
Malaya Journal of Matematik, Vol. 8, No. 3, 1022-1025, 2020

https://doi.org/10.26637/MJM0803/0049

On atom-based digraph of a rectangular skew lattice
B.R. Bijila1* and P. Ramesh Kumar 2

Abstract
In [8] Nimbhorkar and Borsarkar introduced the notion of atom based graph of a lattice. Here we introduce this
notion to skew lattices and show that the atom-based digraph of a finite rectangular skew lattice is a complete
symmetric digraph and vice versa. Some results on the direct product of atom-based digraphs of rectangular
skew lattices are also given.
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1. Introduction
Skew lattices are noncommutative generalization of lat-

tices. Pascual Jordan, a physicist, motivated by questions
in quantum logic, initiated the study of noncommutative lat-
tices in his 1949 paper, Über Nichtkommutative Verbände.
A noncommutative lattice, generally speaking, is an algebra
(S,∨,∧) where ∨ and ∧ are associative, idempotent binary
operations connected by absorption identities guaranteeing
that ∨ in some way dualizes ∧. The precise identities cho-
sen depends upon the underlying motivation, with differing
choices producing distinct varieties of algebras.

The study of graphs arising from algebraic structures has
got great importance in recent years. The zero divisor graph
of a commutative ring [1], Cayley graphs [2], graphs associ-
ated with lattices [4] etc, are some works in this direction.
Nimbhorkar and Borsarkar have introduced the notion of

atom-based graph of a lattice [8]. This work is an attempt to
generalize this notion to skew lattices. Since skew lattices
are noncommutative generalizations of lattices, the resulting
graph is a diagraph. Here we provide a characterisation of
rectangular skew lattices in terms of digraphs obtained from
it.

2. Preliminaries
Here we recall the basic definitions, notations and results

which are needed in the sequel. For details see [3, 6, 7].
A skew lattice is a non-empty set S with binary operations

∨ and ∧ which are both idempotent and associative, satisfying
the absorption laws x∧ (x∨ y) = x = x∨ (x∧ y) and (x∨ y)∧
y = y = (x∧ y)∨ y. The relation ≥ defined on S by: x ≥ y
whenever x∧y = y = y∧x or equivalently x∨y = x = y∨x is
a partial order, called natural partial order on S.

Let (S,∨,∧) be a skew lattice. S is called a rectangular
skew lattice if (S,∨) and (S,∧) are rectangular bands such
that x∨ y = y∧ x for all x,y ∈ S.

The following result gives a characterisation for rectangu-
lar skew lattices.

Theorem 2.1 ([7], Theorem 1.5). Let (S,∨,∧) be a rectangu-
lar skew lattice. Then the following are equivalent:

(i) x∨ y = y∧ x.
(ii) x∨ y∨ z = x∨ z.

(iii) x∧ y∧ z = x∧ z.
(iv) x∨ y = y∨ x if and only if x = y.
(v) x∧ y = y∧ x if and only if x = y.
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(vi) x≥ y if and only if x = y.

The skew lattice S0 is obtained from a skew lattice (S,∨,∧)
by adjoining 0, defined by 0∨ x = x = x∨0 and 0∧ x = 0 =
x∧0 for all x ∈ S. Similarly, S1 is obtained from a skew lat-
tice (S,∨,∧) by adjoining 1, defined by 1∨ x = 1 = x∨1 and
1∧ x = x = x∧1. In this way we can make every skew lattice
enriched.

An element a of a skew lattice S with least element 0 is an
atom if 0 < a and there is no b ∈ S such that 0 < b < a. The
set of all atoms in S is denoted by Ω(S).

The girth of a graph G is the length of the shortest cycle in
G. The distance d(u,v) between two vertices u and v in G is
the length of a shortest path joining them. A shortest u−v path
is called a geodesic. The diameter d(G) of a connected graph
G is the length of any longest geodesic. A simple digraph
is a digraph that has no self loops and parallel arcs. The
outdegree d+(v) of a vertex v in a diagraph is the number of
vertices adjacent from it and the indegree d−(v) is the number
of vertices adjacent to it. A complete symmetric digraph is
a simple digraph in which there is exactly one edge directed
from every vertex to every other vertex.

The undefined terms related to skew lattice theory are from
Leech [7] and terms related to graph theory are from Deo [3]
and Harary [6]. Throughout this paper, all skew lattices are
assumed to be finite.

3. Atom-based Digraph of a Skew lattice
In this section we define the atom-based digraph of a skew

lattice similar to that of a lattice [8].

Definition 3.1. Let (S,∨,∧) be a skew lattice. We can as-
sociate a digraph to S whose vertex set, V, is the set of all
non-zero elements in S and for distinct vertices x and y in V,
an ordered pair (x,y) is an edge if and only if x∧y is an atom
in S. We call this digraph as the atom-based digraph of S and
denote it by Γa(S∗).

Clearly, atom-based digraph of a skew lattice is always a
simple digraph.

Remark 3.2. Let Γa(S∗) be an atom-based digraph of a skew
lattice (S,∨,∧). If (x,y) is an edge in Γa(S∗) (ie, x∧ y is an
atom), then (y,x) need not be an edge in Γa(S∗). But if S is a
lattice, then (x,y) is an edge in Γa(S∗) if and only if (y,x) is
an edge in Γa(S∗), since x∧ y = y∧ x.

Example 3.3. Consider the skew lattice (S,∨,∧), where S =
{0,a,b,c,1} with ∨ and ∧ are given below:

∧ 0 a b c 1
0 0 0 0 0 0
a 0 a 0 0 a
b 0 0 b c b
c 0 0 b c c
1 0 a b c 1

∨ 0 a b c 1
0 0 a b c 1
a a a 1 1 1
b b 1 b b 1
c c 1 c c 1
1 1 1 1 1 1

Its Atom-based digraph Γa(S∗) is given in figure 1.

1

a b c

Figure 1

4. Atom-based Digraph of a Rectangular
Skew lattice

Let S be a rectangular skew lattice and let S0 denote the
skew lattice obtained by adjoining 0. Also, we denote S∗ for
the set of nonzero elements of the skew lattice S0.

Theorem 4.1. If S0 is a skew lattice with (S,∨,∧) rectangular,
then all non-zero elements in S0 are atoms. Conversely if all
the non-zero elements in a skew lattice S are atoms then S∗

will be a rectangular skew lattice.

Proof. Let S0 be a skew lattice with S rectangular. Assume
that x ∈ S0 is not an atom and x 6= 0. Then by the definition
of an atom there exists some y ∈ S such that x > y > 0, which
gives x∧ y = y = y∧ x. By Theorem 2.1, x = y. Thus x is an
atom.

Conversely, assume that all non-zero elements in S are
atoms. That is, there exist no x,y ∈ S such that x > y > 0.
Thus for all x,y ∈ S, x≥ y if and only if x = y and hence S is
rectangular, by Theorem 2.1.

Corollary 4.2. Let (S,∨,∧) be a rectangular skew lattice.
Then Γa(S∗) will always be connected. Moreover, Γa(S∗) will
be a complete symmetric digraph.

Proof. By Theorem 4.1 all elements of S are atoms. Hence
(a,b) is an edge for all a,b ∈ S, since a∧b is an atom for any
a,b ∈ S. Thus Γa(S∗) is a complete symmetric digraph.

Theorem 4.3. Let (S,∨,∧) be a rectangular skew lattice.
Then

(i) diam(Γa(S∗)) = 1,

(ii) girth of Γa(S∗) is 2,

(iii) If we adjoin 1 to S, then d+(1) = d−(1) = |Ω(S)|.

Proof. (i) By Corollary 4.2, Γa(S) is a complete symmetric
digraph. Hence its diameter, diam(Γa(S∗)) = 1.
(ii) Since Γa(S∗) is a complete symmetric digraph, there exists
edges (x,y) and (y,x) for every distinct vertices. Thus the
length of a smallest cycle of Γa(S∗), girth, is 2. (iii) By
Theorem 4.1, every element of S is an atom. Also x∧ 1 =
1∧ x = x for all x ∈ S. Thus (1,x) and (x,1) are edges for
every x ∈ S. Hence d+(1) = d−(1) = |Ω(S)|.

Theorem 4.4. If D is a complete symmetric digraph, then
there exists a rectangular skew lattice, (S,∨,∧), such that
Γa(S∗) = D.
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Proof. Let D be a complete symmetric digraph with vertex set
V . Let S =V (D). Define ∨ and ∧ on S as follows; x∧ y = y
and x∨ y = x for all x,y ∈ S (see [7]). Clearly, (S,∨,∧) is a
rectangular skew lattice. If we adjoin 0 to S, then Γa(S∗) will
be D itself.

In view of Corollary 4.2 and Theorem 4.4 we have the
following result.

Theorem 4.5. There exists a one-one correspondence be-
tween the class of finite rectangular skew lattices and the
class of complete symmetric digraphs.

Example 4.6. Let S = {a,b,c,d} be a rectangular skew lat-
tice with ∨ and ∧ are defined as follows:

∧ a b c d
a a b c d
b a b c b
c a b c d
d a b c d

∨ a b c d
a a a a a
b b b b b
c c c c c
d d d d d

Then Γa(S∗) shown in figure 2(a), is a complete symmet-
ric digraph.

c

a b

d

(a)

x y

w z

(b)
Figure 2

Now, consider a complete symmetric digraph, D, shown in

figure 2(b). Let S1 = {x,y,z,w}. Define ∨ and ∧ as follows:

∧ x y z w
x x y z w
y x y z w
z x y z w
w x y z w

∨ x y z w
x x x x x
y y y y y
z z z z z
w w w w w

Clearly, S1 is a rectangular skew lattice. Also, we can see
that up to isomorphism Γa(S∗1) = D.

5. The Direct product of Atom-based
Digraphs on Skew lattices

Let D1 and D2 be simple digraphs. Their direct product is
the digraph D1×D2 whose vertex set is the Cartesian product
V (D1)×V (D2) and whose arcs are the pairs ((a,b),(a′,b′))
with (a,a′) ∈ E(D1) and (b,b′) ∈ E(D2) (see [5]). Thus,

V (D1×D2) = {(a,b) | a ∈V (D1) and b ∈V (D2)} ,
E(D1×D2) = {((a,b),(a′,b′)) | (a,a′) ∈ E(D1) and

(b,b′) ∈ E(D2)}.

Since both D1 and D2 are simple digraphs, it follows that
D1×D2 is a simple digraph.

Definition 5.1. Let (S,∨,∧) be a skew lattice and x ∈ S. The
atom-based right (left) annihilator of x, denoted by
RannΩ(x)[LannΩ(x)], is defined as RannΩ(x) = {y ∈ S : x∧
y ∈ Ω(S) and x 6= y} [LannΩ(S) = {y ∈ S : y ∧ x ∈ Ω(S)
andx 6= y}].

Example 5.2. Let S = {0,a,b,c,1} be a skew lattice with
∨ and ∧ are defined in Example 3.3. Here RannΩ(0) =
{1}, RannΩ(b) = {c,1}, RannΩ(c) = {b,1}, RannΩ(1) =
{a,b,c} and LannΩ(0) = {1}, LannΩ(b) = {c,1},
LannΩ(c) = {b,1}, LannΩ(1) = {a,b,c}.

Theorem 5.3. Let (S1,∨,∧) and (S2,∨,∧) be two skew lat-
tices and D1 = Γa(S1), D2 = Γa(S2) be their atom-based di-
graphs. Then, for every (a,b) ∈ V (D1×D2) deg+(a,b) =
|RannΩ(a)||RannΩ(b)| and deg−(a,b) =
|LannΩ(a)||LannΩ(b)|.

Proof. Assume that ((a,b),(c,d))∈E(D1×D2), then (a,c)∈
E(D1) and (b,d) ∈ E(D2). That is, a∧ c ∈ Ω(S1) and b∧
d ∈ Ω(S2). Thus c ∈ RannΩ(a), a ∈ LannΩ(c) and b ∈
RannΩ(d), d ∈ LannΩ(b). Since this holds for every edge
((a,b),(c,d)) in E(D1 × D2), we see that deg+(a,b) =
|RannΩ(a)||RannΩ(b)| and deg−(a,b) = |LannΩ(a)|
|LannΩ(b)|.

Theorem 5.4. Let (S1,∨,∧) and (S2,∨,∧) be two skew lat-
tices and D1 = Γa(S1) and D2 = Γa(S2) be their atom-based
digraphs. Then

|E(D1×D2)|= Σ|RannΩ(ai)||RannΩ(b j)|
+Σ|LannΩ(ai)||LannΩ(b j) |

= |E(D1)||E(D2)|,
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where, ai ∈ S1 and b j ∈ S2.

Proof. In the above theorem we have proved that
|RannΩ(a)||RannΩ(b)| is the number of edges incident out
of a vertex (a,b) and the number of edges incident into a
vertex (a,b) is |LannΩ(a)||LannΩ(b)|. Hence |E(D1×D2)|
is the sum of all these edges for every vertex (a,b) in D1×D2.
Hence the proof.

Definition 5.5. If S1 and S2 are any two skew lattices, then
(a,b) is covered by (c,d) in the skew lattice S1×S2, denoted
by (a,b)≺ (c,d) if and only if either a = c and b≺ d or a≺ c
and b = d.

Similar to Nimbhorkar et.al [9], we will note that Ω(S1×
S2) = {(a,b) : a ∈Ω(S1) and b = 0 or a = 0 and b ∈Ω(S2)}.

Theorem 5.6. Let (S1,∨,∧) and (S2,∨,∧) be two skew lat-
tices and D1 = Γa(S1), D2 = Γa(S2) be their atom-based
digraphs. Then D1×D2 is not an induced subdigraph of
Γa(S1×S2).

Proof. Clearly V (D1×D2)⊆V (Γa(S1×S2)). Now, assume
that ((a,b),(c,d)) ∈ E(D1 ×D2), then (a,c) ∈ E(D1) and
(b,d) ∈ E(D2), which implies (a∧ c) = p (let) ∈Ω(S1) and
(b∧d) = q (let) ∈ Ω(S2). This gives p and q are non-zero,
by definition. Hence (p,q) /∈Ω(S1×S2). But (a,b)∧(c,d) =
(a∧ c,b∧d) = (p,q). Thus ((a,b),(c,d)) cannot be an edge
in Γa(S1×S2).

Conversely, suppose that ((a,b),(c,d)) is an edge in
Γa(S1× S2). Then (a∧ c,b∧ d) ∈ Ω(S1× S2) and so either
a∧ c ∈ Ω(S1) and b∧ d = 0 or a∧ c = 0 and b∧ d ∈ Ω(S2).
In either case only one of the edges (a,c) and (b,d) ex-
ists. Hence ((a,b),(c,d)) can not be an edge in D1 ×D2.
That is, there exists no common edge between D1×D2 and
Γa(S1×S2). Hence D1×D2 is not an induced subdigraph of
Γa(S1×S2).
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