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1. Introduction
The usual notion of a set was generalized with the intro-

duction of fuzzy sets by Zadeh in the classical paper [9] of
1965. Since then many authors have expansively developed
the theory of fuzzy sets and its applications to several sectors
of both pure and applied sciences, such as [2, 5, 7, 8]. As it is
known now that the traditional neighbourhood method is not
effective any longer in fuzzy topology, in order to overcome
this deficiency Pu and Liu introduced the concepts of the fuzzy
point and the Q-neighbourhood and established a systematic
Moore-Smith convergence theory of fuzzy nets [5]. It paved a
new way for the study of the fuzzy topology. Later on, Wang
introduced the concept of remote neighbourhood systems [7].
Q-neighbourhood and remote neighbourhood can be used in
wide aspect [1, 3–7]. In this paper, we introduce and study
the concept of an (i, j)-semi-remote neighbourhood of fuzzy
points with the concept of remote neighbourhood and using
the concepts fuzzy (i, j)-semi-closed sets and L-(i, j)-semi-
remote neighbourhood.

2. preliminaries

Throughout this paper, L = L(≤,∨,∧, ′) will denote a
fuzzy lattice, that is, a completely distributive lattice with a
smallest element 0 and largest element 1 (0 6= 1) and with
an order reversing involution a→ a′(A ∈ L). Let X be a
nonempty crisp set and we shall denote by LX the lattice of all
L-subsets of X and if A⊆ X by χA the characteristic function
of A. An element p of L is called prime if, and only if p 6= 1
and whenever a,b ∈ L with a∧b≤ p then a≤ p or b≤ p[8].
The set of all prime elements of L will be denoted by Pr(L).
An element α of L is called union irreducible or coprime if,
and only if whenever a,b ∈ L with α ≤ a∨b then α ≤ a or
α ≤ b [8]. The st of all non zero union irreducible elements
of L will be denoted by M(L). It is obvious that p ∈ pr(L)
if, and only if p′ ∈M(L). We denote M∗(LX ) = {xα : x ∈ X
and α ∈ M(L)}. For the definition of a fuzzy point xα we
follow xα we follow Pu and Liu [5]. When the support and
value of a fuzzy point are trivial, we use briefly the symbols
e to denote fuzzy point. A fuzzy point xα ∈ A, where A is
an L-fuzzy set in X if, and only if α ≤ A(x). The constant
L-fuzzy sets taking on the values 0 and 1 on X are designated
by 0X and 1X , respectively. An fuzzy net S = {S(n),n ∈ D}
is a function S : D→ ζ where D is directed set with order
relation ≥ and ζ the collection of all the fuzzy points in X [8].
A net S is called an α-net (α ∈M(L)) if for each λ ∈ β ′(α)
(where β ′(α) denotes the union of all minimal sets relative to
α), there is n0 ∈ D such that V (S(n))≥ λ whenever n≥ n0,
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where V (S(n)) is the height of point S(n).

Definition 2.1. Let L be a fuzzy lattice, X be a nonempty
crisp set and τ ⊆ LX . An L-fuzzy topology is a family of τ of
L-subsets of X which satisfies the following conditions:

1. 0,1 ∈ τ ,

2. If A,B ∈ τ , then A∧B ∈ τ ,

3. If Ai ∈ τ for each i ∈ I, then ∨
i∈I

Ai ∈ τ .

The pair (LX ,τ) is called an L-fuzzy topological space. Every
member of τ is called a L-fuzzy open set.

Let (LX ,τ1,τ2) be an L-fuzzy topological space, e be
an fuzzy point and P an L-fuzzy closed set in (LX ,τ1,τ2).
Then P is called a remote neighbourhood of e if e /∈ P. The
set of all remote neighbourhoods of e will be denoted by
η(e). i Int(A), iCl(A) and A

′
will denote the τi-interior, the

τi-closure and the complement of the L-fuzzy set A in X ,
respectively.

Example 2.2. Let x1,x2, ... be a sequence in a set X. Then it
is a net with an index set D = {1,2, ...}. So the concept of a
net is a generalization of the concept of a sequence.

Definition 2.3. Let L1 and L2 be fuzzy lattices. A mapping
f : L1→ L2 is called an order homomorphism if the following
conditions hold:

1. f (0) = 0.

2. f (∨Ai) = ∨ f (Ai) for {Ai} ⊂ L1.

3. f−1(B
′
) = ( f−1(B))

′
for each B ∈ L2.

Definition 2.4. [6] A fuzzy set A of an L-fuzzy bitopolog-
ical space (LX ,τ1,τ2) is said to be (i, j)-semi-open if A ≤
j Cl(i Int(A)). The complement of an (i, j)-semi-open set is
called an (i, j)-semi-closed set.

Proposition 2.5. [6] Let (LX ,τ1,τ2) be an L-fuzzy bitopo-
logical space and A an L-set of (LX ,τ1,τ2). Then (i, j)-
s Int(A) = ∪{B : B ∈ (i, j)-SO(LX ),B ≤ A}, (i, j)-sCl(A) =
∩{B : B ∈ (i, j)-SC(LX ),A ≤ B} are called the (i, j)-semi-
interior and the (i, j)-semi-closure of A, respectively, where
(i, j)-SO(LX ) and (i, j)-SC(LX ) will always denote the family
of (i, j)-semi-open sets and the family of (i, j)-semi-closed sets
of an L-fuzzy bitopological space (LX ,τ1,τ2), respectively.

3. Convergence of L-fuzzy nets

Definition 3.1. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, xα a fuzzy point and P ∈ (i, j)-SC(LX ). Then P is
called an L-fuzzy (i, j)-semi-remote neighbourhood, or briefly,
(i, j)-SC-RN of xα if xα /∈ P. The set of all (i, j)-SC-RNs of
xα will be denoted by ζxα

.

Definition 3.2. Let A be an L-set of an L-fuzzy bitopological
space (LX ,τ1,τ2). Then a fuzzy point xα is called an (i, j)-
semi-adhere point of A if A � P for each P ∈ ζxα

. If xα is a
(i, j)-semi-adherence point of A and xα /∈ A, or xα ∈ A and for
each fuzzy point xµ satisfying xα ≤ xµ ∈A we have A� xµ ∨P,
then xα is called an (i, j)-semi-accumulation point of A. The
union of all (i, j)-semi-accumulation points of A will be called
(i, j)-semi-derived set of A and denoted Ad((i, j)−s).

Definition 3.3. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, e ∈M∗(LX ) and S = {S(n) : n ∈ D} an L-fuzzy net in
LX . Then

1. e is said to be an (i, j)-semi-limit point of S (or S (i, j)-
semi-converges to e; in symbols, S→ e(α)) if for each
P ∈ ζ (e), S(n) /∈ P is eventually true (that is, if there
exists n0 ∈ D such that for every n ∈ D,n≥ n0, always
possess S(n) /∈ P).

2. e is said to be an (i, j)-semi-cluster point of S (or S
(i, j)-semi-accumulates to e; in symbols, S∞e(α)) if for
each P ∈ ζ (e),S(n) /∈ P is frequently true (that is, if
for every n0 ∈D, there always exists n ∈C,n≥ n0 such
that S(n) /∈ P).

The union of all (i, j)-semi-limit points and all (i, j)-semi-
cluster points of S will be denoted by (i, j)-semi-limS and
(i, j)-semi-ad S, respectively. Obviously, (i, j)-semi-limS≤
(i, j)-semi-ad S.

Proposition 3.4. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, e ∈M∗(LX ) and S = {S(n) : n ∈ D} an L-fuzzy net in
LX . Then the following statements are valid:

1. If S = {S(n) : n ∈ D} → e(α), T = {T (n) : n ∈ D} is
an L-fuzzy net with the same domain as S for each
n ∈D,T (n)≥ S(n) holds. Then T = {T (n) : n ∈D}→
e(α).

2. If S = {S(n) : n ∈ D}∞e(α), T = {T (n) : n ∈ D} is an
L-fuzzy net with the same domain as S for each n ∈
D,T (n)≥ S(n) holds. Then T = {T (n) : n ∈D}∞e(α).

3. If S = {S(n) : n ∈ D} → e(α) and d ≤ e. Then S =
{S(n) : n ∈ D}→ d(α).

4. If S = {S(n) : n∈D}∞e(α) and d≤ e. Then S = {S(n) :
n ∈ D}∞d(α).

Proof. The proof follows from the respective definitions.

Theorem 3.5. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, e ∈M∗(LX ) and S = {S(n) : n ∈ D} an L-fuzzy net in
LX . Then

1. S→ e(α) if, and only if e ∈ (i, j)-semi-limS.

2. S∞e(α) if, and only if e ∈ (i, j)-semi-ad S.
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Proof. (1). Suppose that S→ e(α), then by Definition 3.3,
e is said to be (i, j)-semi-limit points of S. And (i, j)-semi-
limS is the union of all (i, j)-semi-limit point of S, then we
have e ∈ (i, j)-semi-limS. Conversely, suppose that e ∈ (i, j)-
semi-limS and P ∈ ζ (e). Then e /∈ P, and so (i, j)-semi-
limS � P. By the definition of (i, j)-semi-limS, there must
exists an (i, j)-semi-limit point d of S such that d /∈ P, that is
P ∈ ζ (d). Hence, S is eventually not in P, that is, S→ e(α).
(2). Suppose that S∞e(α), then by Definition 3.3, e is said
to be (i, j)-semi-cluster point of S. And (i, j)-semi-ad S is
the Union of all (i, j)-semi-cluster points of S, then we have
e ∈ (i, j)-semi-ad S. Conversely, suppose that e ∈ (i, j)-semi-
ad S and P ∈ ζ (e). Then e /∈ P, and so (i, j)-semi-ad S � P.
By the definition of (i, j)-semi-ad S, there must exist an (i, j)-
semi-cluster point d of S such that d /∈ P, that is P /∈ ζ (d).
Hence, S /∈ P is frequently true, that is, S∞e(α).

Theorem 3.6. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, e ∈M∗(LX ) and S = {S(n) : n ∈ D} an L-fuzzy net in
LX . Then (i, j)-semi-limS and (i, j)-semi-ad S and (i, j)-semi-
ad S are (i, j)-semi-closed.

Proof. Let e ∈ (i, j)-sCl((i, j)-semi-limS). Then (i, j)-semi-
limS � P for each P ∈ ζ (e). Hence there exists d ∈M∗(LX )
such that d ∈ (i, j)-semi-lim S and d /∈ P. Then P ∈ ζ (d). By
Theorem 3.5 (1), S→ d(α), that is, S(n) /∈P is eventually true.
Thus, e ∈ (i, j)-semi-limS. This implies that (i, j)-semi-limS
is (i, j)-semi-closed. Similarly (i, j)-semi-ad S is (i, j)-semi-
closed.

Theorem 3.7. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, e ∈M∗(LX ) and A ∈ LX .

1. If there exists in A an L-fuzzy net S = {S(n) : n ∈ D}
such that S∞e(α), then e is an (i, j)-semi-adherence
point of A.

2. If e is an (i, j)-semi-adherence point of A, then there
exists in A an L-fuzzy net S = {S(n) : n ∈ D} such that
S→ e(α).

Proof. (1) Let S∞e(α) and S(n) ∈ A for each n ∈ D. Then
for each P ∈ ζ (e). A � P because of the fact that S(n) /∈ P is
frequently true. Hence, e is an (i, j)-semi-adherence point of
A. (2) If e is an (i, j)-semi-adherence point of A, then for each
P ∈ ζ (e) there exists a point S(P) such that S(P) ≤ A and
S(P)� P. Define S = {S(P),P ∈ ζ (e)}, then S is an L-fuzzy
net in A because of the fact that ζ (e) is a directed set in which
the order is defined by inclusion. Clearly, S→ e(α).

Definition 3.8. Let S = {S(n) : n ∈D} and T = {T (m) : m ∈
E} be two nets in LX . Then T is said to be a subset of S, if
there exists a mapping N : E→ D such that

1. T = SN;

2. For every n0 ∈D, there exists m0 ∈ E such that N(m)≥
n0 for m≥ m0.

Theorem 3.9. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, e ∈M∗(LX ) and S = {S(n) : n ∈ D} an L-fuzzy net in
LX . Then S has a subnet T such that T → e(α) if, and only if
S∞e(α).

Proof. Suppose that T = {T (m) : m ∈ E} is a subnet of S,
T → e(α),P ∈ ζ (e) and n0 ∈ D. By the definition of sub-
net, there exists a mapping N : E → D and m0 ∈ E such
that N(m) ≥ n0(N(m) ∈ D) when m ≥ m0 (m ∈ E). Since
T (i, j)-semi-converges to e, there is m1 ∈ E. When m ≥
m1(m ∈ E),T (m) /∈ P. Since E is a directed set, there exists
m2 ∈ E such that m2 ≥ m0 and m2 ≥ m1. Hence, T (m2) /∈ P
and N(m2) ≥ n0. Let n = N(m2). Then S(n) = S(N(m2)) =
T (m2) /∈ P and n≥ n0. This means that S(n) /∈ P is frequently
true. Thus S∞e(α). Conversely, suppose that S∞e(α). Then
for each P ∈ ζ (e) and n ∈ D, there exists N(P,n) ∈ D such
that N(P,n) ≥ n and S(N(P,n)) /∈ P. Let E = {(N(P,n),P) :
P ∈ ζ (e),n ∈D}, and define (N(P1,n1),P1)≤ (N(P2,n2),P2)
if, and only if n1 ≤ n2 and P1 ≤ P2. Thus E is a directed
set because: (a) For each (N(P(,n),P)), since n ∈ D and
D is a directed set, we have n ≤ n. Also, since P ∈ ζ (e)
and ζ (e) is a directed set, P ≤ P. Hence n ≤ n and P ≤ P
which equivalent that (N(P(,n),P)) ≤ (N(P(,n),P)). Thus
≤ is reflexive on E. (b) Let (N(P1,n1),P1),(N(P2,n2),P2)
and (N(P3,n3),P3) belong to E such that (N(P1,n1),P1) ≤
(N(P2,n2),P2) and (N(P2,n2),P2) ≤ (N(P3,n3),P3). Thus
n1 ≤ n2,P1 ≤ P2 and n2 ≤ n3 and P2 ≤ P3. Since D and ζ (e)
are directed sets, we get n1 ≤ n3 and P1 ≤ P3 which equivalent
that (N(P1,n1),P1) ≤ (N(P3,n3),P3). Thus ≤ is transitive
on E. (c) Let (N(P1,n1),P1) and (N(P2,n2),P2) belong to
E. Since n1,n2 ∈ D and D is a directed set, there is n ∈ D
such that n1 ≤ n and n2 ≤ n. Also, since P1,P2 ∈ ζ (e), we
have P = P1∨P2 ∈ ζ (e) and P1 ≤ P,P2 ≤ P. Hence there ex-
ists (N(P,n),P)∈ E with (N(P1,n1),P1)≤ (N(P(,n),P)) and
(N(P2,n2),P2) ≤ (N(P(,n),P)). Hence (E,≤) is a directed
set. Let T (N(P,n),P) = S(N(P,n)). Then T is a subnet of S
and T → e(α).

Theorem 3.10. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space, e ∈M∗(LX ) and S = {S(n) : n ∈ D} an L-fuzzy net in
LX . If T is a subnet of S, then:

1. If S→ e(α), Then T → e(α).

2. If T ∞e(α), then S∞e(α).

3. (i, j)-semi-limS≤ (i, j)-semi-limT .

4. (i, j)-semi-ad T ≤ (i, j)-semi-ad S.

Proof. (1). Suppose T = {T (m) : m∈E} is a subnet of S, S→
e(α) and P ∈ ζ (e), then S(n) /∈ P is eventually true. From the
definition of subnet, there exists a mapping N : E→D and for
every m ∈ E, there exists n ∈D such that T (m) = S(N(m)) =
S(n). That is to say, every element of the net T is actually the
element of the net S. So T (m) /∈ P is eventually true. Thus we
have T → e(α). (2). Suppose that T = {T (m) : m ∈ E} is a
subnet of S, T ∞e(α),P ∈ ζ (e) and n0 ∈ D. By the definition
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of subnet, there exists a mapping N : E→D and m0 ∈ E such
that N(m) ≥ n0(N(m) ∈ D) when m ≥ m0(m ∈ E). Since
T (i, j)-semi-accumulates to e for m0 ∈ E there is m1 ∈ E
there is m1 ∈ E. When m1 ≥ m0(m1 ∈ E), T (m1) /∈ P. Let
n = N(m1). Then S(n) = S(N(m1)) = T (m1) /∈ P and n≥ n0.
This means that S(n) /∈ P is frequently true. Thus S∞e(α).
(3). By Theorem 3.5, S→ e(α) means e ∈ (i, j)-semi-limS
and T → e(α) means e ∈ (i, j)-semi-limT . Thus by (1), we
have (i, j)-semi-limS ≤ (i, j)-semi-limT . (4) By Theorem
3.5, S∞e(α) means e ∈ (i, j)-semi-ad S and T ∞e(α) means
e ∈ (i, j)-semi-ad T . Thus by (2), we have (i, j)-semi-ad
T ≤ (i, j)-semi-ad S.

Definition 3.11. An OH f : (LX
1 ,τ1,τ2)→ (LY

2 ,σ1,σ2) is said
to be (i, j)-semi-irresolute if f−1(B) ∈ (i, j)-SO(LX

1 ) for each
B ∈ (i, j)-SO(LY

2 ).

Theorem 3.12. For an OH f : (LX
1 ,τ1,τ2)→ (LY

2 ,σ1,σ2) the
following are equivalent:

1. f is (i, j)-semi-irresolute.

2. f−1(B) ∈ (i, j)-SC(LX
1 ) for each B ∈ (i, j)-SC(LY

2 ).

3. (i, j)-sCl( f−1(B)) ≤ f−1((i, j)-sCl(B)) for each B ∈
LY

2 .

Proof. (1)⇒(2): f is (i, j)-semi-irresolute if f−1(A) ∈ (i, j)-
SO(LX

1 ) for each A∈ (i, j)-SO(LY
2 ). For each B∈ (i, j)-SC(LY

2 ),
B′ ∈ (i, j)-SO(LY

2 ). So we have ( f−1(B))′ = f−1(B′) ∈ (i, j)-
SO(LX

1 ). This shows f−1(B) ∈ (i, j)-SC(LX
1 ). (2)⇒(1): For

each A ∈ (i, j)-SO(LY
2 ), A′ ∈ (i, j)-SC(LY

2 ). Then by (2) we
have ( f−1(A))′ = f−1(A′) ∈ (i, j)-SC(LX

1 ). This shows that
f−1(A) ∈ (i, j)-SO(LX

1 ). Hence by Definition 3.11, f is (i, j)-
semi-irresolute. (2)⇒(3): For each B ∈ LY

2 ,(i, j)-sCl(B) ∈
(i, j)-SC(LY

2 ). Then by (2) we have f−1((i, j)-sCl(B))∈ (i, j)-
SC(LX

1 ). And B≤ (i, j)-sCl(B) implies f−1(B)≤ f−1((i, j)-
sCl(B)). From the definition of (i, j)-semi-closure we have
(i, j)-sCl( f−1(B)) ≤ f−1((i, j)-sCl(B)). (3)⇒(1): Let B ∈
(i, j)-SC(LY

2 ), then B=(i, j)-sCl(B). By (3) we have f−1(B)≤
(i, j)-sCl( f−1(B))≤ f−1((i, j)-sCl(B) = f−1(B), that is,
f−1(B) = (i, j)-sCl( f−1(B)). Hence f−1(B) ∈ (i, j)-SC(LX

2 )
and consequently, f is (i, j)-semi-irresolute.

Definition 3.13. An order-homomorphism f : (LX
1 ,τ1,τ2)→

(LY
2 ,σ1,σ2) is said to be (i, j)-semi-irresolute at a point e ∈

M∗(LX
1 ) if (i, j)-sCl(( f−1(P)) ∈ ζ1(e) for each P ∈ ζ2( f (e)),

where ζ1(e) and ζ2( f (e)) denote the set of all (i, j)-SC-RNs
of e and f (e), respectively.

Theorem 3.14. An order-homomorphism f : (LX
1 ,τ1,τ2)→

(LY
2 ,σ1,σ2) is (i, j)-semi-irresolute if, and only if f is (i, j)-

semi-irresolute for each point e ∈M∗(LX
1 ).

Proof. Suppose that f is (i, j)-semi-irresolute and e∈M∗(LX
1 ).

Then f−1(P) is (i, j)-semi-closed for each P ∈ ζ2( f (e)). So
e /∈ f−1(P). Hence f−1(P) = (i, j)-sCl( f−1(P)) ∈ ζ1(e) and
so f is (i, j)-semi-irresolute at e. Conversely, suppose that

f is (i, j)-semi-irresolute for each e ∈M∗(LX
1 ) and P ∈ (i, j)-

SC(LY
2 ). We may assume that f−1(P) 6= 1X and suppose that

e /∈ f−1(P). Then f (e) /∈ P and so P ∈ ζ2( f (e)). Hence,
(i, j)-sCl( f−1(P)) ∈ ζ1(e), that is e /∈ f−1(P) implies that
e /∈ (i, j)-sCl( f−1(P)) or (i, j)-sCl( f−1(P))≤ f−1(P). Thus,
f−1(P) is (i, j)-semi-closed in (LX

1 ,δ ), that is, f is (i, j)-semi-
irresolute.

Theorem 3.15. Let f : (LX
1 ,τ1,τ2)→ (LY

2 ,σ1,σ2) be (i, j)-
semi-irresolute at e ∈M∗(LX

1 ) and S an L-fuzzy net in LX
1 . If

S→ e(α) we have f (S) (i, j)-semi-converges to f (e) where
f (S) = { f (S(n)),n ∈ D} is an L-fuzzy net in LY

2 .

Proof. Suppose that f is (i, j)-semi-irresolute at e ∈M∗(LX
1 )

and S→ e(α). Let P ∈ ζ2( f (e)). Then S is eventually not in
(i, j)-sCl( f−1(P)) ∈ ζ1(e), and hence f (S) is eventually not
in P, that is, f (S)→ f (e)(α).

Theorem 3.16. Let f : (LX
1 ,τ1,τ2)→ (LY

2 ,σ1,σ2) be (i, j)-
semi-irresolute. Then for each L-fuzzy net S in LX

1 we have
f ((i, j)-semi-limS)≤ (i, j)-semi-lim f (S).

Proof. Suppose that e ∈ M∗(LX
1 ), S is an L fuzzy net in LX

1
and f (e) ∈ f ((i, j)-semi-limS). Then e ∈ α-g-limS. By The-
orem 3.5 we have S→ e(α). Since f is (i, j)-semi-irresolute,
f (S)→ f (e)(α) base on Theorem 3.14 and 3.15. And by The-
orem 3.5 we have f (e) ∈ (i, j)-semi-lim f (S). Thus, f ((i, j)-
semi-limS)≤ (i, j)-semi-lim f (S).

Theorem 3.17. Let f : (LX
1 ,τ1,τ2)→ (LY

2 ,σ1,σ2) be (i, j)-
semi-irresolute. Then for each L-fuzzy net T in LY

2 we have
(i, j)-semi-lim f−1(T )≤ f−1((i, j)-semi-limT ).

Proof. Let T = {T (n) : n ∈D} be an L-fuzzy net in LY
2 . Then

f−1(T ) = { f−1(T (n)) : n ∈ D} and L-fuzzy net in LX
1 . Since

f is (i, j)-semi-irresolute, according to Theorem 3.16 we have
f ((i, j)-semi-lim f−1(T ))≤ (i, j)-semi-lim f ( f−1(T ))≤ (i, j)-
semi-limT . Hence, (i, j)-semi-lim f−1(T )≤ f−1((i, j)-semi-
limT ).

Definition 3.18. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space and g ∈ LX ,r ∈ L.

1. A collection µ = { fi}i∈J of L-subsets is called an r-
level cover of g if, and only if (∨

i∈J
fi)(x) � r for all

x ∈ X with g(x)≥ r
′
. If each fi is open then µ is called

an r-level open cover of g. If g is the whole space 1X ,
then µ is called an r-level cover of 1X if, and only if
(∨

i∈J
fi)(x)� r for all x ∈ X.

2. An r-level cover µ = { fi}i∈J of g is said to have a finite
r-level subcover if there exists a finite subset F of J such
that ( ∨

i∈F
fi)(x)� r for all x ∈ X with g(x)≥ r

′
.

Definition 3.19. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space and g ∈ LX . The L-fuzzy subset g is said to be compact
if, and only if for every prime p ∈ L and every collection
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µ = { fi}i∈J of open L-subsets with (∨
i∈J

fi)(x)� p for all x∈X

with g(x) ≥ p
′

there exists a finite subset F of J such that
( ∨

i∈F
fi)(x) � p for all x ∈ X with g(x) ≥ p

′
, that is every p-

level oepn cover of g has a finite p-level subcover, where p ∈
pr(L). If g is the whole space, then the L-fuzzy bitopological
space (LX ,τ1,τ2) is called compact.

Definition 3.20. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space and g ∈ LX . The L-fuzy subset g is called (i, j)-semi-
compact if and only every p-lever cover of g consiting of
(i, j)-semi-open L-subsets has a finite p-level subcover, where
p∈ pr(L). If g is the whole space, then we say that the L-fuzzy
bitopological space (X ,δ ) is (i, j)-semi-compact.

Theorem 3.21. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space and g ∈ LX . The L-fuzzy subset g is said to be (i, j)-
semi-compact if, and only if for every α ∈ M(L) and ev-
ery collection { fi}i∈J of (i, j)-semi-closed L-fuzzy sets with
(∧

i∈J
fi)(x)� α for all x∈ X with g(x)≥ α , there exists a fintie

subset F of J with ( ∧
i∈F

fi)(x)� α for all x ∈ X with g(x)≥ α ,

that is, L-fuzzy points xα ∈M(LX ) such that xα ≤ g.

Proof. This follows immediately from Definition 3.20 and
the duality of p and α .

Definition 3.22. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space and xα ∈ M∗(LX ) and S = (Sm)m∈D be a net. Then
xα is called an (i, j)-semi-cluster of S if, and only if for ech
(i, j)-semi-closed L-subset f with f (x)� α and for all n ∈ D,
there is m ∈ D such that m≥ n and Sm � f , that is h(Sm)�
f (SuppSm).

Theorem 3.23. Let (LX ,τ1,τ2) be an L-fuzzy bitopological
space and g∈ LX . The L-fuzzy subset g is said to be (i, j)-semi-
compact if, and only if for every constant α-net (Sm)m∈D con-
tained in g(Sm)≤ g for every m ∈D has an (i, j)-semi-cluster
point with height α , xα ∈M∗(LX ), contained in g(xα)≤ g for
each α ∈M(L).

Proof. Let α ∈M(L) and S = (Sm)m∈D be a constant α-net
in g without any (i, j)-semi-cluster point with height α in
g. Then for each x ∈ X with g(x) ≥ α,xα is not an (i, j)-
semi-cluster point of S, that is, there are nx ∈ D and an (i, j)-
semi-closed L-subset fx with fx(x)� α and Xm ≤ fx for each
m> nx. Let x1, ...,xk be elements of X with g(xi)≥α for each
i ∈ {1, ...,k}. Then there are nx1 , ...,nxk ∈ D and (i, j)-semi-
closed L-subset fxi with fxi(x

i)�α and Sm ≤ fxi for each m≥
nxi and for each i ∈ {1, ...,k}. Since D is a directed set, there
is n0 ∈D such that n0 ≥ nxi fore ach i∈ {1, ...,k} and Sm ≤ fxi

for i∈ {1, ...,k} and each m≥ n0. Now, consider µ = { fx}x∈X
with g(x) ≥ α . Then ( ∧

fX∈µ

fx)(y) � α for all y ∈ X with

g(y) ≥ α , because y(y) � α . We also have that for any finit
subfamily υ = { fx1 , ..., fxk} of µ , there is y∈ X with g(y)≥α

and (
n
∧

k=1
fxi)(y)≥α since Xm≤

n
∧

k=1
fxi for ach m≥ n0 because

Sm ≤ fxi for each i ∈ {1, ...,k} and for each m ≥ n0. Hence

by Theorem 3.21, g is not (i, j)-semi-compact. Conversly,
suppose that g is not (i, j)-semi-compact. Then, by Theorem
3.21, there exist α ∈ M(L) and a collection µ = { fi}i∈J fo
(i, j)-semi-closed L-subsets with (∧

i∈J
fi)(x)� α for all x ∈ X

with g(x) ≥ α , but for any fintie subfamily υ of µ there is
x ∈ X with g(x)≥ α and ( ∧

f∈υ

f )(x)≥ α . Consider the family

of all finite subsets of µ,2µ , with the order υ1 ≤ υ2 if, and
only if υ1 ⊆ υ2. Then 2µ is a directed set. So, writing xα as
Sυ for every V ∈ 2µ ,(Sυ)υ∈2µ is a constant α-net in g because
the height of Xυ for all υ ∈ 2µ is α and Sυ ≤ g for all υ ∈ 2µ ,
that is, g(x)≥ α . (Sυ)υ∈2µ also satisfies the condition that for
each (i, j)-semi-closed L-subset fi ∈ υ we have xα = Sυ ≤ fi.
Let y ∈ X with g(y)≥ α . Then (∧

i∈J
fi)(y)� α , that is, there

exists j ∈ J with f j(y) � α . Let υ0 = { f j}. So, for any
υ ≥ υ0, Sυ ≤ ∧

f∈υ

fi ≤ ∧
f∈υ0

fi = f j. Thus, we get an (i, j)-

semi-closed L-subset f j with f j(y) � α and υ0 ∈ 2µ such
that for any υ ≥ υ0, Sυ ≤ f j. That means that yα ∈M∗(LX )
is not an (i, j)-semi-cluster point of (Xυ)υ∈2µ for all y ∈ X
with g(y) ≥ α . Hence,the constant α-net (Sυ)υ∈2µ has no
(i, j)-semi-cluster point in g with height α .

Corollary 3.24. An L-fuzzy bitopological space is an (i, j)-
semi-compact if, and only if every constant α-net in (LX ,τ1,τ2)
has an (i, j)-semi-cluster point with height α , where α ∈
M(L).
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