

Measure of fuzzy (*i*, *j*)**-***s***-compactness**

P. Gomathi Sundari¹ and R. Menaga^{2*}

Abstract

In this paper, the notion of fuzzy (*i*, *j*)-*s*-compactness degrees is introduced in *L*-fuzzy topological spaces by means of the implication operation of *L*. Characterizations of fuzzy (*i*, *j*)-*s*-compactness degrees in *L*-fuzzy topological spaces are obtained, and some properties of fuzzy (*i*, *j*)-*s*-compactness degrees are researched.

Keywords

L-bitopological spaces, fuzzy (*i*, *j*)-*s*-compactness, Fuzzy (*i*, *j*)-*s*-compactness degree.

AMS Subject Classification

54A40, 54D30, 03E72.

¹*Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur-613005, Tamil Nadu, India.* ²*Department of Mathematics, Sengamala Thayaar Educational Trust Women's College (Affiliated to Bharathidasan University), Mannargudi-614016, Tamil Nadu, India.*

***Corresponding author**: 1 rsgcgomathi18@gmail.com; ²menagamohan2008@gmail.com

Article History: Received **24** March **2020**; Accepted **12** June **2020** ©2020 MJM.

Contents

1. Introduction

It is known that compactness and its stronger and weaker forms play very important roles in topology. Based on fuzzy topological spaces introduced by Chang [\[4\]](#page-3-1), various kinds of fuzzy compactness [\[4,](#page-3-1) [7\]](#page-3-2) have been established. However, these concepts of fuzzy compactness rely on the structure of *L* and *L* is required to be completely distributive. In [\[10\]](#page-4-0), for a complete De Morgan algebra *L*, author introduced a new definition of fuzzy compactness in *L*-topological spaces using open *L*-sets and their inequality. This new definition does not depend on the structure of *L*. In this paper, the notion of fuzzy (*i*, *j*)-*s*-compactness degrees is introduced in *L*-fuzzy topological spaces by means of the implication operation of *L*. Characterizations of fuzzy (*i*, *j*)-*s*-compactness degrees in *L*-fuzzy topological spaces are obtained, and some properties of fuzzy (*i*, *j*)-*s*-compactness degrees are researched.

2. preliminaries

Throughout this paper, $(L, \vee, \wedge,')$ is a complete De Morgan algebra, *X* a nonempty set and L^X the set of all *L*-fuzzy

sets (or *L*-sets for short) on *X*. The smallest element and the largest element in *L* are denoted by 0 and 1. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and 1. An element *a* in *L* is called a prime element if $b \wedge c \le a$ implies that $b \le a$ or $c \le a$. *a* in *L* is called a co-prime element if a' is a prime element [\[6\]](#page-3-3). The set of nonunit prime elements in *L* is denoted by $P(L)$ and the set of nonzero coprime elements in *L* by $M(L)$. The binary relation \prec in *L* is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \le d$ [\[5\]](#page-3-4). In a completely distributive De Morgan algebra *L*, each element *b* is a sup of ${a \in L | a \prec b}.$ The set $s(b) = {a \in L | a \prec b}$ is called the greatest minimal family of *b* in the sense of [\[7,](#page-3-2) [13\]](#page-4-1). Now, for *b* ∈ *L*, we define $s^*(b) = s(b) \cap M(L)$, $\alpha(b) = \{A \in L | a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$. In a complete DeMorgan frame *L*, there exists a binary operation \rightarrow . Explicitly the implication is given by $a \rightarrow b = \sqrt{c \in L : a \wedge c \leq b}$. We interpret $[a \leq b]$ as the degree to which $a \leq b$, then $[a \leq b] = a \rightarrow b$.

Definition 2.1. *[\[15\]](#page-4-2) An L-topology on a set X is a mapping* τ : *L*→*L which satisfying the following conditions:*

- *1.* $\tau(1) = \tau(0) = 1$;
- 2. *for any A*, *B*, $\tau(A \cap B) \geq \tau(A) \wedge \tau(B)$;
- *3. for any* $A_{\lambda} \in L^X, \lambda \in \Delta, \tau(\mathcal{V})$ $\bigvee_{\lambda \in \Delta} A_{\lambda}$) ≥ $\bigwedge_{\lambda \in \Delta}$ $\bigwedge_{\lambda \in \Delta} \tau(A_{\lambda}).$

The pair (X, τ) is called an *L*-fuzzy topological space. $\tau(U)$ is called the degree of openness of *U*, $\tau^*(U) = \tau(U')$

is called the degree of closedness of U , where U' is the L complement of *U*. For any family $\mathscr{U} \subset L^X$, $\tau(\mathscr{U}) = \bigwedge \tau(A)$ *A*∈U

is called the degree of openness of *U*.

For a subfamily $\Phi \subset L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ . For any $a \in L$, *a* denotes <u>*a*</u> constant value mapping from *X* to *L*, its value is *a*.

Definition 2.2. *An L-bitopological space (or L-bts for short) is an ordered triple* (X, τ_1, τ_2) *, where* τ_1 *and* τ_2 *are subfamilies of L ^X which contains* 0,1 *and is closed for any suprema and finite infima.*

Definition 2.3. *[\[24\]](#page-4-4) An L-fuzzy inclusion on X is a map* $ping \tilde{\subset} : L^X \times L^X \to L$ *defined by the equality* $\tilde{\subset} (A,B) =$ \wedge $\bigwedge_{x \in X} (A'(x) \vee B(x)).$

In this paper, we will write $[A \tilde{\subset} B]$ instead of $\tilde{\subset} (A, B)$.

Definition 2.4. *[\[9\]](#page-3-5) Let* (X, τ) *be an L-ts,* $a \in L \setminus \{1\}$ *, and* $A \in L^X$ *. A family* $\mu \subseteq L^X$ *is called*

- *1. an a-shading of A if for any* $x \in X$, $A'(x) \vee \vee \emptyset$ *B*∈µ $B(x) \nleq a$.
- *2. a strong a-shadining of A if* $\bigwedge_{x \in X} (A'(x) \vee \bigvee_{B \in \mathcal{A}} A'(x))$ *B*∈µ $B(x)$) $\nleq a$.

Definition 2.5. *[\[9\]](#page-3-5) Let* (X, τ) *be an L-ts,* $a \in L \setminus \{0\}$ *and* $A \in$ L^X *. A family* $\mu \subseteq L^X$ *is called*

- *1. an a*-remote neighborhood family of A if for any $x \in X$, $(A(x) \wedge \wedge)$ *B*∈µ $B(x)$) $\geq a$.
- 2. *a strong a-remote neighbourhood family of A if* $\bigvee_{x \in X} (A(x))$
	- ∧ ∧ *B*∈µ $B(x)) \not\geq a$.
- *3. a s*_{*a*}-cover of *A if for any* $x \in X$ *, it follows that* $a \in$ *s*(*A*^{\prime}(*x*)∨ \lor *B*∈µ *B*(*x*))*.*
- *4. a strong* s_a -cover of *A if for any* $x \in X$ *, it follows that* $a \in s(A)$ $\bigwedge_{x\in X}$ (*A*['](*x*) ∨ $\bigvee_{B\in\mathcal{A}}$ *B*∈µ *B*(*x*)))*.*
- *5. a* Q_a -cover of *A if for any* $x \in X$ *, it follows that* $\bigvee_{x \in X} (A'(x) \vee$ W *B*∈µ $B(x)$) $\geq a$.

Definition 2.6. [\[11\]](#page-4-5) Let (X, τ_1, τ_2) be an *L*-bts, $A \in L^X$. Then *A is called an* (i, j) *-semi-open set if* $A \leq jCl(iInt(A))$ *. The complement of an* (*i*, *j*)*-semi-open set is called an* (*i*, *j*)*-semiclosed set. Also,* (i, j) -SO(L^X) *and* (i, j) -SC(L^X) *will always denote the family of all* (*i*, *j*)*-semi-open sets and* (*i*, *j*)*-semiclosed sets respectively. Obviously,* $A \in (i, j)$ -SO(L^X) *if and only if* $A' \in (i, j)$ *-SC*(L^X)*.*

Definition 2.7. [\[11\]](#page-4-5) Let (L^X, τ_1, τ_2) be an *L*-bitopological $space, A, B \in L^X$. Let (i, j) -s $Int(A) = \vee \{B \in L^X | B \le A, B \in L^Y\}$ (i, j) -SO (L^X) }, (i, j) -sCl $(A) = \wedge \{B \in L^X | A \leq B, B \in (i, j)$ -*SC*(L^X)}*. Then* (*i*, *j*)*-s*Int(*A*) *and* (*i*, *j*)*-s*Cl(*A*) *are called the* (*i*, *j*)*-semi-interior and* (*i*, *j*)*-semi-closure of A, respectively.*

Definition 2.8. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopology on X.* For any $A \in L^X$, define a mapping $\tau_{(i,j)s}: L^X \to L$ by $\tau_{(i,j)s}(A) = \bigvee$ $\bigvee_{B\leq A} (\tau_i(B)\wedge \bigwedge_{x_{\lambda}\prec}$ *x*^λ ≺*A* \wedge $\bigwedge_{x_\lambda \not\leq D \geq B} (\tau_i(D'))^{\widetilde{\prime}})$ *. Then* $\tau_{(i,j)s}$ *is*

called the L-fuzzy (*i*, *j*)-semi-open operator induced by $τ_1$ *and* τ_2 , where $\tau_{(i,j)s}(A)$ can be regarded as the degree to which A i *s* (i, j) -semi-open and $\tau_{(i, j)s}^{\star}(B) = \tau_{(i, j)s}(B')$ can be regarded *as the degree to which B is* (*i*, *j*)*-semi-closed. For any family* $\mathscr{U} \subset L^X$, $\tau_{(i,j)s}(\mathscr{U}) = \Lambda$ $\bigwedge_{A \in \mathscr{U}} \tau_{(i,j)s}(A)$ *is called the degree of* (i, j) -semi-openness of \mathcal{U} .

Definition 2.9. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopology on X and let* $\tau_{(i,j)s}$ *be the L-fuzzy* (i,j) -semi-open operator induced *by* τ_1 *and* τ_2 *. Then* $\tau_i(A) \leq \tau_{(i,j)s}(A)$ *for any* $A \in L^X$ *.*

Definition 2.10. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological* $space. G \in L^X$ is said to be L -fuzzy (i, j) -s-compact if for every *family* $\mathscr{U} \subset L^X$ *, it follows that* \bigwedge $\bigwedge_{A \in \mathscr{U}} \tau_{(i,j)s}(A) \land \bigwedge_{x \in \mathcal{Y}}$ $\bigwedge_{x\in X}$ (*G*['](*x*) ∨ W *A*∈U $A(x)$) \leq \forall $V\in 2^{(\mathcal{U})}$ \wedge $\bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in \mathcal{I}}$ *A*∈V *A*(*x*))*.*

3. Measures of fuzzy (*i*, *j*)**-***s***-compactness**

Let (X, τ_1, τ_2) be an *L*-bitopological space and $G \in L^X$. Then *G* is fuzzy (i, j) -s-compactness if and only if for every family $\mathscr U$ of (i, j) -semi-open *L*-sets, it follows that $\bigwedge_{x \in X} (G'(x) \vee$ W *A*∈U $A(x)$) \leq \forall $V\in 2^{(\mathcal{U})}$ \wedge $\bigwedge_{x\in X}$ (*G*['](*x*) ∨ $\bigvee_{A\in\mathcal{I}}$ *A*∈V *A*(*x*)). So for every family $\mathscr U$ of (i, j) -semi-open *L*-sets, $[[G \tilde{\subset} \vee \mathscr U] \leq \quad \bigvee$ V _{V∈2}(?) $[G \tilde{\subset} \vee$ \mathcal{V}] = 1. We know that an *L*-topology τ can be looked as a special *L*-fuzzy topology. Therefore, $A \in L^X$ is an (i, j) -

semi-open set if and only if $\tau_{(i,j)s}(A) = 1$. Thus *G* is fuzzy (i, j) -*s*-compactness if and only if for every family $\mathcal{V} \subset L^X$, it follows that $\tau_{(i,j)s}(U) \leq [[G \tilde{\subset} \vee \mathscr{U}] \leq \quad \forall$ V [G⊂̃ ∨ *U*]]. Therefore, we can naturally generalize the notion of fuzzy

 (i, j) -s-compactness degrees to L-fuzzy bitopological spaces as follows:

Definition 3.1. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $G \in L^X$. The fuzzy (i, j) -s-compactness degree $cd_{(i,j)s}$ *of G is defined as* $cd_{(i,j)s}(G) = \bigwedge$ $\bigwedge_{\mathscr{U}\subset L^{X}}(\tau_{(i,j)s}(\mathscr{U})\rightarrow$ $([G\tilde{\subset} ∨ \mathscr{U}] \rightarrow √$ $\bigvee_{\mathscr{V}\in 2^{(\mathscr{U})}}[G\tilde{\subset}\vee\mathscr{V}]))=\bigwedge_{\mathscr{U}\subset I}$ $\bigwedge_{\mathscr{U}\subset L^X}(\tau_{(i,j) s}(\mathscr{U})\to$ $($ \wedge $\bigwedge_{x \in X} (G'(x) \vee \bigvee_{A \in \mathscr{C}}$ *A*∈U $A(x)$ \rightarrow \forall $V\in 2^{(\mathcal{U})}$ \wedge $\bigwedge_{x\in X}$ (*G*['](*x*) ∨ $\bigvee_{A\in\mathcal{I}}$ *A*∈V *A*(*x*))))

Theorem 3.2. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space* $and G \in L^{X}$ *. Then* $cd_{(i,j)s}(G) \leq cd_{\tau_{i}}(G)$ *.*

Proof. Straightforward.

Theorem 3.3. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space* and $G \in L^{X}$. Then G is fuzzy (i, j) -s-compactness in (X, τ_1, τ_2) *if and only if scd*_{$\chi_{\tau_1,\tau_2}(G) = 1$ *.*}

 \Box

Proof. Let (X, τ_1, τ_2) be an *L*-fuzzy bitopological space. The mapping $\chi_{\tau_1,\tau_2}: L^X \to L$ defined by

$$
\chi_{\tau_1,\tau_2}(A) = \left\{ \begin{array}{ll} 1 & \text{if } A \in \tau_1 \text{ or } \tau_2 \\ 0 & \text{if } A \notin \tau_1 \text{ and } \tau_2 \end{array} \right.
$$

is a special *L*-fuzzy bitopology. Then $A \in L^X$ is an (i, j) -semiopen set in *L*-bitopology τ if and only if $(\chi_{\tau_1,\tau_2})_{(i,j)s}(A) = 1$. Thus by the definition of fuzzy (i, j) -s-compactness and the properties of \rightarrow , we know that *G* is fuzzy (i, j) -*s*-compactness if and only if for every family $\mathscr{U}\subset L^{X},$ then $(\chi_{\tau_{1},\tau_{2}})_{(i,j)s}(\mathscr{U})\leq$ $\left[\left[G\tilde{\subset} \vee \mathscr{U}\right] \leq \vee \vee \left[G\tilde{\subset} \vee \mathscr{V}\right]\right]$. This implies that \tilde{G} is fuzzy $V\in 2^{(\mathcal{U})}$

 (i, j) -*s*-compact if and only if for every family $\mathcal{U} \subset L^X$, it follows that $(\chi_{\tau_1, \tau_2})_{(i,j)s}(\mathscr{U}) \to ([[G \tilde{\subset} \vee \mathscr{U}] \leq \quad \vee$ V _{V∈2}(*w*) *G*⊂ ∨ $[V]$] = 1. By the definition of $scd_{(\chi_{\tau_1,\tau_2})_{(i,j)s}}$, the conclusion is hold. \Box

Theorem 3.4. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space* and $G \in L^{X}$. G *is L-fuzzy* (i, j) -s-compactness in (X, τ_1, τ_2) if *and only if* $cd_{(i,j)s}(G) = 1$ *.*

Proof. By the definition of *L*-fuzzy (i, j) -*s*-compactness, we know that *G* is L-fuzzy (i, j) -*s*-compactness in (X, τ_1, τ_2) if and only if for every family $G \in L^X$, it follows that

$$
\tau_{(i,j)s}(\mathscr{U})\wedge [G\tilde{\subset} \vee \mathscr{V}]\leq \bigvee_{\mathscr{V}\in 2^{(\mathscr{U})}}[G\tilde{\subset} \vee \mathscr{V}].
$$

By the properties of \rightarrow , we obtain that *G* is *L*-fuzzy (i, j) *s*-compactness in (X, τ_1, τ_2) if and only if for every family $\mathscr{U} \subset L^X$, it follows that

$$
\tau_{(i,j)s}(\mathscr{U}) \to ([G \tilde{\subset} \vee \mathscr{U}] \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \tilde{\subset} \vee \mathscr{V}]] = 1.
$$

By the definition of $cd_{(i,j)s}$, the conclusion is hold. \Box

Lemma 3.5. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space* and $G \in L^X$. Then $cd_{(i,j)s}(G) \ge a$ *if and only if for any* $\mathscr{U} \subset$ L^X , $\tau_{(i,j)s}(\mathscr{U}) \wedge [G \tilde{\subset} \vee \mathscr{U}] \wedge a \leq \quad \forall$ V [*G*⊂̃ ∨ ∜].

Proof. For any $a \in L$, $cd_{(i,j)s}(G) \ge a$, that is,

$$
\bigwedge_{\mathscr{U}\subset L^X} (\tau_{(i,j)s}(\mathscr{U}) \to ([G\tilde{\subset} \vee \mathscr{U}] \to \bigvee_{\mathscr{V}\in 2^{(\mathscr{U})}} [G\tilde{\subset} \vee \mathscr{V}])] \ge a
$$

if and only if for any $\mathscr{U} \subset L^X$,

$$
\tau_{(i,j)s}(\mathscr{U}) \to ([G\tilde{\subset} \vee \mathscr{U}] \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G\tilde{\subset} \vee \mathscr{V}]) \ge a
$$

if and only if (by the property (6) of \rightarrow) for any $\mathcal{U} \subset L^X$,

$$
\tau_{(i,j)s}(\mathscr{U})\wedge [G\tilde{\subset} \vee \mathscr{U}]) \to \bigvee_{\mathscr{V}\in 2^{(\mathscr{U})}} [G\tilde{\subset} \vee \mathscr{V}] \geq a.
$$

if and only if (by the property (1) of \rightarrow) for any $\mathcal{U} \subset L^X$,

$$
\tau_{(i,j)s}(\mathscr{U})\wedge[G\tilde{\subset}\vee\mathscr{U}]\wedge a\leq\bigvee_{\mathscr{V}\in2^{(\mathscr{U})}}[G\tilde{\subset}\vee\mathscr{V}].
$$

Theorem 3.6. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and G* ∈ *L*^X*. Then* $cd_{(i,j)s}(G)$ ≥ *a if and only if for any* $\mathscr{P} \subset L^X$, ∨ $\bigvee_{F \in \mathscr{P}} \tau_{(i,j)s}^{\star}(F)' \vee (\bigvee_{x \in \mathcal{X}}$ $\bigvee_{x \in X} (G(x) \land \bigwedge_{F \in \mathscr{E}}$ *F*∈P $F(x))$) \vee *a'* \geq \wedge $\mathscr{H} \in 2^{(\mathscr{P})}$ W $\bigvee\limits_{x \in X} (G(x) \land \bigwedge\limits_{F \in \mathcal{S}}$ *F*∈H *F*(*x*)).

Proof. It can be easily obtained by Lemma [3.5](#page-2-0) and the definition of $\tau_{(i,j)s}^*$. □

Theorem 3.7. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space* and $G \in L^X$. Then $cd_{(i,j)s}(G) = \vee \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \wedge [G \tilde{\subset} \vee G] \}$ \mathscr{U} \wedge *a* ≤ \wedge $\bigwedge_{\mathscr{V}\in 2^{(\mathscr{U})}}[G\tilde{\subset}\vee \mathscr{U}], \forall \mathscr{U}\subset L^{X}\}.$

Proof. By Lemma [3.5,](#page-2-0) $cd_{(i,j)s}(G)$ is an upper bound of $\{a \in G\}$ $L: \tau_{(i,j)s}(\mathcal{U}) \wedge [G \tilde{\subset} \vee \mathcal{U}] \wedge a \leq \quad \text{A}$ $\bigwedge_{\mathscr{V}\in 2^{(\mathscr{U})}}[G\tilde{\subset}\vee \mathscr{U}], \forall \mathscr{U}\subset L^{X}\}.$ Since $cd_{(i,j)s}(G) = \bigwedge$ $\bigwedge_{\mathscr{U}\setminus\subset L^X}(\tau_{(i,j)s}(\mathscr{U})\to$ ($[G \tilde{\subset} \vee \mathscr{U}] \rightarrow \Lambda$ $\bigwedge_{\mathscr{U}\in 2^{(\mathscr{U})}} [G\tilde{\subset} \vee \mathscr{V}])$, then for every family $\mathscr{U} \subset$ L^X , we have

$$
cd_{(i,j)s}(G) \leq \tau_{(i,j)s}(\mathcal{U}) \to ([G \tilde{\subset} \vee \mathcal{U}] \to \bigvee_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \tilde{\subset} \vee \mathcal{V}])
$$

$$
= (\tau_{(i,j)s}(\mathcal{U}) \wedge [G \tilde{\subset} \vee \mathcal{U}]) \to \bigwedge_{\mathcal{V} \in 2^{(\mathcal{U})}} [G \tilde{\subset} \vee \mathcal{V}].
$$

By the property (1) of \rightarrow , we obtain that for every family $\mathscr{U} \subset L^X$, $\tau_{(i,j)s}(\mathscr{U}) \wedge [G \tilde{\subset} \vee \mathscr{U}] \wedge cd_{(i,j)s}(G) \leq \quad \bigvee$ V
^{Y∈2(?}⁄ \mathscr{V} , thus $cd_{(i,j)s}(G) = \vee \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \wedge [G \tilde{\subset} \vee \mathscr{U}] \wedge a \leq$ \bigwedge [*G*⊂ ∨ \mathcal{V}'], $\forall \mathcal{U} \subset L^X$ }. Therefore, the conclusion is (\mathscr{U}) $^{\mathscr{V} \in 2^{(%)} }$ hold. \Box

In order to write simply, for any mapping $\tau : L^X \to L$, denote $\tau_b = \{A \in L^X : \tau(A) \ge b\}.$

Theorem 3.8. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* G ∈ L^X , a ∈ L \{0}*. Then the following conditions are equivalent:*

- *1.* $cd_{(i,j)s}(G) \geq a$.
- *2. For any b* ∈ *P*(*L*)*, b* \geq *a, each strong b*-shading *U of G* with $\tau_{(i,j)s}(\mathscr{U}) \nleq b$ has a finite subfamily $\mathscr V$ which is *a strong b-shading of G.*
- *3. For any b* ∈ *P*(*L*)*, b* \geq *a, each strong b- shadingU of G* with $\tau_{(i,j)s}(\mathscr{U}) \nleq b$, there exists a finite subfamily \mathscr{V} *of* $\mathscr U$ and $r \in \alpha^*(b)$ such that $\mathscr V$ is an r-shading of G.
- *4. For any b* ∈ *P*(*L*)*, b* \geq *a, each strong b*-shading *U of G* with $\tau_{(i,j)s}(\mathscr{U}) \nleq b$, there exists a finite subfamily \mathscr{V} *of* $\mathscr U$ and $r \in \alpha^*(b)$ such that $\mathscr V$ is a strong *r*-shading *of G.*
- *5.* For any $b \in M(L)$, $b \nleq a'$, each strong b-remote family $\mathscr P$ *of G* with $\tau^\star_{(i,j)s}(\mathscr P) \nleq b'$ has a finite subfamily $\mathscr H$ *which is a strong b-remote family of G.*

 \Box

- *6.* For any $b \in M(L)$, $b \nleq a'$, each strong *b*-remote fam*ily* \mathscr{P} *of G with* $\tau^*_{(i,j)s}(\mathscr{P}) \nleq b'$, there exists a finite *subfamily* \mathscr{H} *of* \mathscr{P} *and* $r \in s^*(b)$ *such that* \mathscr{H} *is an r-remote family of G.*
- *7.* For any $b \in M(L)$, $b \nleq a'$, each strong *b*-remote family $\mathscr P$ *of G* with $\tau^{\star}_{(i,j)s}(\mathscr P) \nleq b'$, there exists a finite sub*family* \mathscr{H} *of* $\overline{\mathscr{P}}$ *and* $r \in s^{\star}(b)$ *such that* \mathscr{H} *is a strong r-remote family of G.*
- *8. For any b* ≤ *a, r* ∈ *s*(*b*)*, b,r* \neq 0*, each* Q_b *-cover* \mathcal{U} ⊂ $(\tau_{(i,j)s})_b$ *of G* has a finite subfamily $\mathscr V$ which is a Q_r *cover of G.*
- *9. For any* $b \le a, r \in s(b), b, r \ne 0$, each Q_b -cover $\mathcal{U} \subset$ (τ(*i*, *^j*)*^s*)*^b of G has a finite subfamily* V *which is a strong sr-cover of G.*
- *10. For any b* ≤ *a,* $r \in s(b)$ *,* $b, r \neq 0$ *, each* Q_b *-cover* $\mathcal{U} \subset \mathcal{U}$ $(\tau_{(i,j)s})_b$ *of G* has a finite subfamily $\mathcal V$ which is a s_r*cover of G.*
- *11. For any* $b \leq a, r \in s(b), b, r \neq 0$, each strong s_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a *Qr-cover of G.*
- *12. For any* $b \le a, r \in s(b), b, r \ne 0$, each strong s_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a *strong sr-cover of G.*
- *13. For any* $b \le a, r \in s(b), b, r \ne 0$, each strong s_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a *sr-cover of G.*

In Theorem 3.8 (8)-(13), if we replace $b, r \neq 0$ and $r \in s(b)$ with $b \in M(L)$ and $r \in s^*(b)$, then the conclusions are still right.

Theorem 3.9. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $G \in L^X$, $a \in L \setminus \{0\}$. If for any $c, d \in L$, $s(c \wedge d)$ *s*(*c*)∧*s*(*d*)*. Then the following conditions are equivalent:*

- *1.* $cd_{(i,j)s}(G) \geq a$.
- *2. For any* $b \in s(a)$ *,* $b \neq 0$ *, each strong* s_b *-cover* $\mathcal U$ *of G* $with b \in s(\tau_{(i,j)s}(\mathcal{U}))$ has a finite subfamily $\mathcal V$ which *is a Qb-cover of G.*
- *3. For any* $b \in s(a)$ *,* $b \neq 0$ *, each strong* s_b *-cover* $\mathcal U$ *of G* $with b \in s(\tau_{(i,j)s}(\mathcal{U}))$ has a finite subfamily $\mathcal V$ which *is a strong sb-cover of G.*
- *4. For any* $b \in s(a)$ *,* $b \neq 0$ *, each strong* s_b *-cover U of G* $with b \in s(\tau_{(i,j)s}(\mathcal{U}))$ has a finite subfamily $\mathcal V$ which *is a strong sb-cover of G.*

Theorem 3.10. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $G, H \in L^X$ *. Then* $cd_{(i,j)s}(G \wedge H) = cd_{(i,j)s}(G) \wedge$ $cd_{(i,j)s}(H)$.

Proof. By Theorem 3.7, we have
$$
cd_{(i,j)s}(G \wedge H) = \vee \{a \in L : \tau_{(i,j)s}(\mathcal{U}) \wedge [(G \wedge H)\tilde{\subset} \vee \mathcal{U}] \wedge a \leq \bigwedge_{\mathcal{V} \in 2(\mathcal{U})} [(G \wedge H)\tilde{\subset} \vee \mathcal{U}] \wedge \mathcal{U} \leq \mathcal{U} \wedge [(G \wedge H)\tilde{\subset} \vee \mathcal{U}] \wedge \mathcal{U} \leq \mathcal{U} \wedge \mathcal{U} \wedge \mathcal{U} \wedge \mathcal{U} \leq \mathcal{U} \leq \mathcal{U} \leq \mathcal{U} \wedge \mathcal{U} \leq \mathcal{U} \vee \mathcal{U} \wedge \mathcal{U} \leq \mathcal{U} \vee \mathcal{U} \vee \mathcal{U} \leq \mathcal{U} \leq \mathcal{U} \leq \mathcal{U} \vee \mathcal{U} \vee \mathcal{U} \leq \mathcal{U} \vee \mathcal{U} \vee \mathcal{U} \leq \mathcal{U} \vee \mathcal{U} \vee \mathcal{U} \leq \mathcal{U} \vee \mathcal{U} \le
$$

Theorem 3.11. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $G, H \in L^X$ *. Then* $cd_{(i,j)s}(G \wedge H) = cd_{(i,j)s}(G) \wedge$ $\tau_{(i,j)s}^*(H)$.

Proof. By Theorem 3.7, $cd_{(i,j)s}(G \wedge H) = \vee \{a \in L : \tau_{(i,j)s}(\mathcal{U})\}$ \wedge [$(G \wedge H)$ Č∨*U*]∧*a* ≤ ∧ $\bigwedge_{\mathscr{V}\in 2^{(\mathscr{U})}}[(G\wedge H)\tilde{\subset}\vee\mathscr{U}], \forall \mathscr{U}\subset L^{X}\}$ $= \vee \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \wedge [G \tilde{\subset} (H' \vee \vee \mathscr{U})] \wedge a \leq \wedge \}$ $\bigwedge_{\mathscr{V}\in 2^{(\mathscr{U})}}[G\tilde{\subset}(H^{\prime}%)]\longrightarrow\mathscr{U}(\mathscr{U})$ \forall \forall \forall \forall), \forall $\mathscr{U} \subset L^X$ $\} \geq \{a \land \tau_{(i,j)s}^{\star}(H) : \tau_{(i,j)s}(\mathscr{U}) \land [G \tilde{\subset} \vee \mathscr{U}]$ $∧ a \leq \wedge$ $\bigwedge_{\mathscr{V}\in 2^{(\mathscr{U})}}[G\tilde{\subset}\vee\mathscr{V}], \forall\mathscr{U}\subset L^{X}\}=cd_{(i,j)s}(G)\wedge\tau_{(i,j)s}^{\star}(H).$

Corollary 3.12. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological* $space$ and $G \in L^{X}$ *. Then* $cd_{(i,j)s}(G) = cd_{(i,j)s}(\underline{1}) \wedge \tau_{(i,j)s}^{\star}(G)$ *.*

References

- [1] H. Aygun and S. E. Abbas, On characterization of some covering properties in L-fuzzy topological spaces in Sostak sense, *Information Sciences*, 165 (2004), 221– 233.
- [2] H. Aygun and S. E. Abbas, Some good extensions of compactness in Sostak's L-fuzzy topology, *Hacett. J. Math. Stat.*, 36(2)(2007), 115–125.
- [3] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, 24(1968), 39–90.
- [4] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, *Indagationes Mathematicae (Proceedings)*, 85(1982), 403–414.
- [5] R. Erturk and M. Demirci, On the compactness in fuzzy topological spaces in Sostak's sense, *Mat. Vesnik*, 50(1998), 75–81.
- [6] A. Es and D. Coker, On several types of degree of fuzzy compactness, *Fuzzy Sets and Systems*, 87 (1997), 349– 359.
- [7] J. M. Fang, Categories isomorphic to L-FTOP, *Fuzzy Sets and Systems*, 157(2006), 820–831.
- [8] J. M. Fang and Y. L. Yue, Base and subbase in I-fuzzy topological spaces, *J. Math. Res. Expositon*, 26(2006), 89–95.
- [9] T. E. Gantner, R. C. Steinlage and R. H. Warren, Compactness in fuzzy topological spaces, *J. Math. Anal. Appl.*, 62 (1978), 547–562.

- [10] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, *A Compendium of Continuous Lattices*, Springer Verlag, Berlin, 1980.
- [11] P. Gomathi sundari and R. Menaga, On Fuzzy (*i*, *j*)-semiopen sets in *L*-fuzzy bitopological spaces (submitted).
- [12] P. Gomathi sundari and R. Menaga, Generalization of *L*-fuzzy bitopological compact spaces (submitted).
- [13] U. Hohle, Upper semicontinuous fuzzy sets and applications, *J. Math. Anal. Appl.*, 78 (1980), 659–673.
- [14] U. Hohle and S. E. Rodabaugh, *Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory*, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Boston/Dordrecht/ London, 3, 1999.
- [15] T. Kubiak, *On Fuzzy Topologies*, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, 1985.
- [16] H. Y. Li and F. G. Shi, Measures of fuzzy compactness in L-fuzzy topological spaces, *Comput. Math. Appl.*, 59 (2010), 941–947.
- [17] Y. M. Liu, Compactness and Tychono theorem in fuzzy topological spaces, *Acta Math. Sinica*, 24 (1981), 260– 268.
- [18] Y. M. Liu and M. K. Luo, *Fuzzy Topology*, World Scientific Publishing, Singapore, 1997.
- [19] R. Lowen, Fuzzy topological spaces and fuzzy compactness, *J. Math. Anal. Appl.*, 56(1976), 621–633.
- [20] R. Lowen, A comparision of diffierent compactness notions in fuzzy topological spaces, *J.Math. Anal. Appl.*, 64 (1978), 446–454.
- [21] A. A. Ramadan and S. E. Abbas, On L-smooth compactness, *J. Fuzzy Math.*, 9(1)(2001), 59–73.
- [22] F. G. Shi, Measures of compactness in L-topological spaces, *Annals of Fuzzy Mathematics and Informatics*, 2(2011), 183–192.
- [23] A. P. Sostak, On a fuzzy topological structure, *Rend. Ciec. Mat. Palermo*, 11(2) (1985), 89–103.
- [24] A. P. Sostak, Two decades of fuzzy topology: Basic ideas, notions and results, *Russian Math. Surveys*, 44 (1989), 125–186.
- [25] G. J. Wang, *Theory of L-Fuzzy Topological Spaces*, Shaanxi Normal University Press, Xi'an, in Chinese, 1988.
- [26] M. S. Ying, A new approach to fuzzy topology I, *Fuzzy Sets and Systems*, 39(3)(1991), 303–321.
- [27] Y. L. Yue and J. M. Fang, Generated I-fuzzy topological spaces, *Fuzzy Sets and Systems*, 154(2005), 103–117.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

