

https://doi.org/10.26637/MJM0803/0052

Complementary role of ideals in TSBF-algebras

M. Jansi¹* and V. Thiruveni²

Abstract

In this paper we introduced the notions of ideals related to subalgebras of BF-algebras and subalgebras of topological soft BF-algebras and we discuss the complementry role of these ideals on topological soft BF-algebras collaborated with some cardinal concepts - interior and closure of a topological space.

Keywords

TSBF-algebra, S- Ideal of BF- algebra, Interior and Closure of a subset of a BF- algebra.

AMS Subject Classification

06F35, 54A10, 54A05.

¹Department of Mathematics, M.S. University Constituent College, Nagalapuram-628904, Tamil Nadu, India. ² PG and Resarch Department of Mathematics, Saiva Bhanu Kshatriya College, Aruppukottai-626101, Tamil Nadu, India. *Corresponding author: ² thiriveni2009@gmail.com; ¹ mjansi92@gmail.com Article History: Received 14 May 2020; Accepted 02 June 2020

©2020 MJM.

Contents

- 3 Complementry Role of Ideals on TSBF- Algebras1038

1. Introduction

In [1] Walendziak introduced the notion of BF-algebras, which is a generalization of B-algebras. He also introduced the notions of Ideals and normal ideal in BF-algebras and studied their properties and characterization. In [2] R.A.Borzooei G.R. Rezaei and N. Kouhietan studied the topological BLalgebras and discussed their properties. In [7], Y. B. Jun and C. H. Park introduced the notion of ideals reflated to subalgebras on BCK/BCI- algebras. In [6], we introduced the notion of topological BF-algebras and in [13], we introduced the notion of topological soft BF – algebras. Motivated by this, in this paper we introduced the notion of S-ideal on topological and topological soft BF – algebras and studied their properties. The aim of this article is to lay a foundation for providing a soft algebaric tool in considering problems that contain uncertainties and study the connection between soft BF-algebras and topology.

2. Preliminaries

In this section we recall some basic definitions that are

required in the sequel.

Definition 2.1. [11] A BF-algebra is an algebra (X, *, 0) of type (2,0) (that is, a non-empty set X with a binary operation * and a constant 0) satisfying the following conditions

1.
$$x * x = 0$$
,
2. $x * 0 = x$,

3. $0 * (x * y) = y * x, \forall x, y \in X.$

Definition 2.2. [11] Let (X, *, 0) be a BF-algebra. A nonempty subset N of X is called a subalgebra of X if $x * y \in N$, for all $x, y \in N$.

Definition 2.3. [9] A pair (F, E) is called a soft set over U if and only if F is a mapping of E into the set of all subsets of the set U. where, U is an initial universal set and E is a set of parameters.

Definition 2.4. [13] Let (F,A) be a soft BF-algebra over a BF-algebra X and τ be a topology on X. Let $x \in X$. Then (F,A,τ) is said to be a topological soft BF-algebra (TSBF-algebra) over X with respect to F(x), if for every $a, b \in F(x)$ and any open set W of a * b, there exist open sets U and V of a and b respectively such that $U * V \subset W$.

Definition 2.5. [9] Let (F,A) be a soft set over a BF-algebra X. Then (F,A) is called a soft BF-algebra over X if F(x) is a subalgebra of X, $\forall x \in A$.

Theorem 2.6. [13] Let (F,A,τ) be a TSBF-algebra with respect to F(a). If $\{0\}$ is open and for every distinct $x, y \in X$, the value $x * y \neq 0$ then all the subsets of F(a) becomes open.

Definition 2.7. [4] An ideal of a BF-algebra X is a subset I *containing* 0 *such that if* $x * y \in I$ *and* $y \in I$ *then* $x \in I$ *.*

Definition 2.8. [5] For a subset of a topological space X, the interior of A is defined as the union of all open sets contained in A and the closure of A is defined as the intersection of all closed sets containing A.

3. Complementry Role of Ideals on **TSBF- Algebras**

In this section, we define S-ideal on TSBF-algebras and discuss their roles on TSBF-algebras.

Definition 3.1. Let (F, A, τ) be a TSBF-algebra over a BF – algebra X. A non-empty subset N of X is called a subalgebra of X if $x * y \in N$, for all $x, y \in N$.

Definition 3.2. An ideal of a TSBF-algebra (F, A, τ) over a BF – algebra X. is a subset I of X, containing 0 such that if $x * y \in I$ and $y \in I$ then $x \in I$.

Definition 3.3. Let (X, 0, *) be a BF-algebra and S be a subalgebra of X. A subset I of X is called an ideal of X related to $S(S-ideal \ of X)$ if it satisfies the condition

$$\forall x \in S \text{ and } \forall y \in I, x * y \in I \implies x \in I$$

Example 3.4. Consider the BF-algebra $X = \{0, 1, 2, 3, 4\}$ with the following Cayley table,

*	0	1	2	3	4
0	0	1	2	3	4
1	1	0	1	0	1
2	2	1	0	1	0
3	3	0	1	0	1
4	4	1	0	1	0

Considering the subalgebra $S = \{0, 1, 2\}$, the subset I = $\{0, 2, 4\}$ is an *S*-ideal.

Definition 3.5. Let (F, A, τ) be a TSBF-algebra with respect to F(a) over a BF – algebra X and S be a subalgebra of X. A subset I of X is called an ideal of X related to S (S-ideal of *X*) *if it satisfies the condition*

$$\forall x \in S \text{ and } \forall y \in I, x * y \in I \implies x \in I$$

Example 3.6. Consider the BF-algebra X in example 3.4. *Let* $A = \{1, 2\}$.

Define a set $F : A \to \mathbb{P}(X)$ by $F(1) = \{0, 1\}, F(2) =$ $\{0,1,2\}$. Then F(1) and F(2) are BF – subalgebras of X. \implies (F,A) is a soft BF – algebra. Consider the topology $\tau = \{X, \phi, \{0, 2\}, \{0, 1, 2\}, \{1\}, \{0, 1, 2, 3\}, \{0\} \in \mathcal{A}\} = x$, there exists open sets U and V of x and 0 Then (F, A, τ) is a TSBF-algebra with respect to F(2). We can verify that $I = \{0, 2, 4\}$ is an F(2)-ideal.

Definition 3.7. Let (F, A, τ) be a TSBF-algebra with respect to F(a) and S be a subalgebra of X. For a subset B of X, the interior of B is defined as the union of all open sets contained in B and the closure of B is defined as the intersection of all closed sets containing B.

The interior of B is denoted by Int B and the closure of B is denoted by Cl B or \overline{B} .

Example 3.8. In example 3.4, if we consider $B = \{0, 1\}$, then Int $B = \{1\}$ and $\overline{B} = X$.

Remark 3.9. As a TSBF-algebra (F, A, τ) is naturally a topological space (X, τ) , the following properties follows trivially for every subset B of X

- *1. Int* $B \subseteq B \subseteq \overline{B}$
- 2. B = IntB whenever B is open
- 3. $B = \overline{B}$ whenever B is closed

Theorem 3.10. Let (X, *, 0) be a BF-algebra and S be any subalgebra of X, then $\{0\}$ an S-ideal.

Proof:Let *S* be a subalgebra of *X* and $I = \{0\}$. Since x * 0 = x and $x \notin I$, we must have $\{0\}$ is an *S*-ideal.

Remark 3.11. $I = \{0\}$ is an *S*-ideal for any subalgebra *S* of X and referred as an improper S-ideal of X.

Definition 3.12. Let (F, A, τ) is a TSBF-algebra with respect to F(a) over X and $B \subseteq X$. Then H is the least open set of B if H is the intersection of all open sets containing B.

Theorem 3.13. Let (F,A) be a soft BF-algebra over X and *B* be a subalgebra of *X* which contains F(a), for some $a \in A$. If $\tau = \{X, \phi, B\}$ is a topology for X then (F, A, τ) is a TSBFalgebra with respect to F(a).

Proof. Let $x, y \in F(a)$. Then $x * y \in F(a)$. Since *B* contains F(a), we have x, y and $x * y \in B$.

Now, *B* is the least open set for x * y.

Therefore, we can choose open sets U and V of x and y respectively such that $U * V \subseteq B$.

Since B is minimal, we have U = V = B. And hence U * V = B * B.

Since B is a subalgebra of X, U * V = B.

Therefore, (F,A,τ) is a TSBF-algebra with respect to F(a).

Theorem 3.14. Let (F,A,τ) be a TSBF-algebra with respect to F(a). If F(a) is the least open set containing 0 then F(a)is also the least open set for every x in F(a).

Proof. We want to prove that, F(a) is a minimal open set for all $x \in F(a)$.

Suppose there exists an open set $B \subset F(a)$ of $x \in F(a)$. Since F(a) is the least open set of 0, $0 \notin B$.

respectively for every open set *W* of *x* such that $U * V \subseteq W$. Therefore, $U * V \subseteq B$(1)

Since F(a) is the least open set of 0, V contains $F(a) \Rightarrow x, 0 \in V$.

Now, (1)implies $x * x \in B$. But x * x = 0 and $0 \notin B$, which implies $U * V \nsubseteq B$.

This contradicts the fact that (F,A,τ) is a TSBF-algebra with respect to F(a).

Therefore, we conclude that there is no such *B*. That is, F(a) is the least open set for every *x* in F(a).

Theorem 3.15. Let (F,A,τ) be a TSBF-algebra with respect to F(a) over X and for every distinct $x, y \in F(a)$, $x * y \neq 0$. If the ideals related to F(a) are open then all the subsets of F(a) becomes open.

Proof. Since $x * 0 = x, \{0\}$ is an ideal related to F(a). As, $\{0\}$ is open, from theorem 2.6, all the subsets of F(a) becomes open.

Theorem 3.16. Let (F,A,τ) be a TSBF-algebra with respect to F(a). If 0 is an interior point of an ideal $I \subseteq F(a)$ of X then IntI = I.

Proof. We want to prove that, every $x \in I$ is an interior point of *I*.Let $x \in I$.

Since x * x = 0, for every open set *W* of 0, there exists open sets *U* and *V* of *x* such that $U * V \subseteq W$.

As 0 is an interior point of I, $U * V \subseteq I....(1)$

If $U \subseteq I$, then there is nothing to prove.

Suppose $U \nsubseteq I$, there exists an element y in X such that $y \in U$ and $y \notin I$(2)

Now, (1) implies, $y * x \in I, \forall x \in V$.

Since *I* is an ideal of *X*, $y \in I$, which is a contradiction to (2).

 $\Rightarrow U \subseteq I.$

Therefore we conclude that, for every $x \in I$, there exits an open set *U* which is contained in *I*. Therefore, Int I = I. \Box

Definition 3.17. Let (F,A,τ) is a TSBF-algebra with respect to F(a) over X. If $0 * x = x, \forall x \in X$ then (F,A,τ) is called a commutative TSBF-algebra with respect to F(a).

Theorem 3.18. Let (F,A,τ) be a commutative TSBF-algebra with respect to F(a) and I be an ideal contained in F(a). If 0 is not an interior point of I then Int $I = \phi$.

Proof. Let $I \subseteq F(a)$. Since 0 is not an interior point of *I*, every open set *H* of 0 contains at least one element *y* (say) such that $y \notin I....(1)$

Let $x \in I$. Since (F, A, τ) is commutative, 0 * x = x.

Hence for every open set W of x, there exists an open sets U and V of 0 and x respectively such that $U * V \subseteq W$.

Suppose *x* is an interior point of *I*. Then $U * V \subseteq I$.

From (1), $y \in U$, $0 \in U$ and $x \in V$, which implies $y * x \in I$. Since *I* is an ideal and $x \in I$ we have $y \in I$, which is a contradiction to (1).

Therefore, *x* is not an interior point of *I* and this is true for all $x \in I$.

Therefore, Int $I = \phi$.

Theorem 3.19. Let (F,A,τ) be a TSBF-algebra with respect to F(a). If any ideal related to F(a) is open and if I is an open ideal of X, then $I^c \cap F(a)$ is open.

Proof. Let $x \in I^c \cap F(a) \implies x \in F(a)$ and $x \in I^c \implies x \in F(a)$ and $x \notin I$(1)

Since x * x = 0, for every open set *W* of 0, there exists an open sets *U* and *V* of *x* such that $U * V \subseteq W$.

Since $0 \in I$ and I is open, $U * V \subseteq I$.

If $V \subseteq I^c \cap F(a)$, then $I^c \cap F(a)$ is open.

Suppose $V \not\subseteq I^c \cap F(a)$, there exists an element $y \in V$ and $y \notin I^c \cap F(a)$

Case(i): Suppose, $y \in V, y \notin I^c$ and $y \notin F(a)$ or $y \in V, y \notin I^c$ and $y \notin F(a)$.

Then $y \in I$. Then since $x * y \in I$ and I is an ideal, we have $x \in I$, which contradicts (1).

Hence, $V \subseteq I^c \cap F(a)$.

Case(ii): Suppose, $y \in V, y \in I^c$ and $y \notin F(a)$. Since ideals related to F(a) are open, F(a) is open, which implies $V \cap F(a)$ is open and contains *x*. Also $V \cap F(a)$ is contained in $I^c \cap F(a)$.

Therefore in both the cases, for every x in $I^c \cap F(a)$ there exists an open set contained in $I^c \cap F(a)$. Therefore $I^c \cap F(a)$ is open.

With the similar arguments in the above theorem, we can prove the following:

Theorem 3.20. Let (F,A,τ) be a TSBF-algebra with respect to F(a). If any ideal related to F(a) is open and if I is an ideal of X such that 0 is an interior point of I, then $I^c \cap F(a)$ is open.

4. Conclusion

As a result of this study, we got the idea of building topologies on TSBF – algebras with respect to F(a) over a BF- algebra. Based on this study, we can identify some basic sets such as open set, closed set, interior of a set and the closure of a set, which plays main role in the construction of TSBF-algebra with respect to F(a) over a BF- algebra.

References

- A. Walendziak, On BF-algebras, *Mathematica Slovaca*, 57(2)(2007), 119–128.
- [2] R.A. Borzooei, G.R. Rezaei and K. Kouhietani, On(semi)topological BL-algebras, *Iranian Journal of Math. Sci. and Informatics*, 6(1)(2011), 59–77.
- [3] A. Dmitri Molodtsov, Soft set Theory-First results, Computers and Mathematics with Applicatiopns, 37(4-5)(1999), 19–31.
- [4] S.K. Hee and K.R. Na, Some Decomposition of Ideals in BF- Algebras, *Scientiae Mathematicae Japonicae Online*, e-2006, 1075–1079.
- [5] James R. Munkers, *Toplogy*, Second Edition, Pearson Education, Inc., 2000.

- ^[6] M. Jansi and V. Thiruveni, Topological Structures on BF-algebras, *IJIRSET*, 6(2017), 22594–22600.
- [7] Y.B. Jun and C.H. Park, Applicatons of Soft Sets in Ideal Theory of BCK/BCI Algebras, *Information Sciences*, 178(11)(2008), 2466–2475.
- [8] M.K. Jung, Structures of BF-algebras, Applied Mathematical Science, 9(128)(2015), 6369–6374.
- [9] S.K. Min and S.K. Hee, Some Applications of Soft Set to BFalgebras, *Honam Mathematical J.*, 32(1)(2010), 17– 27.
- ^[10] A. A. Nasef, A. I. El-Maghrabi, A. M. Elfeky and S. Jafari, Soft Set Theory and Its Application, 2018.
- [11] Randy C. Teves and Joemar C. Endam, Direct Product of BF-Algebras, *International Journal of Algebra*, 10(3)(2016), 125–132.
- [12] S. Akarachai and A. Iampan, Topological UP-algebras, Discussiones Mathematicae-Genral Algebra and Applications, 39(2)(2019), 231–250.
- ^[13] V. Thiruveni and M. Jansi, Topological Soft BF-Algebras, *Compliance Engineering Journal*, 11(1)(2020), 1–10.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

