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1. Introduction

It is known that compactness and its stronger and weaker
forms play very important roles in topology. Based on fuzzy
topological spaces introduced by Chang [4], various kinds of
fuzzy compactness [4, 7] have been established. However,
these concepts of fuzzy compactness rely on the structure of
L and L is required to be completely distributive. In [10], for
a complete De Morgan algebra L, author introduced a new
definition of fuzzy compactness in L-topological spaces using
open L-sets and their inequality. This new definition does
not depend on the structure of L. In this paper, the notion of
fuzzy (i, j)-s-compactness degrees is introduced in L-fuzzy
topological spaces by means of the implication operation of
L. Characterizations of fuzzy (i, j)-s-compactness degrees in
L-fuzzy topological spaces are obtained, and some properties
of fuzzy (i, j)-s-compactness degrees are researched.

2. preliminaries

Throughout this paper, (L,V,A,") is a complete De Mor-
gan algebra, X a nonempty set and LX the set of all L-fuzzy

sets (or L-sets for short) on X. The smallest element and the
largest element in L are denoted by 0 and 1. The smallest
element and the largest element in LX are denoted by 0 and
1. An element a in L is called a prime element if bAc < a
implies that b < a or ¢ < a. ain L is called a co-prime ele-
ment if @’ is a prime element [6]. The set of nonunit prime
elements in L is denoted by P(L) and the set of nonzero co-
prime elements in L by M(L). The binary relation < in L
is defined as follows: for a,b € L,a < b if and only if for
every subset D C L, the relation b < supD always implies
the existence of d € D with a < d [5]. In a completely dis-
tributive De Morgan algebra L, each element b is a sup of
{a € Lja < b}. The set s(b) = {a € L|a < b} is called the
greatest minimal family of b in the sense of [7, 13]. Now, for
b € L, we define s*(b) = s(b)NM(L), a(b) ={A € L|d' <b'}
and a*(b) = a(b) N P(L). In a complete DeMorgan frame L,
there exists a binary operation —. Explicitly the implication
isgivenby a —»b=V{ce€L:aNc<b}. Weinterpret [a < b]
as the degree to which a < b, then [a < D] =a — b.

Definition 2.1. [15] An L-topology on a set X is a mapping
T : L7 L which satisfying the following conditions:

L 1()=10)=1
2. forany A,B,T(ANB) > ©(A) A1(B);

3. forany Ay e LX A €A, t(\V Ay) > N\ T(Ay).
AeA AeA

The pair (X,7) is called an L-fuzzy topological space.
T(U) is called the degree of openness of U, 7°(U) = t(U’)



is called the degree of closedness of U, where U’ is the L-

complement of U. For any family % C LX, ©(% )= A\ 7(A)
AcU
is called the degree of openness of U.

For a subfamily ® C X, 2(®) denotes the set of all finite
subfamilies of ®. For any a € L, a denotes a constant value
mapping from X to L, its value is a.

Definition 2.2. An L-bitopological space (or L-bts for short)
is an ordered triple (X, 71, T2), where T| and T, are subfamilies
of LX which contains 0,1 and is closed for any suprema and
finite infima.

Definition 2.3. [24] An L-fuzzy inclusion on X is a map-
ping C : IX x IX — L defined by the equality C(A,B) =
A (A V()

X€
In this paper, we will write [ACB] instead of C(A, B).

Definition 2.4. [9] Let (X,T) be an L-ts, a € L\{1}, and
A € LX. A family u C LX is called

1. an a-shading of A if foranyx € X, A'(x)V V B(x) £ a.

Bep
2. a strong a-shadining of A if A\ (A'(x)V \ B(x)) £ a.
xeX Beu

Definition 2.5. [9] Let (X,7) be an L-ts, a € L\{0} and A €
LX. A family u C LX is called

1. an a-remote neighborhood family of A if for any x € X,

(AW A A BE) 2
2. a strong a-remote neighbourhood family of A if \/ (A(x)
xeX
A N B(x)) #a.
Bep

3. a sq-cover of A if for any x € X, it follows that a €

s(A"(x)V V B(x)).

Bew

4. a strong s,-cover of A if for any x € X, it follows that

aes( AWV V BE)).
xeX Beu
5. a Qu-cover of A if forany x € X, it follows that \/ (A’(x)V
xeX
V B(x) > a )
Beu

Definition 2.6. [11] Let (X, 71, 7;) be an L-bts, A € LX. Then
A is called an (i, j)-semi-open set if A < jCl(iInt(A)). The
complement of an (i, j)-semi-open set is called an (i, j)-semi-
closed set. Also, (i, j)-SO(LX) and (i, j)-SC(LX) will always
denote the family of all (i, j)-semi-open sets and (i, j)-semi-
closed sets respectively. Obviously, A € (i, j)-SO(LX) if and
only if A’ € (i, j)-SC(LX).

Definition 2.7. [11] Let (L*,7,,7,) be an L-bitopological
space, A,B € LX. Let (i, j)-sInt(A) = V{B € LX|B<A,B €
(i, ))-SO(LX)}, (i, j)-sCl(A) = A{B € LX|A < B,B € (i, )-
SC(LX)}. Then (i, j)-sInt(A) and (i, j)-sC1(A) are called the
(i, j)-semi-interior and (i, j)-semi-closure of A, respectively.
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Definition 2.8. Let (X, 71, T2) be an L-fuzzy bitopology on
X. For any A € LX, define a mapping Ti,j)s LX — L by
TijsA) = V (BN A A (u(D))). Then 7 j), is
B<A x)<Ax, £D>B
called the L-fuzzy (i, j)-semi-open operator induced by T\ and
Ty, where T j)(A) can be regarded as the degree to which A
is (i, j)-semi-open and T(*ie,j)s(B) = T(;,j)s(B') can be regarded
as the degree to which B is (i, j)-semi-closed. For any family
% C L¥, Tij)s(% ) = /\ T(;j)s(A) is called the degree of

(i, J)-semi-openness of %

Definition 2.9. Let (X, 11,72) be an L-fuzzy bitopology on X
and let T j); be the L-fuzzy (i, j)-semi-open operator induced
by 7y and 5. Then T;(A) < 1(; ;)5(A) for any A € LX.

Definition 2.10. Let (X, 7),T2) be an L-fuzzy bitopological
space. G € LX is said to be L-fuzzy (i, j)-s-compact if for every

family % C L*, it follows that N\ 7 (A) A A (G'(x)V
Aew xeX
VAR V. AGDYV AW).
Ae v ea%)xeX Ae¥

3. Measures of fuzzy (i, j)-s-compactness

Let (X,7;,72) be an L-bitopological space and G € LX.
Then G is fuzzy (i, j)-s-compactness if and only if for every
family % of (i, j)-semi-open L-sets, it follows that A (G'(x)V

xeX
V AxX) < V  A(G(x)V V A(x)). So for every fam-
Aew ye(%) xeX AeY
ily Z of (i, j)-semi-open L-sets, [[GEV#]| < V [GCV
v e2?)

¥1] = 1. We know that an L-topology T can be looked as

a special L-fuzzy topology. Therefore, A € LX is an (i, j)-

semi-open set if and only if 7(; ;)(A) = 1. Thus G is fuzzy

(i, j)-s-compactness if and only if for every family ¥ C LX,

it follows that 7(; j,(U) < [[GCV %] < \/(/ )[GC VU
y e

Therefore, we can naturally generalize the Gnotion of fuzzy

(i, j)-s-compactness degrees to L-fuzzy bitopological spaces
as follows:

Definition 3.1. Let (X,7),T2) be an L-fuzzy bitopological

space and G € L*. The fuzzy (i, j)-s-compactness degree

)s of G is defined as cd; j),(G) = Z//\ X(‘C(l-,j)s(%) —
UCL

(Gevu]— V [GCVvY]) = N (1)(%)—
(%) » CIX

(AGXV V AKX)—= V /\(GI(X)\/A!“I/A(X))))

xeX AEU v ea(%) xeX

Theorem 3.2. Let (X, 71, Ty) be an L-fuzzy bitopological space
and G € LX. Then cd; ;,(G) < cdy(G).

Proof. Straightforward. 0
Theorem 3.3. Let (X, 71, T2) be an L-fuzzy bitopological space
and G € LX. Then G is fuzzy (i, j)-s-compactness in (X, 71, T2)
if and only if scdy, . (G) =1.



Proof. Let (X,71,T2) be an L-fuzzy bitopological space. The
mapping X, r, : LX — L defined by

|1 ifAetorn
X‘C],TQ(A) - { 0 ifA ¢ T and T

is a special L-fuzzy bitopology. Then A € LX is an (i, j)-semi-
open set in L-bitopology 7 if and only if ()7, 7, )i, j)s(A) = 1.
Thus by the definition of fuzzy (i, j)-s-compactness and the
properties of —, we know that G is fuzzy (i, j)-s-compactness
if and only if for every family % C L*, then (¥z, 1,) i j)s (%) <
([GEv#]< V [G&VY]]. This implies that G is fuzzy
¥ e2)
(i, j)-s-compact if and only if for every family % C L*, it
follows that (¥r, 1,) (i, j)s(%) — ([GCV %] < \/(/ )[GC \Y
e
¥1]] = 1. By the definition of Sy )i .» the conclusion is

hold. O

Theorem 3.4. Let (X, 7, T2) be an L-fuzzy bitopological space
and G € LX. G is L-fuzzy (i, j)-s-compactness in (X, 1, 7T2) if
and only if cd; ;),(G) = 1.

Proof. By the definition of L-fuzzy (i, j)-s-compactness, we
know that G is L-fuzzy (i, j)-s-compactness in (X, 71, 72) if
and only if for every family G € L¥, it follows that

Tips(Z)NGEVY] <\ [GEVY].
v e %)
By the properties of —, we obtain that G is L-fuzzy (i, j)-

s-compactness in (X, 7, T;) if and only if for every family
U < IX, it follows that

Tijys (%) = ([GCV U] — \/ GEVY] =

¥ e2()

By the definition of cd|; j,, the conclusion is hold. O

i)
Lemma 3.5. Ler (X, 71, T2) be an L-fuzzy bitopological space
and G € L*. Then cd(,-_’m(G) > a if and only if for any % C

LY, 1 ) (W)N[GEV U Na< ) [GEVY].
’ yer)

Proof. Forany a € L, cd(; j)(G) > a, that is,

N (%) — \/ [GEv7)]>a
wCLX v e2()

(GEV %) —

if and only if for any % C LX,

Tijs(%) = (GEV =~ \] [GEVY])>a

v e?)
if and only if (by the property (6) of —) for any % C L*,
Tips(Z)NGEVU]) = \/ [GEVY]>a
e ¥)
if and only if (by the property (1) of —) for any % C L*,

TUips(Z)NGEVU|Na< \] [GEVY].
yer?)
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Theorem 3.6. Let (X, 1), T2) be an L-fuzzy bitopological space

and G € LX. Then cd; j)s(G) > a if and only if for any

P cLX T(*ij)s(F)/v( V (Gx)A A F(x))Vvd >
Fep xeX FeZ

AN V(GE)N N Fx)).
el ?) xeX Fexx

Proof. It can be easily obtained by Lemma 3.5 and the defini-
tion of T(*i_m. O

Theorem 3.7. Let (X, 71, T2) be an L-fuzzy bitopological space
and G € LX. Then cdijs(G) =V{a e L: 7, (%) N|GCV
Ulha< N [GEVXU|NU CL¥X}.

yer )

Proof. By Lemma 3.5, cd; ),(G) is an upper bound of {a €

L:7,j(%)NGEVU|Na< N\ [GEVU|NU CL*}.
ye?)

A (T(i,j)s(%)—)

w)CLX

[GC VYY), then for every family % C

Since cd; ;,(G) =

(Geval— A
Y e %)
X, we have

cdij)s(G) < 7 jys(%) —

(Gevaa)— \ [GEVY))

v e2#)

N [GEvYl.
yer?)

By the property (1) of —, we obtain that for every family
U CLX, 0 ) (U)NGEV U Ned jys(G) <V [GEV
ve

2(%)
V], thus cd; j)(G) = V{a € L: 7; j,(% ) N[GC \/%} Na <
N [GEV ¥|,Y% C LX}. Therefore, the conclusion is
v e )

hold. O
In order to write simply, for any mapping 7 : LX — L,
denote 7, = {A € LX : 7(A) > b}.

Theorem 3.8. Let (X, 71, Ty) be an L-fuzzy bitopological space
and G € LX, a € L\{0}. Then the following conditions are
equivalent:

1. Cd(l‘J)s(G) 2 a.

2. Foranyb € P ), b # a, each strong b-shading % of
G with 7; ;) ﬁ b has a finite subfamily V" which is
a strong b- shadlng of G.

3. Forany b € P ), b # a, each strong b- shading% of
G with 7 ;) j<_ b, there exists a finite subfamily V'
of % and r E o*(b) such that ¥ is an r-shading of G.

4. Forany b € P (L), b # a, each strong b-shading % of
G with 7; U) & b, there exists a finite subfamily ¥V
of % and r E o*(b) such that ¥ is a strong r-shading
of G.

5. Foranybe M(L b j{ d, each strong b-remote family
Z of G with ’C( P) £ has a finite subfamily S
which is a strong b remote family of G.



6. Forany b€ M(L), b £ d, each strong b-remote fam-
ily 2 of G with Taﬁj)s(’@) £ U, there exists a finite
subfamily 7€ of & and r € s*(b) such that 5 is an
r-remote family of G.

7. Foranyb e M(L), b £ d', each strong b-remote family
P of G with T , () £ b/, there exists a finite sub-

Samily S of & and r € s*(b) such that € is a strong
r-remote family of G.

8. Foranyb<a, re€ s(b), b,r #0, each Qp-cover % C
(T(i,j)s)b of G has a finite subfamily " which is a Q,-
cover of G.

9. Forany b <a, r € s(b), b,r #0, each Qp-cover % C
(T(i,j)s )b of G has a finite subfamily V" which is a strong
sp-cover of G.

10. Forany b <a, r € s(b), b,r #0, each Qp-cover U C
(T(i,j)s)b of G has a finite subfamily ¥ which is a s,-
cover of G.

11. Foranyb <a, r € s(b), b,r # 0, each strong s,-cover
U C (T j)s)p of G has a finite subfamily V" which is a
Q,-cover of G.

12. Foranyb <a, r € s(b), b,r # 0, each strong s,-cover
U C (i j)s)b of G has a finite subfamily ¥V which is a
strong s,-cover of G.

13. Forany b <a, r € s(b), b,r #0, each strong sp-cover
U C (i j)s)b of G has a finite subfamily ¥V which is a
sp-cover of G.

In Theorem 3.8 (8)-(13), if we replace b, r # 0 and r € 5(b)
with b € M(L) and r € s*(b), then the conclusions are still
right.

Theorem 3.9. Let (X, 71, T2) be an L-fuzzy bitopological space
and G € IX, a € L\{0}. If for any c,d € L, s(cAd) =
s(c) As(d). Then the following conditions are equivalent:

1. Cd(l.j)S(G) Z a.

2. Forany b € s(a), b # 0, each strong s-cover % of G
with b € s(7(; (%)) has a finite subfamily ¥ which
is a Qp-cover of G.

3. Forany b € s(a), b # 0, each strong sy-cover % of G
with b € s(7(; j)s(%)) has a finite subfamily ¥ which
is a strong sp-cover of G.

4. Foranyb € s(a), b # 0, each strong sp-cover % of G
with b € s(7(; j)s(%)) has a finite subfamily ¥ which
is a strong sp-cover of G.

Theorem 3.10. Ler (X,7;,T2) be an L-fuzzy bitopological
space and G,H € L*. Then cd; j(GNH) = cd; j5(G) A
Cd(i,j)s (H)
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Proof. By Theorem 3.7, we have cd(; j(GANH) = V{a €
L:t; ) (%)N(GANH)EVZINa< N [(GAH)EV
' v e2)
UNNU CIXy =v{aeL:t; j(%)N[GEVU|NHEV
Ulna< N ([GEVYINHEVY])NU CLX} > {ac
v e2)
L:7; ;) (Z)NGEVY]Aa< N [GEVY| VU CLX}A
v e2?)
Vi{aeL:t; j(#)N[HCVZ|Na< N [HCVYV|NU C
v e2#)
LX} :Cd(l])s(G)/\Cd(l‘j)s(H) O

Theorem 3.11. Ler (X,7;,T2) be an L-fuzzy bitopological
space and G,H € LX. Then cd (i j)s(GNH) = cdj j)(G) A
75 o (H).
(i.f)s
Proof. By Theorem 3.7, cd; j)(GAH) =V{a € L: 7; j) (%)
AN GANEEVU|Na< N [(GAH)ENV X NY C LX)
v e2?)
=V{aecL:7; j(#)NGC(H'VVU)|Na< N\ [GC(H'
' v e?)
VIV C LYY 2 {a Nt ;) (H) 7)) (%) NGEV U]
Na< N\ [GEVYINU CLX} =cd; ) (G) AT ;) (H).
yer ) ’ o
O

Corollary 3.12. Let (X, 71,T2) be an L-fuzzy bitopological

space and G € L. Then cd; j),(G) = cd; ;);(1) A T 15(G):
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