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On Berezin radius inequalities via Cauchy-Schwarz type inequalities
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Abstract. A functional Hilbert space is the Hilbert space of complex-valued functions on some set © C C that the evaluation
functionals are continuous for each 7 € © on M. The Berezin transform S and the Berezin radius of an operator S on the
functional Hilbert space (or reproducing kernel Hilbert space) over some set © with the reproducing kernel k, are defined,
respectively, by
S(r) = <SET,ET>, 7 € O and ber(S) := sup §(T)‘ .
T€O

Using this limited function S, we investigate several novel inequalities that include improvements to some Berezin radius
inequalities for operators working on the functional Hilbert space.
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1. Introduction

Let I (H) be the Banach algebra of all bounded linear operators defined on a complex Hilbert space (H, (., .)).
Throughout the paper, we work on functional Hilbert space (FHS), which are complete inner product spaces
made up of complex-valued functions defined on a non-empty set © with bounded point evaluation. Recall that a
functional Hilbert space H = H (©) is a complex Hilbert space on a (nonempty) ©, which has the property that
point evaluatians are continuons for each 7 € © there is an unique element k, € # such that f (1) = (f, k),
for all f € H. The family {k, : 7 € ©} is called the reproducing kernel . If {e, },~ is an orthonormal basis

for FHS, the reproducing kernel is showed by k, = Y " e, (7)e, (2). For 7 € ©, kr = ||kk7|\ is called the
il
normalized reproducing kernel.

Definition 1.1. (i) For S € L (H), the function S defined on © by
S(r) = <5ET,ET>
H
is the Berezin symbol (or Berezin transform) of S.
*Corresponding author. Email address: verdagurdal @icloud.com (Verda GURDAL)
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(ii) The Berezin range of S (or Berezin set of S) is

Ber(.S) := Range(S) = {5(7') ITE @}.
(iii) The Berezin radius of S (or Berezin number of S) is
ber(S) := sup {‘g(T)‘ ITE @} .

The Berezin transform S is a bounded real-analytic function on for each bounded operator S on /. The
Berezin transform S frequently reflects the characteristics of the operator S. A key tool in operator theory is
the Berezin transform, which Berezin first described in [10]. This is because the Berezin transforms of many
significant operators include information on their fundamental characteristics. The Berezin range and Berezin
radius of the operator were defined by Karaev in [25].

Recall that the numerical range and numerical radius number of S € L (#) are denoted respectively, by

W (S) = {(Su,u) : v € Hand ||u]| =1} and,
w (S) = sup {|(Su,u)| : w € H and |lul| =1}.

The absolute value of positive operator is denoted by |S| = (5*5) % The numerical range has several intriguing
features. For example, it is usually assumed that an operator’s spectrum is confined in the closure of its numerical
range. For an illustration of how this and other numerical radius inequalities were addressed in those sources, we
urge the reader read [1, 14, 28, 29]. For S, T € LL(#) it is clear from the definition of the Berezin number and
the Berezin norm that the following properties hold:

(B1) ber(zS5) = |z| ber(S) forall z € C,

(B2) ber(S + T') < ber(S) + ber(T),

(B3) ber(S) < Sl

(B4) [|25]|per = 2] [|S]] e forall z € C,

(BS) |5+ Tler < 15 per + 1T e -

It is clear from the definition that Ber(.S) C W (.5) and so

ber (S) < w (S) < ||S| (1.1)

forany S € L(H (9)).
In [24], Huban et al. obtained the following result:

1 1/2
ber (S) S 5 <||SHbcr + HSQHber) : (12)
After that, in [22], and [9], respectively, the same authors proved for S € L (H (9))
1 2 2 2 1 2 2
ise 18| < per? (s) < 5 |17 + 1P| 1.3
4H||+| ‘ ber er()_Q ||+| ‘ ber ( )

where |S| = (S*S)l/2 is the acsolute value of .S, and

1
berQa (S) S § H|S|2a + |S*|2a

(1.4)
ber

where o > 1.
Huban et al. demonstrated the following Berezin radius estimate for the product of two functional Hilbert
space operators

]‘ « «
ber® (") < 3 H|S\2 + T

La>1, (1.5)

3
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in [22, Theorem 3.11].

On Bergman and Hardy spaces, the Berezin symbol (or transform) has been thoroughly investigated for
Hankel and Toeplitz operators. Several mathematical works have examined the Berezin symbol and Berezin
radius throughout the years; a few of them are [6, 7, 12, 19, 20, 25, 26, 32]. In order to functional Hilbert space
(reproducing kernel Hilbert space) operators, this study establishes numerous improvements of the
aforementioned Berezin radius inequalities. In specifically, it is demonstrated that

1 " 1 ”
ber? (5) < = [ISP+157F||+ Sber (S) 1151+ 15" yer (1.6)

for the arbitrary bounded linear operator S € L ( (©)) . Furthermore covered are a few additional connected
issues. The related results are obtained in [4].

2. Known Lemmas

The following series of corollaries are necessary for us to succeed in our mission.
According to the Cauchy-Schwarz inequality,

[{u, )] < Jull[|v]] 2.1)

holds true for every vectors u and v in an inner product space.
Contrarily, the traditional Schwarz inequality for positive operators states that for any u,v € H, if S € L (H)
is a positive operators, then
|(Su, v)|* < (Su,u) (Sv,v). (2.2)

A companion of Schwarz inequality (2.2) known as the Kato’s inequality or the so called mixed Cauchy
Schwarz inequality was first proposed by Kato [27] in 1952. It states:

(Su, v)[? < <|5|2Tu,u> <|s*|2<H> v,v> 0<r<1 2.3)
for any operators S € B () and any vectors u, v € H.
|(Su,w)| < /(S| u,u) (|S*]u,u). (2.4)
in particular is present.
2 1 * 2 *
[(Suu)l” < 5 (18] w,w) (15w, w) + S [(Su, ) V(ST w, w) (7] w,0) 2.5)

< (ST, u) (|5™[ u, w)

was proven to be the refinement of (2.4) in [30].
The following well-known lemmas will make it necessary to demonstrate our findings. The Power-Mean
(PM) inequality comes first.

Lemma 2.1. ([31]) According to the PM inequality,

Q=

Ty <rr 4+ (1—r)y < (rz® 4+ (1 —1r)y®) (2.6)
holds for every 0 <r <1, x,y > 0and o > 1.
The McCarty inequality for positive operators is the following lemma.
Lemma 2.2. ([15]) If S € L (H) is a positive operator and u € H is an unit vector, then we have
(Su,u)* < (>)(S%u,u),a>1 (0<a<). 2.7)

3
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Lemma 2.3. ([5])If S,T € L (H) and f is a non-negative convex function on [0, cc), then we have

18+ @)

‘f (535 = |52 8)
Lemma 2.4. Ifu,v € Hand 0 < & < 1, then we have
[ v)[* < (1= &) [ v)] [l [0l + & Jull® o] < Jull® o]* (2.9)
Lemma 2.5. Let u,v € H. Then
[{u, 0)] < (1= &) V[{w, )] [[u]l [|o]] + & lull o]l < el {|v]l. (2.10)

The next finding expands and clarifies Kato’s inequality (2.3), which in turn expands and clarifies (2.5).

Lemma 2.6. ([4])If S € L(H(0)), 0 < &,r < 1and a > 1, then we have

[ - <|5\2MA ) (1870 R )
E E ‘ \/ 1512 . E |S 2e1=r) EU,EU> @.11)
kr, by

<IS\ ACE RN

Proof. Let 7, v € © be an arbitrary. By using (2.7), we get
€ (ISP e B ) (18P0 R )
+ (=) [(She T )|\ (8P Br o) (18770 R )
<IS| > <IS 20 ,Ev>a 2.12)
+(1-9) ](SkT,kv>
el
= (s )"
forevery 0 < € < 1 and a > 1. As opposed to that, we get
§(ISIP Rrokr) (18720 R B
+ (=) [(Ske k)| (8P B B ) (18572 R )
<¢ <|S\2‘”E &, > <|s*|2a<1—7“> EUE>

o (P (5 R P
0

—ngﬂ”E E><WI%“‘”E”E> (=& (ISP %,

= (ISP e, Jer ) (18P B B )

1} (50 k k) @13)

k‘) ?’?‘)

e
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Combining (2.12) and (2.13), we deduce that

(sh )| <6 <|sx2w k) (15° P07 R )

~o(she )"y (s

kr
<|5‘2m ><|S*2a1 rk\ %>

) (15O Ry R )

|
3. Main Results
Now, our refined Berezin radius inequality could be presented like this:
Theorem 3.1. If X, Y € L(H (©)), 0 <& < 1and a > 1, then we have
(0% (a7 1 (03 (67
(L= Ober” (V20 |IXP+ Y P2+ i1+ i G.)

ber®® (Y*X)

IA

IN

1 4o 4o
—[IX Y
> |l + e

Proof. Assume that ET € H is a normalized reproducing kernel. If we take © = Xk, and v = Yk, in the

inequality in (2.9), then we have

* < ‘<Y*XET,ET> ’
< (- |(xF., vE) |
— = [y )| (KPR (PR

: <|X|2ET,ET> <|Y|2ET,ET> .

(bR

Employing the PM inequality (2.6), we get
2 ~ ~
< ((1 - ) |(Y* Xkr B )

re (IXP R (V1R %7>“)é,

‘<Y*XET,ET>

which implies that

COXP R (VPR )+ (X R ) (VPR

COXP R ) (YRR e (PR ) (PR

< (1 -9 |(Y" XEr Fr)
(by the inequality (2.7))

e
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< s -0 |(vrxm B[ (X% R ) + (VPR B )

e ((X1R R + (V1R B )
(by the inequality (2.6))
1

=3 (1-¢) ’<Y*XE7'77€\T>

and

3 (1= 9sup {[(v xR, i)
1

Therefore, we have

{e% (e 1 {03 63
ber (¥ X) < (1 - ) ber (v*X) |||+ [y |+ S |ixp* + vy’

CLX P )RR 4 e (XT84 1) R,

(PP ) B ) )

ber ’

)

The desired first inequality is therefore obtained in (3.1). Nonetheless, from the inequalities (1.5) and (2.8), we

get

1 4o %Y
£ X Y
ber+ 2£H| | +| |

1
ber® (Y*X) < 5 (1= ) ber (V") ||XP* + [v]*
1 1 2c 2a
< Z(1— Z
<30-9 (5 x4

) H|X|2a + |Y‘2a
ber ber

1 {0 {0
+ 5€ [Ixie v

ber

ber

ber

1 2c 2« 2 1 da ey
——a-9 x4y - HX Y
J A= ixPe ||+ el ||
1 KP4 PN L e s
<Z(1- - —E||| X+ Y[
<5 5)( : ) + e[l |
ber
2 2
< 1 1 (2|X|2a) +<2|Y|2a> 1 X4a Y4a
<;0-9 . +s¢[1xie 1y
ber
1
S *H|X‘4a+|Y|4a ,
2 ber
which demonstrates the second inequality in (3.1).
The next outcome is much better than the inequalities (3.1).
Theorem 3.2. [f XY € L(H (0)), « > 1 and £ € [0, 1], then we get
2r * 1 20 20 2 1 (e 2« 2a
ber® (Y*X) < 7€ [IXP* + VP 45 (1= &) ber (0) ||| X + v |
1 (0% {67 2 1 « (03 (07
< sefixie || 5 - e () [ 1xP P
2 ber 2 ber
1
2 ber
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Proof. Let 7 € © be an arbitrary. Then for all £ € [0, 1], we have

ber®® (Y*X) < &ber®® (Y*X) + (1 — £) ber®™ (Y*X)

= ¢ber®® (Y*X) + (1 — &) ber® (Y*X) ber® (Y*X)
2

1 [e3 (03 1 (o3 [e3
< e ixPe iy Pe| 4 5 a - g e (0 |IXP + PP

(by the inequalities (1.5)),

which proves the first inequality in (3.2). From the inequalities (2.8),

1

2c 1 2c 2« 2 (e} 2c 2«
ber™ (X) < Z¢ ||| X[ + Y] + 5 (1 =& ber® (X) [ X7 + Y]
4 ber 2 ber
| (2ixP) + (2 ) ) )
== 71—b°‘XHX°“ Y2
2 . + 5 (=& ber” (X)||1x P + |
ber
2 2
1| ) () L e o e oy
< ;€ 5 + 5 (L= ©ber” () |IXPP v P
ber
1 « {07 1 (e} (03 «
= el 5 - e () | 1XP -y
ber 2 ber
provides the second inequality in (3.2). The third disparity in comes as a result of (3.1).
By takinga = 1 and £ = % in (3.2), the outcome is as follows.
Corollary 3.3. If X,Y € L (H (©)), then we have
ber? (V*X) < iH|X\2+\Y|2 : +1bcr(X)H|X|2+|Y|2
— 12 ber 3 ber
1 4 4 2 1 2 2
<~ |ixpt+ v “ber (X HX Y H
_GH‘ |+| ‘ bcr+3er( ) | |+| | ber
1 4 4
<[t
-2 H‘ | +| ‘ ber
Theorem 3.4. [f XY € L(H (0)), 0 <& < 1and a > 1, then we have
ber® (Y*X) < —= (1— &) ber® (v*X) [l 4 |y* : oeflxpe v
- \/§ ber 2 ber

IN

]‘ 3 [e3
5 [lxPe v

ber '

ber

Proof. Assume that ET € H is a normalized reproducing kernel. We determine the desired inequality by entering

u=X E and v = Y@T in (2.10) and continuing as in the argument of Theorem 3.1.
Theorem 3.5. [f X € L (H(0)),0 <& <1ands > 1, then we have

ber® (X) < €[ | XT* + (1 = r) | X"

ber

1 . e
+ 5 (1= &) ber® () [[|XPre 4 P

ber ’
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Proof. Assume.that 7 € O is an arbitrary. If we take 7 = v in the inequality (2.11), then we get

‘<XET,ET>

2¢

< & (1XP T B ) (IX PO o B )
(-9 |(xF B C\/<|X|2§T Bk ) (X0 R

~ ~\T o o~ (1=7)
§§<|X\2<k7,kT> <|X*|2§k7,k7>
(by the inequality (2.7))

+(1-¢ ‘<XET,@T> ° (; <|X‘2gra7a> i <‘X*|2§(17r) %T’%T>>
(bythe inequality (2.7))

< [r(IXP T o)+ (1= 1) (| X P Rr, )|

(by the inequality (2.6))
+iag ‘<X@T,E> " (X P+ X0 By B )
< <(T|X|2€+(1—r)\X*|2<)ET,ET>

2
o = [(XRBD[ (X7 4 X 0) ERD),

and

S gsup ((rIXP (1) (X0 R R

+ g swp ‘<XET,ET> ) (X P+ X P ) o B )

2 TEO

So, we obtain

ber® (X) < & [[r X + (1= r) [ X7

ber
1 g T * —Tr
+ 5 (1= &) ber® (X) ||| + X720

ber

which the required result.

In [24, Th. 3.3], it is proved that

ber® (X) < o [Je1xP6 4 (1 - ) Ixe

. ,0<E<,¢>1.

The next finding is stronger than the disparity (3.4).

Theorem 3.6. If X € L(H (©)), 0 <r,£ <1and > 1, then we have

ber® (X) < & ||lr|X[* + (1 —r) | X**

ber

+ (1 =g ber (X) \/Hr X% 4 (1) [ X

ber
2g *12¢
< [[r1x P+ =y 17

ber '

134
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Proof. Assume.that 7 € O is an arbitrary. If we take 7 = v in the inequality (2.11), then we get
~ |26 ~ o~ ~ o~
(X )| < € (1P R ) (X PO R B )
~ o~ S ~ o~ N ~ o~
+(1-¢) ‘<XI<:T, kT> \/<|X|2<’" kr, kT> <\X*|2€<1"") kr, kT>
~ o\ T ~ o~ \ (1=7)
<& (IX1 Tl ) (IX P or )
(by the inequality (2.7))
~ o~ 1 ~ o~ e
F(1-¢) ‘<Xk7,k7> ) 5 ({17 % o) + (IX PO B B ))
<& ((rIXPS + (1 =) |1XP) By )

s \/<|X|2<r ET,ET> <\X*|2§(1_’") ET,ET>

+(1- )| (XFy Er )
(by the inequality (2.6))

and

< £sup <(r X%+ (1—r) \X*|2‘) %E>

CORET R (PO R R,

+(1-&)sup ‘<XE,ET>

So, we deduce

ber

ber® (X) < & [[r X% + (1= r) | X

+ (1= &) ber® (X)\/

ber'

[rX %+ (L= 7) X

Hence,

ber

ber® (X) <& [[r [XP* + (1 =) [ X7

ber

+ (1 =¢&)ber® (X) \/HTXQC (=) | X

ber

< [lr1xPe =y 1

(by the inequality (3.4))

allows us to deduce the second inequality from the first inequality, demonstrating the required result. |
Theorem 3.7. [f X € L (H(0)), 0 <& <1ands > 1, then we have
1 2%r 26(1—7) 1 s 2%r 26(1—7) ||M/?
b§X<fHX§ X[ —1—b2XHX‘ X% .36
o (X) < g€ [IXPT + X0 s g vert (O IxPT xR L ce
Proof. Suppose that 7,v € O is an arbitrary. One may see from the inequality (2.12) and (2.13) that
e 1 !
(KPR )| < € (IXPT R o) (IXP 0 R R 37

Nl=

F- 9 |(xB R \/<|X|2"%T,ET>é (X0 R, R

<‘X*|2§(17r) @U,@v>

ol
Nl

< (IXP<" R B )

e
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forevery ¢ > 1and 0 < r, & < 1. Setting 7 = v in the above inequality, it follows that
PN IS O~ 1 ) N~ o~ 1
(XFer B )| < & (IXP o) (IXP 0 R e )
~ o~ |S/2 ~ o~ \3 ~ o\ 1/2

+(1-6) ‘<XkT,kT> \/<|X|2“ kT,kT>2 <\X*|2<(1*’“) kT,kT>
1 2sr 7 T «12¢(1-7) 7 T

S 76 |X| k’rakr + |X ‘ kTuk‘r
V2

2
c/2 \/(<|X|2§r /]{\:T,/k?7-> + <|X*‘2<(1_T) /k?-,—,/k\_r>)
(by the inequality (2.6))

< 15<(|X|2§r n ‘X*|2§(1—r)) ET,ET>

c/2 \/<(|X|2<r n ‘X*|2§(1—r)> ET,E7—>

b (-0 (xR E)

+ =5 (16 |(XE B

which is equivalent to

‘ 1 _
ber® (X) < 55 H\X|2<T + |X*|2§(1 r)
1 s 2¢r 2¢(1—r)
(- beerHX<+X*<
5 (L= O bert (0 X+ 1)

The evidence is now complete. |

ber
1/2

ber ’

From [24, Th. 3.2], it is evident that

3 1 _
ber® (X) < o [|IXP6 o x+P09

(3.8)
ber

ifXeL(H(O)),0<¢<lands > 1.
The implication that follows demonstrates that our finding (3.6) is more powerful than the inequality (3.8).

Corollary 3.8. If X € L (H(0)), 0 <r,& <1ands > 1, then we have

1 _
bert (X) < 5 [IX* + e

ber
1/2

1 S T * -r
+ <= (L= berd () ||l + (X5

V2
1 —r
< 5 H‘X|2T§ + |X*|2(1 )s

ber '

Proof. Assume that 7,v € © is an arbitrary. From (3.6), we get

1 3 —r
1) 2 e
L1
V2
< 1 X 2rg X* 2(1—r)s
< sl

ber
1/2

(1= ) ber? (X) ||| + X205 |

1 T * T
L g e o

ber ber

(by the inequality (3.8))

1 ‘ e
_ 5 H‘X|2rs + |X*|2(1 )§

b
ber

as required.

i
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Theorem 3.9. [f X € L (H(0)),0 <& <1ands > 1, then we have

ber™ (X) < 7 (L= ) ber® (X) | X7 + |7
er

1
2

1 - o
el e

(3.9)

Proof. Assume that ET € H is a normalized reproducing kernel. If we take 7 = v in the inequality (2.11), then

we get

2 ~ o~ ~ o~
C < (IXP T B ) (IR B )

+ (1= )| (XFy, Fr )
< 3¢ (<|X|2““ Re k) o+ (xepeton Eﬁf)
(by the inequality (2.6))
+ % (1= |(XFr Er )
(by the inequality (2.6))
=L (1 Rk + (O R)
(by the inequality (2.7))
+ % (1-¢) ‘<XET,ET>
= € ((131 4 PO ) BR )

+ % (1-¢) ‘<XET,ET>
and

su XA xBO) EE,
Esup ( (| ;
TEO

Hence we get

1 _
b 3 5 e e

1 r * —r
+ 5 (1= € ber® (X) [[|X P 4 X0

ber

)
ber

and the proof is complete.
Corollary 3.10. If X € L (H (0)), 0 <r,{ < 1land¢ > 1, then we have
1 3 (1—r
ber® (X) < =¢ H|X‘4““ + |X*|4S(1 )
2 ber
1 T * —-Tr
+ 5 (1= ber® (X) ||| + X0
1 3 —r
< Lt x|
2 ber

137
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<.<(|X|2§r + |X*‘2<(1—r)) @T@T

S N ~ o~
(X X PO ) B e )

Y )Y

1
2
% (1= sup | O (%P + X720 EE .
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Proof. Assume that 7 € O is arbitrary. From (3.9), we get

1 _
. +§(1_£)ber< (X H‘X|2cr+|X*|2c(1 r)
er

ber® (X)

IN

1 dr 46(1—7)
- X S X* S
3¢ 117+ 1

IN

1 T T
g L= XX

1 4 4¢(1—7)
- X ST X* S ”
S|l + 1) N

ber
(by the inequality (3.8))

2

1 der sc(1—r) 1 2| X|*7 4 2| x0T
< Z€1|1X* X% —(1—
< el e+ ra-g ;

ber

1 4qr x14s(1—7r) 1 2qr 2 %12¢(1—r) 2
<SS+ X7 +z@=89|(21X] + (21X7

2 ber 8 ber

(by the inequality (2.8))

1 4qr 45(1—r) 1 4er 45(1—r)
< Z X < X* §( - 1 _ X S X* <
< e it v x|y Sa—g it xepeen)|
<1 4 46(1—
T 4 | xee e .
2 ‘| | * | ‘ ber

We determine the desired disparity (3.10). |

We utilize the inequalities (3.4) and (3.8) for every X € B(#H), 0 < r,{ < 1 and ¢ > 1. In fact, after
applying (2.8), we obtain

ber® (X) = ¢ber® (X) + (1 — &) ber® (X)
= tber® (X) 4 (1 — &) ber® (X) ber® (X)
_ ig H|X|2<T + ‘X*|2§(17r)

ber

+

)

(1 €) ber® (X) H|X|2“' x|
er

1
2
which of course refines (3.9). In instance, we obtain

1 *
ber® (X) < S IIIX]+ X |||ber+3bef( ) IXT + 1X per

for¢ =1,7 =1 and { = &. It follows from Theorem 3.1 in [24] that if X € L (H (©)) then we have

ber (X) < 2 1X]+ X e < 5 (IXTher + [X2]102) (.11
So, from (3.11), we can deduce the inequality
ber (X) < 1o 1]+ X 24, + gber () [1X] + Xl
= g I LW 5 (1T 1 ) 11+ 1
= S IXT+ X + 5 11X+ X

1 12
= T+ X7 r

e
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which indeed refines (3.11). Thus, we have
2 1 *1112 1 *
ber® (X) < 5 X1+ X7 [ + gber (X [1X] 4+ X e
1 <2|X +2X*|>2

1 .
- + gber (X) [1X] + X lyer

ber

2

1 * 1 *

< sz |@IxXD?+ @IX D]+ Sber () IIXT+ X7 e,
24 ber 3

(by the inequality (2.8))

1 w1112 1 *
= g X1+ 1 X per + gber (X) [IX]+ X llper
which the inequality in (1.6), as required.

We recommend [8, 16-19, 22-24] for more recent findings on Berezin radius inequalities for operators and
related findings.
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