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Abstract
This paper deals with strong as well as ∆−convergence results for SKC map in Busemann space via generalized
Picard normal s-iteration process. We design an example for the Suzuki-Karapinar conditioned mapping in
this paper. Also we discuss generalized Picard normal s-iteration process is faster than some famous iteration
processes. An numerical example is presented in this paper to support our result.
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1. Introduction
Busemann [3] developed the theory of non-positive cur-

vature for pathmetric space. Then the class of geodesic for
curvature non-positivity in convex space introduced by Gro-
mov [10]. The term ”Busemann” first time used by Bowditch
[2]. Foertsch et al. [5] proved that if CAT(0) spaces satisfies
Ptolemy condition, then CAT(0) is Busemann space. The
examples of Busemann space are uniformly convex Banach
space such as Lp, lp and W m

p for 1 < p < ∞ and Minkowski
space and strictly convex Banach spaces and simply connected
Riemannian manifolds of nonpositive sectional curvature are
examples of the Busemann space. The hyperbolic space ap-
peared for denoting Busemann convex space in [23].

On the other hand, many researchers designed iterative
process for approximating fixed point of nonexpansive map
and for some class of nonexpansive map (see [1, 12, 16, 19,
20, 25]) in last fifty years and compare which iteration process
is faster.

Let Y be a normed space and M be a nonempty subset of
Y . The mapping S : M→M is said to be
(1) nonexpansive, if ‖St−Su‖ ≤ ‖t−u‖ for all t,u ∈M.
(2) quasi-nonexpansive, if ‖St− p‖≤ ‖t− p‖ for all t ∈M
and p ∈ F(S), where F(S) denotes the set of all fixed point of
S, i.e.,

F(S) = {t : St = t, t ∈M}.

Many nonlinear problem can be written as fixed point
problem

t = St,

where fixed point map S may be nonlinear. The solution of
such problem is called a fixed point of the map S.

The fixed point iteration can be defined by

tn+1 = Stn ∀n ∈ N. (1.1)

The iterative process (1.1) is known as Picard iteration,
method of successive substitution or Richardson iteration. Pi-
card iteration for Banach contraction mapping converges to
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unique fixed point of S, but this iteration fails for approximat-
ing fixed point for nonexpansive map. On the other hand, this
iteration method enable us to identify existence of fixed point
of S.

In 1953, Mann [19] introduced an iteration process : As-
sume that t0 ∈M is arbitrary. The {tn} as follows

tn+1 = αntn +(1−αn)Stn, n≥ 0, (1.2)

where {αn} is real sequence in the interval (0,1). The iteration
{tn} is known as Mann iteration process.

Assume that M is convex subset of normed nonlinear
space Y and S : M → M is a map. Assume that t0 ∈ M is
arbitrary. The following sequence {tn} in M defined as follows

{
tn+1 = Sun,
un = (1−αn)tn +αnStn, n ∈ N . (1.3)

 tn+1 = Sun,
un = (1−αn)vn +αnSvn,
vn = (1−βn)tn +βnStn, n ∈ N .

(1.4)


tn+1 = Tun,
un = (1−αn)vn +αnSvn,
vn = (1−βn)wn +βnSwn,
wn = (1− γn)tn + γnStn, n ∈ N .

(1.5)

where {αn},{βn} and {γn} are real sequence in (0,1).

The iteration process (1.3), (1.4) and (1.5) are known as
normal s-iteration, Picard normal s-iteration and generalized
Picard normal s-iteration process, respectively and given by
Sahu [24], Kadioglu and Yildirim [13] and Dashputre et al.
[6] respectively.

In this paper, we will show generalized Picard normal
s-iteration process is faster than Picard normal s-iteration
process, normal s-iteration process, Mann iteration process
and Picard iteration process in Busemann space. Also we
will establish strong as well as ∆−convergence theorems for
generalized Picard normal s-iteration process generated by
SKC map in uniformly convex Busemann space. We will
also discuss the example to support our result with different
initial values which ensures the fastness of generalized Picard
normal s-iteration process.

2. Preliminaries
Let N, R+ and R represent set of all natural numbers, set

of nonnegative numbers and set of real numbers, respectively.

Assume that (Y,d) is a metric space. A geodesic path
joining t ∈Y to u ∈Y or a geodesic from t to u is a mapping c
from closed interval [0, l]⊂R to Y such that c(0) = t,c(l) = u,
and d(c(a),c(a

′
)) = |a− a

′ | for all a,a
′ ∈ [0, l]. A map c is

isometry if d(t,u) = l. The image of c is said to be geodesic (
or metric) segment joining the t and u. When it is unique, then
this geodesic segment is represented by [t,u]. A space (Y,d)
is called geodesic space, if every two points of Y can be joined
by a geodesic and Y is called uniquely geodesic, if there is
only one geodesic joining t and u for each t,u ∈ Y . A subset
X ⊆ Y is called convex, if X includes every geodesic segment
joining any two of its points. The geodesic triangle ∆(t1, t2, t3)
in the geodesic metric space (Y,d) consists of three points
t1, t2, t3 in Y (vertices of ∆) and a geodesic segment between
each pair of vertices (the edges of ∆).

Assume that c : [t,u]−→Y is path in a metric space Y . The
path c is called an affinely reparametrized geodesic, if either c
is the constant path or there is a geodesic path c

′
: [x,y]−→ Y

such that c = c
′
oψ , where ψ : [t,u]−→ [x,y] is unique affine

homeomorphism between the intervals [t,u] and [x,y] which
preserves ratio of distances and collinearity.

Assume that Y is uniquely geodesic space. If c([t,u])
is geodesic segment joining a and b and η ∈ [a,b], then
z := c((1−η)t +ηu) is unique point in c([t,u]) satisfying
d(z,a) = ηd(a,b) and d(z,b) = (1−η)d(a,b). Here [u,v]
represents geodesic segment c[t,u] and z represents (1−η)t⊕
ηv. The subset M ⊆Y is called geodesically convex, if M con-
tains every geodesic segment joining any two of its point.

Assume that Y is geodesic metric space and f : Y −→ R
is mapping. If f is convex (strictly convex), if for every
geodesic path c : [t,u] −→ Y , f oc : [a,b] −→ R is convex
(strictly convex). If g : f (X) −→ R is an increasing convex
(strictly convex) and f : X −→ R is a convex function, then
go f : X −→ R is convex (strictly convex).

Definition 2.1. A geodesic metric space (Y,d) is Busemann
space, if for any two affinely repametrized geodesic c : [t,u]−→
Y and c

′
: [t
′
,u
′
]−→ Y , the mapping Dc,c′ : [t,u]× [t

′
,u
′
]−→

R defined by
Dc,c′ = d(c(a),c

′
(a
′
))

is convex.

Popadopoulos [22] proved that the followings are equiva-
lent to definition 2.1.
For any t,u,v,w ∈ Y and λ ,λ

′ ∈ [0,1], the following condi-
tions hold :
(a) d(v,(1−λ )t⊕λu)≤ (1−λ )d(v, t)⊕λd(t,u),
(b) d((1−λ )t⊕λu,(1−λ

′
)t⊕λ

′
u) = |λ −λ

′
d(t,u)|,

(c) (1−λ )t⊕λu = λy⊕ (1−λ )t,
(d) d((1−λ )t⊕λv,(1−λ )u⊕λw)≤ (1−λ )d(t,u)⊕λd(v,w).

Clarkson [4] introduced the notion of uniform convexity
in Banach spaces and the term modulus of convexity was
coined by Goebel and Reich [9]. The interpretation of these
notions, as can be found below, was given by Gelander et al.
[7].

Definition 2.2. A Busemann space (Y,d) is uniformly con-
vex, if for any s, t,u ∈ Y, τ > 0 and ε ∈ (0,2], there is a δ ∈
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(0,1] such that d
( 1

2 t⊕ 1
2 u,s

)
≤ (1−δ )τ whenever d(t,s)≤

τ,d(u,s)≤ τ and d(t,u)≥ ετ.

Definition 2.3. The mapping η from (0,∞)× (0,2] to (0,1]
is known as modulus of continuity, if it provides such a δ =
η(τ,ε) for given τ > 0 and ε ∈ (0,2] and η is monotone, if it
decreases with τ (for a fixed ε).

The following Lemma is an very important property of
uniformly convex Busemann space.

Lemma 2.4. Assume that (Y,d) is complete uniformly convex
Busemann space with monotone modulus of convexity η and
t ∈ Y. Assume that {an} is sequence in [0,1] satisfying 0 <
liminfn→∞ an < limsupn→∞ an < 1. If {tn} and {un} are se-
quences in Y such that for some τ ≥ 0, limsupn→∞ d(un,τ)≤
τ and d(1−an)tn⊕anun, t)= τ hold. Then limn→∞ d(tn,un)=
0.

Assume that M is nonempty subset of Busemann space
(Y,d) and {tn} is any bounded sequence in Y while diam(M)
represents the diameter of M.
Define continuous functional ra(.,{tn}) : Y → R+ by

ra(t,{tn}) = limsupn→∞ d(tn, t), t ∈ Y.

The asymptotic center r({tn}) of {tn} is defined by

r({tn}) = inf
t∈Y

r(t,{tn}).

The asymptotic radius rM({tn}) of {tn} with respect to M is
defined by

rM({tn}) = inf
t∈M

r(t,{tn}).

The asymptotic center A({tn}) of {tn} is defined by

A({tn}) = {t ∈ Y : r(t,{tn}) = r({tn})}.

The asymptotic center AC({tn}) of {tn} with respect to M is
defined by

AC(M,{tn}) = {t ∈ Y : r(t,{tn}= rM({tn}))}.

The set AC(M,{tn}) can be empty, singleton or have infinitely
many points. If the asymptotic radius and asymptotic cen-
ter are taken with respect to X , then they are denoted by
ra(Y,{tn})= ra({tn}) and AC(Y,{tn})=AC({tn}) respectively.

If {tn} converges t ∈ M, then AC({tn}) = {t} and if {tn}
converges t /∈M, then rM({tn}) = d(t,M), where d(t,M) =
inft∈M = inft∈M d(t,m) is the distance of point t from set M
and AC({tn}) = {c ∈M : d(t,c) = d(t,M) = PM(t),} where
{PM(t)} is set of all closest points to t from set M. It is well
known that {PM(t)} is singleton, if M is nonempty closed and
convex subset in complete Busemann space [22].

If {tn} is bounded sequence, then map ϕ : Y −→ R given by
ϕ(t) = r(t,{tn}) is a continuous convex function [22, Exam-
ple 8.4.7]. Furthermore, if M is closed convex subset of a

complete uniformly convex Busemann space Y and {tn} is
bounded sequence in Y , then there exists a unique point t0 in
M such that ϕ(t0) = inft∈M ϕ(t), i.e., every bounded sequence
{tn} in completely convex Busemann space Y has a unique
asymptotic center with respect to any nonempty convex closed
subset M of Y (see [17, 21]).

Now we consider the following definitions given in [15].

Definition 2.5. A sequence {tn} in Y is called to ∆−converge
to t ∈ Y , if for every subsequence {un} of {tn}, t is unique
asymptotic center of {tn}. We write ∆− limn tn = t and say
t is the ∆− limit of {tn}. Such type of bounded sequence is
called regular.

If {tn} is bounded sequence in Y . Then {tn} is called regular
with respect to subset M of Y , if the asymptotic radii of all
subsequences of {tn} with respect to M are same.

The following Lemma has been proved in [8] for Banach
space and proved for Busemann space in [15].

Lemma 2.6. Assume that Y is a Busemann space. If M is a
subset of Y and {tn} is a bounded sequence in Y . Then {tn}
has a subsequence which is regular with respect to M.

Thus, by Lemma 2.6, it is clear that any bounded sequence has
a ∆−convergent subsequence and any convergent sequence is
∆-convergent.

3. Suzuki-Karapinar Conditioned
Mappings (SKC Mappings) in Busemann

Space
The Suzuki-Karapinar Conditioned Mappings (SKC Map-

pings) has been introduced in [14].

Definition 3.1. Assume that M is nonempty subset of a Buse-
mann space (Y,d). Then a map S : M −→M is called SKC
mapping (Suzuki-Karapinar Conditioned Mapping), if for all
t,u ∈M

1
2

d(t,St)≤ d(t,u) implies that

d(St,Su)≤max
{

d(t,u),
d(t,St)+d(u,Su)

2
,

d(u,St)+d(t,Su)
2

}
.

The following Propositions of [15] are properties of SKC
mappings in the Busemann space.

Proposition 3.2. Assume that M is nonempty subset of Buse-
mann space Y and S : M −→M is SKC mapping. Then

d(t,Su)≤ 5d(St, t)+d(t,u)

holds for all t,u ∈M.

Proposition 3.3. Assume that M is nonempty subset of Buse-
mann space Y . Then SKC map S : M −→M is quasi nonex-
pansive, if set of fixed point of S is nonempty.
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Proposition 3.4. Assume that M is nonempty closed subset
of Busemann space Y and S : M −→M is SKC map, then the
set F(S) of fixed point of S is closed.

Proposition 3.5. Assume that M is closed convex subset of
complete uniformly convex Busemann space Y and S : M −→
M is SKC map. If sequence {tn} is ∆-convergent to t and
d(tn,Stn)→ ∞ as n→ ∞, then t ∈M and St = t.

Theorem 3.6. Assume that M is closed convex subset of com-
plete uniformly convex Busemann space Y and S : M −→M
be SKC map with F(S) 6= φ . Then F(S) is convex ∆-closed.

4. Main Results
Consider generalized Picard normal s-iteration process in

Busemann space Y as follows :


tn+1 = Sun,
un = (1−αn)vn +αnSvn,
vn = (1−βn)wn +βnSwn,
wn = (1− γn)tn + γnSxn, n ∈ N .

(4.1)

where {αn},{βn},{γn} ∈ (0,1).

Lemma 4.1. Assume that M is closed convex subset of a
complete uniformly convex Busemann space Y and S : M −→
M is SKC map with F(S) 6= φ . Assume that t1 ∈M and {tn} is
defined by (4.1). Then limn→∞ d(tn, t) exists for all t ∈ F(S).

Proof. Let t ∈ F(S). From Proposition 3.2, we have

d(tn+1, t) = d(Sun, t)

≤ 5d(St, t)+d(un, t)

= d(un, t)

d(un, t) = d((1−αn)vn +αnSvn), t)

≤ (1−αn)d(vn, t)+αnd(vn, t)

≤ (1−αn)d(vn, t)+αn(5d(St, t)+d(vn, t))

= d(vn, t) (4.2)

d(vn, t) = d((1−βn)wn +βnSwn), t)

≤ (1−βn)d(wn, t)+βnd(wn, t)

≤ (1−βn)d(wn, t)+βn(5d(St, t)+d(wn, t))

= d(wn, t) (4.3)

Similarly,

d(wn, t) = d((1− γn)tn + γnStn), t)

≤ (1− γn)d(tn, t)+ γnd(Stn, t)

≤ (1− γn)d(tn, t)+ γn(5d(St, t)+d(tn, t))

= d(tn, t) (4.4)

Thus, we have
d(tn+1, t)≤ d(tn, t).

Therefore {d(tn, t)} is decreasing sequence of positive real
numbers and bounded below. Thus limn→∞ d(tn, t) exists for
all t ∈ F(S).

The following result is necessary and sufficient condition
for existence of fixed point of SKC map in Busemann space.

Theorem 4.2. Assume that M is closed convex subset of com-
plete uniformly convex Busemann space Y with monotone
modulus of uniform convexity and S : M −→M is SKC map
with F(S) 6= φ . Let t1 ∈M and {tn} is defined by (4.1), where
{αn},{βn} and {γn} are sequences in (0,1). Then F(S) is
nonempty if and only if {tn} is bounded and limn→∞ d(Stn, tn)=
0.

Proof. Assume that t ∈ F(S). Then, by Lemma 4.1,
limn→∞ d(tn, t) exists and hence {tn} is bounded.
Suppose that limn→∞ d(xn,x) = l. This implies

lim
n→∞

d(Sun, t) = l.

Now

d(Stn, t) ≤ 5d(t,St)+d(tn, t)

= d(tn, t) = l

lim
n→∞

d(Stn, t) ≤ l

Since, from (4.4), we have d(wn, t)≤ d(tn, t). Therefore

lim
n→∞

d(wn, t)≤ l. (4.5)

Now, from( 4.2) and (4.3), we have

d(Sun, t) ≤ 5d(t,St)+d(un, t)

= d(un, t)

≤ d(wn, t)

lim
n→∞

d(Sun, t) ≤ d(wn, t)

l ≤ d(wn, t) (4.6)

Thus, from (4.5) and (4.6), we have

lim
n→∞

d(wn, t) = l.

That is, limn→∞ d(wn, t) = limn→∞ d((1− γn)tn + γnStn) = l.
From Lemma 2.4, we have limn→∞ d(tn,Stn) = 0.

Conversely, assume that the sequence {tn} and
limn→∞ d(tn,Stn) = 0. By Lemma 2.6, the sequence {tn} has
a subsequence {an}(say) which is regular with respect to M.
Let AC({an}) = {t}. Therefore,

limsup
n→∞

d(an,St)≤ limsup
n→∞

[5d(an,San)+d(an, t)] = limsup
n→∞

d(an, t).

By uniqueness of asymptotic centre, t is fixed point of S.
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Lemma 4.3. Assume that {tn} is bounded sequence in com-
plete uniformly convex Busemann space Y with A({tn}), {bn}
is subsequence of {tn} with A({bn}) = {bn} and sequence
{d(tn,b)} converges. Then t = b.

Proof. Let t 6= b, then by uniqueness of asymptotic center,

limsup
n→∞

d(bn,b) ≤ limsup
n→∞

d(bn, t)

≤ limsup
n→∞

d(tn, t)

< limsup
n→∞

d(tn,b)

≤ limsup
n→∞

d(bn,b)

Thus, we get a contradiction. Hence t = b.

Theorem 4.4. Assume that M is closed convex subset of a
complete uniformly convex Busemann space Y with a mono-
tone modulus of uniform convexity and S : M −→M is SKC
map with F(S) 6= φ . Assume that {tn} be defined by (4.1),
where {αn},{βn} and {γn} are sequences in (0,1). Then {tn}
∆−convergence to a fixed point of S.

Proof. From Theorem 4.2, the sequence {tn} is bounded and
limn→∞ d(tn,Stn) = 0.
Assume that Z({tn}) =

⋃
A({bn}), where {bn} are subse-

quences of {tn}. First we prove that Z({tn}) ⊂ F(S). As-
sume that b ∈ Z({tn}), then there is subsequence {bn} of {tn}
such that A({bn}) = {b}. Using Lemma 2.6, there is sub-
sequence {an} of {bn} such that ∆− limn→∞ an = a. Since
limn→∞ d(an,San) = 0. Thus by Proposition 3.5, we have
Sa = a and a ∈M. Also by Lemma 4.1, limn→∞ d(tn,a) exists
and so limn→∞ d(bn,a) also exists. By Lemma 4.3, b = a ∈
F(S).
Now, we will prove sequence {tn} ∆− converges to fixed
point of S. For this, we will prove that Z({tn}) contains
exactly one point. Assume that A({tn}) = {t} and {bn} is sub-
sequence of {tn} such that ∆− limn→∞ bn = b. Using Lemma
4.1, {d(tn,b)} converges. By Lemma 4.3, t = b and this com-
pletes the proof.

Theorem 4.5. Assume that M is convex closed and boundedly
compact subset of complete uniformly convex Busemann space
Y with a monotone modulus of uniform convexity and S :
M −→ M be SKC map with F(S) 6= φ . Assume that {tn} is
defined by (4.1), where {αn},{βn} and {γn} are sequences in
(0,1). Then {tn} converges strongly to a fixed point of S.

Proof. By Theorem 4.2 and Theorem 4.4, we have the se-
quence {tn} is bounded and ∆−converges to fixed point t of
S, i.e., {tn} converges to t ∈ F(S).
On contrary, suppose that the sequence {tn} does not con-
verges strongly to t. Since M is boundedly compact, therefore
we assume that there is t1 ∈ M with t1 = t such that {txn}
converges strongly to t1. Thus

lim
n→∞

d(tn, t1) = 0≤ lim
n→∞

d(tn, t).

By uniqueness of asymptotic center of {tn}, we have t1 = t.
Therefore we get contradiction.

Corollary 4.6. Assume that M is convex closed subset of a
complete uniformly convex Busemann space Y with monotone
modulus of uniform convexity and S : M −→M be SKC map
with F(S) 6= φ . Assume that {tn} is defined by (4.1), where
{αn},{βn} and {γn} are sequences in (0,1). Then {tn} con-
verges strongly to fixed point of S.

5. Example

Consider the mapping S : [0,2]−→ [0,2] given by

S(t,u) =
{ (

1+ t
2 ,1+

u
2

)
(t,u) ∈ [0,2) × [0,2];( 1

2 ,
1
4

)
(t,u) ∈ {2}×{2} .

(5.1)

Put t = 31
16 and u = 31

16 , then

‖St−Su‖2 =
∥∥∥(1+

31
32

,1+
31
32

)
−
(1

2
,

1
4

)∥∥∥
2

=

√(1
2
+

31
32

)2
+
(3

4
+

31
32

)2

=
1

32

√
5234

and

‖t−u‖2 =

√(31
16
−2
)2

+
(31

16
−2
)2

=
1

16

√
2.

Thus we have ‖St−Su‖ ≥ ‖t−u‖. Therefore S is not nonex-
pansive mapping. Now we will check the mapping S is SKC
map.
Consider the following cases:
Case I : If t1,u1, t2,u2 < 2

1
2
‖t−St‖2 =

1
2

√( t1−2
2

)2
+
(u1−2

2

)2
and

‖t−u‖2 =
√
(t1− t2)2 +(u1−u2)2.

Now 1
2‖t−St‖2 ≤ ‖t−u‖2 holds, if

1
2

√( t1−2
2

)2
+
(u1−2

2

)2
≤

√
(t1− t2)2 +(u1−u2)2

which implies
1
2

( t1−2
2

)2
≤ t1− t2 and

and
1
2

(u1−2
2

)2
≤ u1−u2.

which is true for all t1, t2,u1,u2 < 2. Thus 1
2‖t−St‖2 ≤ ‖t−

u‖2.
Now

‖St−Su‖2 = ‖(1+ t1
2
,1+

u1

2
)− (1+

t2
2
,1+

u2

2
)‖2

=

√
(
t1− t2

2
)2 +(

u1−u2

2
)2

≤ ‖t−u‖2.
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Therefore

‖St−Su‖2 ≤ max
{
‖t−u‖2,

1
2

(
‖t−St‖2 +‖u−Su‖2

)
,

1
2

(
‖t−Su‖2 +‖u−St‖2

)}
.

Case II : If t1, t2,u1,u2 = 2. Then

‖St−Su‖2 =
∥∥∥(1

2
,

1
4

)
−
(1

2
,

1
4

)∥∥∥
= 0

≤ max
{
‖t−u‖2,

1
2

(
‖t−St‖2 +‖u−Su‖2

)
,

1
2

(
‖t−Su‖2 +‖u−St‖2

)}
.

Case III : t1,u1 < 2 and t2,u2 = 2. Then

1
2

∥∥∥t−St
∥∥∥

2
=

1
2

∥∥∥(t1,s1)−
(

1+
t1
2
,1+

s1

2

)∥∥∥
2

=
1
2

√( t1−2
2

)2
+
(u1−2

2

)2

and ‖s− t‖2 =
√
(t1−2)2 +(u1−2)2.

Now 1
2‖t−St‖2 ≤ ‖t−u‖2 holds, if

1
2

√( t1−2
2

)2
+
(u1−2

2

)2
≤

√
(t1−2)2 +(u1−2)2

which implies
1
2

(
t1−2

2

)2
≤ t1−2 and

and
1
2

(
u1−2

2

)2
≤ u1−2

which is true for all t1 ≥ 2 and u1 ≥ 2.
Thus 1

2‖t−St‖2 ≤ ‖t−u‖2.
Now for t1 ≥ 2 and u1 ≥ 2, we have

‖St−Su‖2 =
∥∥∥(1

2
,

1
4

)
−
(1

2
,

1
4

)∥∥∥
2

≤ 0

=
√
(t1− t2)2 +(u1−u2)2

≤ ‖s− t‖2.

Therefore

‖St−Su‖2 ≤ max
{
‖t−u‖2,

1
2

(
‖t−St‖2 +‖u−Su‖2

)
,

1
2

(
‖t−Su‖2 +‖u−St‖2

)}
.

Case IV : If t1 = u1 = 2 and t2,u2 < 2. Then

1
2
‖t−St‖2 =

1
2

∥∥∥(2,2)−(1
2
,

1
4

)∥∥∥
2

=
1
2

√(3
2

)2
+
(7

4

)2

and ‖t−u‖2 =
√
(2− t2)2 +(2−u2)2.

Now 1
2‖t−St‖2 ≤ ‖t−u‖2 holds, if

1
2

√(3
2

)2
+
(7

4

)2
≤

√
(2− t2)2 +(2−u2)2

which implies
3
4
≤ 2− t2 and

and
7
8
≤ 2−u2

which is true for all t2 ≤ 5
4 and u2 ≤ 9

8 . Thus 1
2‖t− St‖2 ≤

‖t−u‖2.

Now for x2 ≤ 5
4 and y2 ≤ 9

8 , we have

‖St−Su‖2 =
∥∥∥(1

2
,

1
4

)
− (t2,u2)

∥∥∥
2

≤
√(1

2
− t2

)2
+
(1

4
−u2

)2

=
√

(2− t2)2 +(2−u2)2

≤ ‖t−u‖2.

Therefore

‖St−Su‖2 ≤ max
{
‖t−u‖2,

1
2

(
‖t−St‖2 +‖u−Su‖2

)
,

1
2

(
‖t−Su‖2 +‖u−St‖2

)}
.

Thus the mapping S is SKC map.

6. Numerical Result
We compare the new iteration process, i.e., generalized Pi-

card normal s-iteration process with Picard normal s-iteration
process, normal s-iteration process, Mann iteration process
and Picard iteration process. We set the stop parameter to
d(tn, t)≤ 10−12. For example defined in Section 5, consider
αn =

1

(n+11)
1
8
,βn =

n

(2n+7)
1
2
,γn =

1

(3n+5)
1
2

and we take initial

value (t0,u0) = (1.2,1.5).

Figure 1. Comparison among number of iterations of
different iterative scheme
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Table 1. Comparison of iteration of different iteration scheme
Number of Iterations

For αn =
1

(n+11)
1
8
,βn =

n

(2n+7)
1
2
,γn =

1

(3n+5)
1
2

Initial Value Generalized
Picard
nor-
mal s-
iteration

Picard
nor-
mal s-
iteration

Normal
s-
iteration

Mann it-
eration

Picard
itera-
tion

(1.2, 1.5) 6 7 12 36 18
(1.8, 1.25) 6 7 12 37 19
(0.2, 1.75) 7 7 12 39 19
(0.9, 0.5) 7 7 12 38 19
(1.9, 1.1) 6 7 12 36 19

Table 2. Numerical result for generalized Picard normal
s-iteration process

n xn wn zn yn xn+1

0 (1.2,1.5) (1.32871119482, (1.32986672945, (1.33177248778, (1.33294312194,
1.33911100647) 1.33766658819) 1.33528439028) 1.33382109757)

1 (1.33294312194, (1.33304659236, (1.33317627585, (1.3332617583, (1.33331543958,
1.33382109757) 1.33369175954) 1.33352965519) 1.33342280212) 1.33335570053)

2 (1.33331543958, (1.33331948595, (1.33332812724, (1.33333093466, (1.33333273366,
1.33335570053) 1.33335064256) 1.33333633168) 1.33333633168) 1.33333408292)

3 (1.33333273366, (1.33333285387, (1.33333322526, (1.33333328304, (1.33333332076,
1.33333408292) 1.33333393267) 1.33333346843) 1.3333333962) 1.33333334905)

4 (1.33333332076, (1.33333332305, (1.3333333324, (1.3333333329, (1.33333333322,
1.33333334905) 1.33333334619) 1.3333333345) 1.33333333388) 1.33333333347)

5 (1.33333333322, (1.33333333324, (1.33333333334, (1.33333333333, (1.33333333333,
1.33333333347) 1.33333333345) 1.33333333333) 1.33333333333) 1.33333333333)

From Table 1, Figure 1 and Table 2, it is clear that {tn}
converges strongly to ( 4

3 ,
4
3 ) of F(S) and generalized Picard

normal s-iteration process converges to fixed point faster than
Picard normal s-iteration process, normal s-iteration process,
Mann iteration process and Picard iteration process.
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