

https://doi.org/10.26637/MJM0803/0055

Measure of fuzzy (i, j)-s-compactness

P. Gomathi Sundari¹ and R. Menaga^{2*}

Abstract

In this paper, the notion of fuzzy (i, j)-s-compactness degrees is introduced in *L*-fuzzy topological spaces by means of the implication operation of *L*. Characterizations of fuzzy (i, j)-s-compactness degrees in *L*-fuzzy topological spaces are obtained, and some properties of fuzzy (i, j)-s-compactness degrees are researched.

Keywords

L-bitopological spaces, fuzzy (i, j)-s-compactness, Fuzzy (i, j)-s-compactness degree.

AMS Subject Classification

54A40, 54D30, 03E72.

¹Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur-613005, Tamil Nadu, India. ²Department of Mathematics, Sengamala Thayaar Educational Trust Women's College (Affiliated to Bharathidasan University), Mannargudi-614016, Tamil Nadu, India.

*Corresponding author: ¹rsgcgomathi18@gmail.com; ²menagamohan2008@gmail.com

Article History: Received 24 March 2020; Accepted 12 June 2020

©2020 MJM.

Contents

 1
 Introduction
 1050

 2
 preliminaries
 1050

 3
 Measures of fuzzy (*i*, *j*)-s-compactness
 1051

 References
 1053

1. Introduction

It is known that compactness and its stronger and weaker forms play very important roles in topology. Based on fuzzy topological spaces introduced by Chang [4], various kinds of fuzzy compactness [4, 7] have been established. However, these concepts of fuzzy compactness rely on the structure of L and L is required to be completely distributive. In [10], for a complete De Morgan algebra L, author introduced a new definition of fuzzy compactness in L-topological spaces using open L-sets and their inequality. This new definition does not depend on the structure of L. In this paper, the notion of fuzzy (i, j)-s-compactness degrees is introduced in L-fuzzy topological spaces by means of the implication operation of L. Characterizations of fuzzy (i, j)-s-compactness degrees in L-fuzzy topological spaces are obtained, and some properties of fuzzy (i, j)-s-compactness degrees are researched.

2. preliminaries

Throughout this paper, $(L, \lor, \land, ')$ is a complete De Morgan algebra, X a nonempty set and L^X the set of all L-fuzzy

sets (or *L*-sets for short) on *X*. The smallest element and the largest element in L are denoted by 0 and 1. The smallest element and the largest element in L^X are denoted by 0 and 1. An element *a* in *L* is called a prime element if $b \wedge c \leq a$ implies that $b \leq a$ or $c \leq a$. a in L is called a co-prime element if a' is a prime element [6]. The set of nonunit prime elements in L is denoted by P(L) and the set of nonzero coprime elements in L by M(L). The binary relation \prec in L is defined as follows: for $a, b \in L, a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [5]. In a completely distributive De Morgan algebra L, each element b is a sup of $\{a \in L | a \prec b\}$. The set $s(b) = \{a \in L | a \prec b\}$ is called the greatest minimal family of b in the sense of [7, 13]. Now, for $b \in L$, we define $s^*(b) = s(b) \cap M(L)$, $\alpha(b) = \{A \in L | a' \prec b'\}$ and $\alpha^*(b) = \alpha(b) \cap P(L)$. In a complete DeMorgan frame L, there exists a binary operation \rightarrow . Explicitly the implication is given by $a \to b = \forall \{c \in L : a \land c \leq b\}$. We interpret $[a \leq b]$ as the degree to which $a \le b$, then $[a \le b] = a \rightarrow b$.

Definition 2.1. [15] An L-topology on a set X is a mapping $\tau : L \rightarrow L$ which satisfying the following conditions:

- *1.* $\tau(\underline{1}) = \tau(\underline{0}) = 1;$
- 2. for any $A, B, \tau(A \cap B) \ge \tau(A) \land \tau(B)$;
- 3. for any $A_{\lambda} \in L^X, \lambda \in \Delta$, $\tau(\bigvee_{\lambda \in \Delta} A_{\lambda}) \ge \bigwedge_{\lambda \in \Delta} \tau(A_{\lambda})$.

The pair (X, τ) is called an *L*-fuzzy topological space. $\tau(U)$ is called the degree of openness of U, $\tau^*(U) = \tau(U')$ is called the degree of closedness of U, where U' is the *L*-complement of U. For any family $\mathscr{U} \subset L^X$, $\tau(\mathscr{U}) = \bigwedge_{A \in \mathscr{U}} \tau(A)$

is called the degree of openness of U.

For a subfamily $\Phi \subset L^X$, $2^{(\Phi)}$ denotes the set of all finite subfamilies of Φ . For any $a \in L$, *a* denotes <u>*a*</u> constant value mapping from *X* to *L*, its value is *a*.

Definition 2.2. An *L*-bitopological space (or *L*-bts for short) is an ordered triple (X, τ_1, τ_2) , where τ_1 and τ_2 are subfamilies of L^X which contains $\underline{0}, \underline{1}$ and is closed for any suprema and finite infima.

Definition 2.3. [24] An L-fuzzy inclusion on X is a mapping $\tilde{\subset} : L^X \times L^X \to L$ defined by the equality $\tilde{\subset}(A,B) = \bigwedge_{x \in X} (A'(x) \lor B(x)).$

In this paper, we will write $[A \tilde{\subset} B]$ instead of $\tilde{\subset} (A, B)$.

Definition 2.4. [9] Let (X, τ) be an L-ts, $a \in L \setminus \{1\}$, and $A \in L^X$. A family $\mu \subseteq L^X$ is called

- 1. an a-shading of A if for any $x \in X$, $A'(x) \lor \bigvee_{B \in \mu} B(x) \nleq a$.
- 2. a strong a-shadining of A if $\bigwedge_{x \in X} (A'(x) \lor \bigvee_{B \in \mu} B(x)) \nleq a$.

Definition 2.5. [9] Let (X, τ) be an L-ts, $a \in L \setminus \{0\}$ and $A \in L^X$. A family $\mu \subseteq L^X$ is called

- 1. an a-remote neighborhood family of A if for any $x \in X$, $(A(x) \land \bigwedge_{B \in u} B(x)) \not\geq a$.
- 2. a strong a-remote neighbourhood family of A if $\bigvee_{x \in X} (A(x))$
 - $\wedge \bigwedge_{B \in \mu} B(x)) \not\geq a.$
- 3. a s_a-cover of A if for any $x \in X$, it follows that $a \in s(A'(x) \lor \bigvee_{B \in \mu} B(x))$.
- 4. a strong s_a -cover of A if for any $x \in X$, it follows that $a \in s(\bigwedge_{x \in X} (A'(x) \lor \bigvee_{B \in \mu} B(x))).$
- 5. $a Q_a$ -cover of A if for any $x \in X$, it follows that $\bigvee_{x \in X} (A'(x) \lor \bigvee_{x \in \mu} B(x)) \ge a$.

Definition 2.6. [11] Let (X, τ_1, τ_2) be an L-bts, $A \in L^X$. Then A is called an (i, j)-semi-open set if $A \leq j \operatorname{Cl}(i\operatorname{Int}(A))$. The complement of an (i, j)-semi-open set is called an (i, j)-semiclosed set. Also, (i, j)-SO (L^X) and (i, j)-SC (L^X) will always denote the family of all (i, j)-semi-open sets and (i, j)-semiclosed sets respectively. Obviously, $A \in (i, j)$ -SO (L^X) if and only if $A' \in (i, j)$ -SC (L^X) .

Definition 2.7. [11] Let (L^X, τ_1, τ_2) be an L-bitopological space, $A, B \in L^X$. Let (i, j)-s $Int(A) = \lor \{B \in L^X | B \le A, B \in (i, j)$ - $SO(L^X)\}, (i, j)$ - $sCl(A) = \land \{B \in L^X | A \le B, B \in (i, j)$ - $SC(L^X)\}$. Then (i, j)-sInt(A) and (i, j)-sCl(A) are called the (i, j)-semi-interior and (i, j)-semi-closure of A, respectively.

Definition 2.8. Let (X, τ_1, τ_2) be an L-fuzzy bitopology on X. For any $A \in L^X$, define a mapping $\tau_{(i,j)s} : L^X \to L$ by $\tau_{(i,j)s}(A) = \bigvee_{B \leq A} (\tau_i(B) \land \bigwedge_{x_\lambda \prec A} \bigwedge_{x_\lambda \nleq D \geq B} (\tau_i(D'))')$. Then $\tau_{(i,j)s}$ is

called the L-fuzzy (i, j)-semi-open operator induced by τ_1 and τ_2 , where $\tau_{(i,j)s}(A)$ can be regarded as the degree to which A is (i, j)-semi-open and $\tau^*_{(i,j)s}(B) = \tau_{(i,j)s}(B')$ can be regarded as the degree to which B is (i, j)-semi-closed. For any family $\mathscr{U} \subset L^X$, $\tau_{(i,j)s}(\mathscr{U}) = \bigwedge_{A \in \mathscr{U}} \tau_{(i,j)s}(A)$ is called the degree of (i, j)-semi-openness of \mathscr{U} .

Definition 2.9. Let (X, τ_1, τ_2) be an L-fuzzy bitopology on X and let $\tau_{(i,j)s}$ be the L-fuzzy (i, j)-semi-open operator induced by τ_1 and τ_2 . Then $\tau_i(A) \leq \tau_{(i,j)s}(A)$ for any $A \in L^X$.

Definition 2.10. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space. $G \in L^X$ is said to be L-fuzzy (i, j)-s-compact if for every family $\mathscr{U} \subset L^X$, it follows that $\bigwedge_{A \in \mathscr{U}} \tau_{(i,j)s}(A) \land \bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x)) \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} \bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathscr{V}} A(x)).$

3. Measures of fuzzy (i, j)-s-compactness

Let (X, τ_1, τ_2) be an *L*-bitopological space and $G \in L^X$. Then *G* is fuzzy (i, j)-*s*-compactness if and only if for every family \mathscr{U} of (i, j)-semi-open *L*-sets, it follows that $\bigwedge_{x \in X} (G'(x) \lor \bigvee_{x \in X} A(x)) \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})} x \in X} (G'(x) \lor \bigvee_{A \in \mathscr{V}} A(x))$. So for every famly \mathscr{U} of (i, j)-semi-open *L*-sets, $[[G \subset \lor \mathscr{U}] \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \subset \lor \mathscr{V}]] = \underline{1}$. We know that an *L*-topology τ can be looked as a special *L*-fuzzy topology. Therefore, $A \in L^X$ is an (i, j)semi-open set if and only if $\tau_{(i,j)s}(A) = 1$. Thus *G* is fuzzy (i, j)-*s*-compactness if and only if for every family $\mathscr{V} \subset L^X$, it follows that $\tau_{(i,j)s}(U) \leq [[G \subset \lor \mathscr{U}] \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \subset \lor \mathscr{U}]]$. Therefore, we can naturally generalize the notion of fuzzy (i, j)-*s*-compactness degrees to *L*-fuzzy bitopological spaces as follows:

Definition 3.1. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. The fuzzy (i, j)-s-compactness degree $cd_{(i,j)s}$ of G is defined as $cd_{(i,j)s}(G) = \bigwedge_{\mathscr{U} \subset L^X} (\tau_{(i,j)s}(\mathscr{U}) \to ([G\tilde{\subset} \lor \mathscr{U}] \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G\tilde{\subset} \lor \mathscr{V}])) = \bigwedge_{\mathscr{U} \subset L^X} (\tau_{(i,j)s}(\mathscr{U}) \to (\bigwedge_{x \in X} (G'(x) \lor \bigvee_{A \in \mathscr{U}} A(x)) \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})} x \in X} (G'(x) \lor \bigvee_{A \in \mathscr{V}} A(x))))$

Theorem 3.2. Let (X, τ_1, τ_2) be an *L*-fuzzy bitopological space and $G \in L^X$. Then $cd_{(i,j)s}(G) \leq cd_{\tau_i}(G)$.

Theorem 3.3. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then G is fuzzy (i, j)-s-compactness in (X, τ_1, τ_2) if and only if $scd_{\chi\tau_1,\tau_2}(G) = 1$. *Proof.* Let (X, τ_1, τ_2) be an *L*-fuzzy bitopological space. The mapping $\chi_{\tau_1, \tau_2} : L^X \to L$ defined by

$$\chi_{\tau_1,\tau_2}(A) = \begin{cases} 1 & \text{if } A \in \tau_1 \text{ or } \tau_2 \\ 0 & \text{if } A \notin \tau_1 \text{ and } \tau_2 \end{cases}$$

is a special *L*-fuzzy bitopology. Then $A \in L^X$ is an (i, j)-semiopen set in *L*-bitopology τ if and only if $(\chi_{\tau_1,\tau_2})_{(i,j)s}(A) = 1$. Thus by the definition of fuzzy (i, j)-*s*-compactness and the properties of \rightarrow , we know that *G* is fuzzy (i, j)-*s*-compactness if and only if for every family $\mathscr{U} \subset L^X$, then $(\chi_{\tau_1,\tau_2})_{(i,j)s}(\mathscr{U}) \leq$ $[[G \widetilde{\subset} \lor \mathscr{U}] \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \widetilde{\subset} \lor \mathscr{V}]]$. This implies that *G* is fuzzy

(i, j)-s-compact if and only if for every family $\mathscr{U} \subset L^X$, it follows that $(\chi_{\tau_1, \tau_2})_{(i, j)s}(\mathscr{U}) \to ([[G \widetilde{\subset} \lor \mathscr{U}]] \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \widetilde{\subset} \lor \mathscr{V}]$ $\mathscr{V}]] = 1$. By the definition of $scd_{(\chi_{\tau_1, \tau_2})_{(i, j)s}}$, the conclusion is hold. \Box

Theorem 3.4. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. G is L-fuzzy (i, j)-s-compactness in (X, τ_1, τ_2) if and only if $cd_{(i,j)s}(G) = 1$.

Proof. By the definition of *L*-fuzzy (i, j)-*s*-compactness, we know that *G* is L-fuzzy (i, j)-*s*-compactness in (X, τ_1, τ_2) if and only if for every family $G \in L^X$, it follows that

$$\tau_{(i,j)s}(\mathscr{U}) \wedge [G\tilde{\subset} \lor \mathscr{V}] \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G\tilde{\subset} \lor \mathscr{V}].$$

By the properties of \rightarrow , we obtain that *G* is *L*-fuzzy (i, j)*s*-compactness in (X, τ_1, τ_2) if and only if for every family $\mathscr{U} \subset L^X$, it follows that

$$\tau_{(i,j)s}(\mathscr{U}) \to ([G\tilde{\subset} \lor \mathscr{U}] \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G\tilde{\subset} \lor \mathscr{V}]] = 1.$$

By the definition of $cd_{(i,j)s}$, the conclusion is hold.

Lemma 3.5. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then $cd_{(i,j)s}(G) \ge a$ if and only if for any $\mathscr{U} \subset L^X$, $\tau_{(i,j)s}(\mathscr{U}) \land [G \widetilde{\subset} \lor \mathscr{U}] \land a \le \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \widetilde{\subset} \lor \mathscr{V}].$

Proof. For any $a \in L$, $cd_{(i,j)s}(G) \ge a$, that is,

$$\bigwedge_{\mathscr{U} \subset L^X} (\tau_{(i,j)s}(\mathscr{U}) \to ([G \widetilde{\subset} \lor \mathscr{U}] \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \widetilde{\subset} \lor \mathscr{V}])] \geq a$$

if and only if for any $\mathscr{U} \subset L^X$,

$$\tau_{(i,j)s}(\mathscr{U}) \to ([G\tilde{\subset} \lor \mathscr{U}] \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G\tilde{\subset} \lor \mathscr{V}]) \ge a$$

if and only if (by the property (6) of \rightarrow) for any $\mathscr{U} \subset L^X$,

$$\tau_{(i,j)s}(\mathscr{U}) \wedge [G \tilde{\subset} \vee \mathscr{U}]) \to \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \tilde{\subset} \vee \mathscr{V}] \geq a.$$

if and only if (by the property (1) of \rightarrow) for any $\mathscr{U} \subset L^X$,

$$au_{(i,j)s}(\mathscr{U}) \wedge [G \widetilde{\subset} \lor \mathscr{U}] \wedge a \leq \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \widetilde{\subset} \lor \mathscr{V}].$$

Theorem 3.6. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then $cd_{(i,j)s}(G) \ge a$ if and only if for any $\mathscr{P} \subset L^X$, $\bigvee_{F \in \mathscr{P}} \tau^*_{(i,j)s}(F)' \lor (\bigvee_{x \in X} (G(x) \land \bigwedge_{F \in \mathscr{P}} F(x))) \lor a' \ge$ $\bigwedge_{\mathcal{H} \in 2^{(\mathscr{P})} x \in X} \bigvee_{F \in \mathscr{H}} (G(x) \land \bigwedge_{F \in \mathscr{H}} F(x)).$

Proof. It can be easily obtained by Lemma 3.5 and the definition of $\tau^{\star}_{(i,j)s}$.

Theorem 3.7. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then $cd_{(i,j)s}(G) = \lor \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \land [G \subset \lor \mathscr{U}] \land a \leq \bigwedge_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \subset \lor \mathscr{U}], \forall \mathscr{U} \subset L^X \}.$

Proof. By Lemma 3.5, $cd_{(i,j)s}(G)$ is an upper bound of $\{a \in L : \tau_{(i,j)s}(\mathscr{U}) \land [G \subset \lor \mathscr{U}] \land a \leq \bigwedge_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \subset \lor \mathscr{U}], \forall \mathscr{U} \subset L^X \}.$ Since $cd_{(i,j)s}(G) = \bigwedge_{\mathscr{U}) \subset L^X} (\tau_{(i,j)s}(\mathscr{U}) \rightarrow ([G \subset \lor \mathscr{U}] \rightarrow \bigwedge_{\mathscr{U} \in 2^{(\mathscr{U})}} [G \subset \lor \mathscr{V}]))$, then for every family $\mathscr{U} \subset L^X$, we have

$$cd_{(i,j)s}(G) \leq au_{(i,j)s}(\mathscr{U})
ightarrow ([G ilde{\subset} \lor \mathscr{U}]
ightarrow \bigvee_{\mathscr{V} \in 2^{(\mathscr{U})}} [G ilde{\subset} \lor \mathscr{V}])$$

= $(au_{(i,j)s}(\mathscr{U}) \land [G ilde{\subset} \lor \mathscr{U}])
ightarrow \bigwedge_{\mathscr{U} \in 2^{(\mathscr{U})}} [G ilde{\subset} \lor \mathscr{V}].$

By the property (1) of \rightarrow , we obtain that for every family $\mathscr{U} \subset L^X$, $\tau_{(i,j)s}(\mathscr{U}) \wedge [G \widetilde{\subset} \lor \mathscr{U}] \wedge cd_{(i,j)s}(G) \leq \bigvee_{\substack{\mathscr{V} \in 2^{(\mathscr{U})} \\ \mathscr{V} \in 2^{(\mathscr{U})}}} [G \widetilde{\subset} \lor \mathscr{U}] \wedge a \leq$ $\bigwedge [G \widetilde{\subset} \lor \mathscr{V}], \forall \mathscr{U} \subset L^X \}.$ Therefore, the conclusion is $_{\substack{\mathscr{V} \in 2^{(\mathscr{U})} \\ \text{hold.}}}$

In order to write simply, for any mapping $\tau : L^X \to L$, denote $\tau_b = \{A \in L^X : \tau(A) \ge b\}$.

Theorem 3.8. Let (X, τ_1, τ_2) be an *L*-fuzzy bitopological space and $G \in L^X$, $a \in L \setminus \{0\}$. Then the following conditions are equivalent:

- 1. $cd_{(i,j)s}(G) \ge a$.
- For any b ∈ P(L), b ≱ a, each strong b-shading U of G with τ_{(i,j)s}(U) ≰ b has a finite subfamily V which is a strong b-shading of G.
- For any b ∈ P(L), b ≱ a, each strong b- shading U of G with τ_{(i,j)s}(U) ≰ b, there exists a finite subfamily V of U and r ∈ α^{*}(b) such that V is an r-shading of G.
- 4. For any $b \in P(L)$, $b \not\geq a$, each strong b-shading \mathscr{U} of G with $\tau_{(i,j)s}(\mathscr{U}) \not\leq b$, there exists a finite subfamily \mathscr{V} of \mathscr{U} and $r \in \alpha^*(b)$ such that \mathscr{V} is a strong r-shading of G.
- 5. For any $b \in M(L)$, $b \nleq a'$, each strong b-remote family \mathscr{P} of G with $\tau^*_{(i,j)s}(\mathscr{P}) \nleq b'$ has a finite subfamily \mathscr{H} which is a strong b-remote family of G.

- 6. For any $b \in M(L)$, $b \nleq a'$, each strong b-remote family \mathscr{P} of G with $\tau^*_{(i,j)s}(\mathscr{P}) \nleq b'$, there exists a finite subfamily \mathscr{H} of \mathscr{P} and $r \in s^*(b)$ such that \mathscr{H} is an *r*-remote family of G.
- 7. For any $b \in M(L)$, $b \nleq a'$, each strong b-remote family \mathscr{P} of G with $\tau^*_{(i,j)s}(\mathscr{P}) \nleq b'$, there exists a finite subfamily \mathscr{H} of \mathscr{P} and $r \in s^*(b)$ such that \mathscr{H} is a strong *r*-remote family of G.
- 8. For any $b \le a$, $r \in s(b)$, $b, r \ne 0$, each Q_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a Q_r -cover of G.
- 9. For any $b \le a$, $r \in s(b)$, $b, r \ne 0$, each Q_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a strong s_r -cover of G.
- 10. For any $b \le a$, $r \in s(b)$, $b, r \ne 0$, each Q_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a s_r -cover of G.
- 11. For any $b \le a$, $r \in s(b)$, $b, r \ne 0$, each strong s_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a Q_r -cover of G.
- 12. For any $b \le a$, $r \in s(b)$, $b, r \ne 0$, each strong s_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a strong s_r -cover of G.
- 13. For any $b \le a$, $r \in s(b)$, $b, r \ne 0$, each strong s_b -cover $\mathscr{U} \subset (\tau_{(i,j)s})_b$ of G has a finite subfamily \mathscr{V} which is a s_r -cover of G.

In Theorem 3.8 (8)-(13), if we replace $b, r \neq 0$ and $r \in s(b)$ with $b \in M(L)$ and $r \in s^{\star}(b)$, then the conclusions are still right.

Theorem 3.9. Let (X, τ_1, τ_2) be an *L*-fuzzy bitopological space and $G \in L^X$, $a \in L \setminus \{0\}$. If for any $c, d \in L$, $s(c \wedge d) = s(c) \wedge s(d)$. Then the following conditions are equivalent:

- 1. $cd_{(i,j)s}(G) \ge a$.
- For any b ∈ s(a), b ≠ 0, each strong s_b-cover 𝒞 of G with b ∈ s(τ_{(i,j)s}(𝒜)) has a finite subfamily 𝒱 which is a Q_b-cover of G.
- For any b ∈ s(a), b ≠ 0, each strong s_b-cover 𝒞 of G with b ∈ s(τ_{(i,j)s}(𝒜)) has a finite subfamily 𝒱 which is a strong s_b-cover of G.
- For any b ∈ s(a), b ≠ 0, each strong s_b-cover 𝒞 of G with b ∈ s(τ_{(i,j)s}(𝒜)) has a finite subfamily 𝒱 which is a strong s_b-cover of G.

Theorem 3.10. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G, H \in L^X$. Then $cd_{(i,j)s}(G \wedge H) = cd_{(i,j)s}(G) \wedge cd_{(i,j)s}(H)$.

$$\begin{array}{ll} \textit{Proof. By Theorem 3.7, we have } cd_{(i,j)s}(G \land H) = \lor \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \land [(G \land H) \tilde{\subset} \lor \mathscr{U}] \land a \leq \bigwedge_{\mathscr{V} \in 2^{(\mathscr{U})}} [(G \land H) \tilde{\subset} \lor \mathscr{U}] \\ \mathscr{U}], \forall \mathscr{U} \subset L^X\} = \lor \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \land [G \tilde{\subset} \lor \mathscr{U}] \land [H \tilde{\subset} \lor \mathscr{U}] \\ \mathscr{U}] \land a \leq \bigwedge_{\mathscr{V} \in 2^{(\mathscr{U})}} ([G \tilde{\subset} \lor \mathscr{V}] \land [H \tilde{\subset} \lor \mathscr{V}]), \forall \mathscr{U} \subset L^X\} \geq \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \land [G \tilde{\subset} \lor \mathscr{V}] \land A \leq \bigwedge_{\mathscr{V} \in 2^{(\mathscr{U})}} [G \tilde{\subset} \lor \mathscr{V}], \forall \mathscr{U} \subset L^X\} \land \\ \lor \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \land [H \tilde{\subset} \lor \mathscr{U}] \land a \leq \bigwedge_{\mathscr{V} \in 2^{(\mathscr{U})}} [H \tilde{\subset} \lor \mathscr{V}], \forall \mathscr{U} \subset L^X\} \land \\ L^X\} = cd_{(i,j)s}(G) \land cd_{(i,j)s}(H). \end{array}$$

Theorem 3.11. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G, H \in L^X$. Then $cd_{(i,j)s}(G \wedge H) = cd_{(i,j)s}(G) \wedge \tau^*_{(i,j)s}(H)$.

 $\begin{array}{l} \textit{Proof. By Theorem 3.7, } cd_{(i,j)s}(G \land H) = \lor \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \\ \land [(G \land H) \tilde{\subset} \lor \mathscr{U}] \land a \leq \bigwedge_{\substack{\mathscr{V} \in 2^{(\mathscr{U})}}} [(G \land H) \tilde{\subset} \lor \mathscr{U}], \forall \mathscr{U} \subset L^X \} \\ = \lor \{a \in L : \tau_{(i,j)s}(\mathscr{U}) \land [G \tilde{\subset} (H' \lor \lor \mathscr{U})] \land a \leq \bigwedge_{\substack{\mathscr{V} \in 2^{(\mathscr{U})}}} [G \tilde{\subset} (H' \lor \lor \mathscr{V})], \forall \mathscr{U} \subset L^X \} \geq \{a \land \tau^*_{(i,j)s}(H) : \tau_{(i,j)s}(\mathscr{U}) \land [G \tilde{\subset} \lor \mathscr{U}] \\ \land a \leq \bigwedge_{\substack{\mathscr{V} \in 2^{(\mathscr{U})}}} [G \tilde{\subset} \lor \mathscr{V}], \forall \mathscr{U} \subset L^X \} = cd_{(i,j)s}(G) \land \tau^*_{(i,j)s}(H). \end{array}$

Corollary 3.12. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then $cd_{(i,j)s}(G) = cd_{(i,j)s}(\underline{1}) \wedge \tau^*_{(i,j)s}(G)$.

References

- [1] H. Aygun and S. E. Abbas, On characterization of some covering properties in L-fuzzy topological spaces in Sostak sense, *Information Sciences*, 165 (2004), 221– 233.
- [2] H. Aygun and S. E. Abbas, Some good extensions of compactness in Sostak's L-fuzzy topology, *Hacett. J. Math. Stat.*, 36(2)(2007), 115–125.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 39–90.
- P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice I, *Indagationes Mathematicae (Proceedings)*, 85(1982), 403–414.
- ^[5] R. Erturk and M. Demirci, On the compactness in fuzzy topological spaces in Sostak's sense, *Mat. Vesnik*, 50(1998), 75–81.
- [6] A. Es and D. Coker, On several types of degree of fuzzy compactness, *Fuzzy Sets and Systems*, 87 (1997), 349–359.
- [7] J. M. Fang, Categories isomorphic to L-FTOP, *Fuzzy Sets and Systems*, 157(2006), 820–831.
- [8] J. M. Fang and Y. L. Yue, Base and subbase in I-fuzzy topological spaces, J. Math. Res. Expositon, 26(2006), 89–95.
- ^[9] T. E. Gantner, R. C. Steinlage and R. H. Warren, Compactness in fuzzy topological spaces, *J. Math. Anal. Appl.*, 62 (1978), 547–562.

- [10] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. W. Mislove and D. S. Scott, *A Compendium of Continuous Lattices*, Springer Verlag, Berlin, 1980.
- ^[11] P. Gomathi sundari and R. Menaga, On Fuzzy (i, j)-semiopen sets in *L*-fuzzy bitopological spaces (submitted).
- ^[12] P. Gomathi sundari and R. Menaga, Generalization of *L*-fuzzy bitopological compact spaces (submitted).
- ^[13] U. Hohle, Upper semicontinuous fuzzy sets and applications, J. Math. Anal. Appl., 78 (1980), 659–673.
- [14] U. Hohle and S. E. Rodabaugh, *Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory*, The Handbooks of Fuzzy Sets Series, Kluwer Academic Publishers, Boston/Dordrecht/ London, 3, 1999.
- [15] T. Kubiak, On Fuzzy Topologies, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland, 1985.
- [16] H. Y. Li and F. G. Shi, Measures of fuzzy compactness in L-fuzzy topological spaces, *Comput. Math. Appl.*, 59 (2010), 941–947.
- [17] Y. M. Liu, Compactness and Tychono theorem in fuzzy topological spaces, *Acta Math. Sinica*, 24 (1981), 260– 268.
- [18] Y. M. Liu and M. K. Luo, *Fuzzy Topology*, World Scientific Publishing, Singapore, 1997.
- [19] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56(1976), 621–633.
- [20] R. Lowen, A comparison of different compactness notions in fuzzy topological spaces, *J.Math. Anal. Appl.*, 64 (1978), 446–454.
- [21] A. A. Ramadan and S. E. Abbas, On L-smooth compactness, J. Fuzzy Math., 9(1)(2001), 59–73.
- [22] F. G. Shi, Measures of compactness in L-topological spaces, Annals of Fuzzy Mathematics and Informatics, 2(2011), 183–192.
- [23] A. P. Sostak, On a fuzzy topological structure, *Rend. Ciec. Mat. Palermo*, 11(2) (1985), 89–103.
- [24] A. P. Sostak, Two decades of fuzzy topology: Basic ideas, notions and results, *Russian Math. Surveys*, 44 (1989), 125–186.
- [25] G. J. Wang, Theory of L-Fuzzy Topological Spaces, Shaanxi Normal University Press, Xi'an, in Chinese, 1988.
- ^[26] M. S. Ying, A new approach to fuzzy topology I, *Fuzzy Sets and Systems*, 39(3)(1991), 303–321.
- [27] Y. L. Yue and J. M. Fang, Generated I-fuzzy topological spaces, *Fuzzy Sets and Systems*, 154(2005), 103–117.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

