $\mathscr{P}_{N(T)}$  is 2-fuzzy 2-continuous.
- *(iii) T' is a 2-fuzzy 2-continuous homogenous single-valued mapping.*

*Proof.* By corollary (4.1) it is obvious that corollary is true.  $\Box$ 

#### References

- [1] T. Bag and S.K. Samanta, Finite Dimensional Fuzzy Normed Linear Spaces, *The Journal of Fuzzy Mathematics*, 3(2003), 687–705.
- [2] S.C. Chang and J.N. Mordeson, Fuzzy Linear Operators and Fuzzy Normed Linear Space, *Bull. Cal. Math. Soc.*, 86(1994), 429–436.
- [3] Z. Ke. Deng, Fuzzy Pseudo Metric Spaces, J. Math. Anal. Appl., 86(1982), 74–95.
- [4] C. Felbin, Finite Dimensional Fuzzy Normed Linear Space, *Fuzzy Sets and Systems*, 48(1992), 239–248.
- [5] S. Gahler, Lineare 2-Normierte Raume, *Math Nachr.*, 28(1964), 1–43.



- [6] A. George and P. Veeramani, On Some Results in Fuzzy Metric Spaces, *Fuzzy Sets and Systems*, 64(1994), 395– 399.
- [7] M. Gerbiec, Fixed Points in the Fuzzy Spaces, *Fuzzy Sets and Systems*, 27(1988), 385–389.
- [8] O. Kaleva and S. Seikkala, On Fuzzy Metric Spaces, Fuzzy Sets and Systems, 12(1984), 215–229.
- [9] S.V. Krishna and K.K.M. Sharma, Separation of Fuzzy Normed Linear Space, *Fuzzy Sets and Systems*, 63(1994), 207–217.
- [10] G.S. Rhie, B.M. Choi and S.K. Dong, On the Completeness of Fuzzy Normed Linear Space, *Math Japonica*, 45(1)(1997), 33–37.
- [11] G. Rano and T. Bag, Fuzzy Normed Linear Spaces, *International Journal of Mathematics and Scientific Computing*, 2(2)(2012), 1–10.
- [12] R.M. Somasundaram and Thangaraj Beaula, Some aspects of 2-Fuzzy 2-Normed Linear Spaces, *Malaysian Math. Sci. Soc*, 32(2)(2009), 211–222.
- [13] L.A. Zadeh, Fuzzy Sets, Information and Control, 98(1965), 338–353.

\*\*\*\*\*\*\*\* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 \*\*\*\*\*\*\*

