

https://doi.org/10.26637/MJM0803/0059

Measures of (*i*, *j*)**-semi-connectedness of** *L***-fuzzy bitopological spaces**

P. Gomathi Sundari¹ and R. Menaga^{2*}

Abstract

In this paper, we use L-fuzzy (*i*, *j*)-semi-open operator to introduce the degree of (*i*, *j*)-*s*-separatedness and the degree of (*i*, *j*)-*s*-connectedness in *L*-fuzzy bitopological spaces. Many characterizations of the degree of (*i*, *j*)-*s*-connectedness are presented in *L*-fuzzy bitopological spaces.

Keywords

L-topological spaces, fuzzy (*i*, *j*)-*s*-connected, fuzzy (*i*, *j*)-*s*-connectedness degree.

AMS Subject Classification

54A40, 54D30, 03E72.

¹*Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur-613005, Tamil Nadu, India.* ²*Department of Mathematics, Sengamala Thayaar Educational Trust Women's College (Affiliated to Bharathidasan University),*

Mannargudi-614016, Tamil Nadu, India.

***Corresponding author**: 1 rsgcgomathi18@gmail.com; ²menagamohan2008@gmail.com **Article History**: Received **11** April **2020**; Accepted **19** June **2020** ©2020 MJM.

Contents

 [Introduction](#page-0-0) . 1074 [Preliminaries](#page-0-1) . 1074 On (*i*, *j*)**-***s***[-separatedness degree.](#page-1-0)1075 [References](#page-2-0) . 1076**

1. Introduction

It is well known that after the introduction of the *L*-fuzzy topological space by Kubiak [\[6\]](#page-3-0) and Sostak [\[9\]](#page-3-1) in 1985, a large number of Mathematicians have taken great interests in generalizing and extending different concepts of set topology and Chang's fuzzy topology [\[1\]](#page-3-2) into *L*-fuzzy topology. The concept of connectedness along with some of its allied forms is one of the directions that have been ventured with meticulous attention. In [\[4\]](#page-3-3), the authors introduced the notion of *L*-fuzzy (i, j) -semi-open operator $\tau_{(i, j)s}$ in L-fuzzy bitopological spaces as a generalization of (*i*, *j*)-semi-open *L*-subsets, where *L* completely distributive DeMorgan algebra. $\tau_{(i,j)s}(A)$ can be regarded as the degree to which A is (i, j) -semi-open. So that, actually $\tau_{(i,j)s}$ reflects the essence of *L*-fuzzy bitopology. In this paper, we use *L*-fuzzy (*i*, *j*)-semi-open operator to introduce the degree of (i, j) -s-separatedness and the degree of (*i*, *j*)-*s*-connectedness in *L*-fuzzy bitopological spaces. Many characterizations of the degree of (i, j) -s-connectedness are presented in *L*-fuzzy bitopological spaces.

2. Preliminaries

Throughout this paper, $(L, \vee, \wedge,')$ is a complete De Morgan algebra, *X* a nonempty set and L^X the set of all *L*-fuzzy sets (or *L*-sets for short) on *X*. The smallest element and the largest element in *L* are denoted by 0 and 1. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and 1. An element *a* in *L* is called a prime element if $b \wedge c \le a$ implies that $b \le a$ or $c \le a$. *a* in *L* is called a co-prime element if a' is a prime element [\[2\]](#page-3-4). The set of nonunit prime elements in *L* is denoted by $P(L)$ and the set of nonzero co-prime elements in *L* by $M(L)$. The binary relation \prec in *L* is defined as follows: for $a, b \in L$, $a \prec b$ if and only if for every subset *D* \subseteq *L*, the relation *b* \leq sup*D* always implies the existence of *d* ∈ *D* with $a \le d$ [\[2\]](#page-3-4). In a completely distributive De Morgan algebra *L*, each element *b* is a sup of $\{a \in L | a \prec b\}$. The set $s(b) = \{a \in L | a \prec b\}$ is called the greatest minimal family of *b* in the sense of [\[7,](#page-3-5) [10\]](#page-3-6).

Definition 2.1. *[\[6,](#page-3-0) [9\]](#page-3-1) Let X be a universe of discourse,* $\tau \in$ ℑ(*P*(*X*))*, satisfying the following conditions:*

- *1.* $\tau(0) = \tau(1) = 1$;
- 2. *for any* $A, B \in L^X$, $\tau(A \wedge B) \ge \tau(A) \wedge \tau(B)$;
- *3. for any* $A_{\lambda} \in L^X, \lambda \in \Delta, \tau(\mathcal{V})$ $\bigvee_{\lambda \in \Delta} A_{\lambda}$) ≥ $\bigwedge_{\lambda \in \Delta}$ $\bigwedge_{\lambda \in \Delta} \tau(A_{\lambda}).$

The pair (X, τ) is called an *L*-fuzzy topological space. $\tau(U)$ is called the degree of openness of *U*, $\tau^*(U) = \tau(U')$

is called the degree of closedness of U , where U' is the L complement of *U*.

Theorem 2.2. *[\[8\]](#page-3-8)* Let $\tau: L^X \to L$ be a function. Then the *following conditions are equivalent:*

- *1.* τ *is an L-fuzzy topology on X,*
- 2. $\tau_{[a]} = \{A \in L^X : \tau(A) \ge a\}$ *is an L-topology on X for* $\text{each } a \in M(L).$

Definition 2.3. *An L-fuzzy bitopological space (or L-fbts for short) is an ordered triple* (X, τ_1, τ_2) *, where* τ_1 *and* τ_2 *are subfamilies of L ^X which contains* 0,1 *and is closed for any suprema and finite infima.*

Definition 2.4. *Let* (X, τ_1, τ_2) *be an L-fbts. For* $A \in L^X$ *, define* $\tau_{(i,j)s}: L^X \to L$ by

$$
\tau_{(i,j)s}(A) = \bigwedge_{x_{\lambda} \prec A} \bigvee_{x_{\lambda} \prec B} \{\tau(B) \wedge \bigwedge_{y_{\lambda} \prec A} \bigwedge_{y_{\mu} \not\leq D \geq A} (\tau(D'))'\}.
$$

Then τ(*i*, *^j*)*^s is called L-fuzzy* (*i*, *j*)*-semi-open operator induced* b *y* τ_1 *and* τ_2 *, where* $\tau_{(i,j)s}(A)$ *can be regarded as the degree to which A is* (*i*, *j*)-semi-open and $\tau^{\star}_{(i,j)s}(A) = \tau_{(i,j)s}(A')$ can *be regarded as the degree to which A is* (*i*, *j*)*-semi-closed.*

Theorem 2.5. *Let* (X, τ_1, τ_2) *be an L-fbts and* $A \in L^X$ *. Then* $A \in (\tau_{(i,j)s})_{[a]}$ *if and only if A is* (i,j) -semi-open in $\tau_{[a]},$ where $a \in M(L)$ *and* $({\tau}_{(i,j)s})_{[a]} = {A \in L^{X} : \tau_{(i,j)s}(A) \geq a}.$

Lemma 2.6. *Let* $\tau_{(i,j)s}: L^X \to L$ *be an L-fuzzy* (i, j) -semi*open operator induced by* τ*. Then* τ(*i*, *^j*)*^s satisfies the following conditions:*

\n- 1.
$$
\tau_{(i,j)s}(\underline{0}) = \tau_{(i,j)s}(\underline{1}) = 1;
$$
\n- 2. for any $A_{\lambda}, \lambda \in \Delta, \tau_{(i,j)s}(\bigvee_{\lambda \in \Delta} A_{\lambda}) \geq \bigwedge_{\lambda \in \Delta} \tau_{(i,j)s}(A_{\lambda}).$
\n

Definition 2.7. *An L-fuzzy* (*i*, *j*)*-s-closure operator on X is a* mapping (i, j) -sCl : $L^X \rightarrow L^{M(L^X)}$ satisfying the following *conditions:*

1. (i, j) -sCl(*A*)(x_{λ}) = Λ $\bigwedge_{\mu \prec \lambda} (i, j)$ -sCl(A)(x_{μ}) for all $x_{\lambda} \in$ $M(L^X)$,

2.
$$
(i, j) \text{-} s \text{Cl}(\underline{0})(x_{\lambda}) = 0 \text{ for all } x_{\lambda} \in M(L^X),
$$

- *3.* (*i*, *j*)*-s*Cl(*A*)(*x*_λ) = 1 *for all x*_λ ≤ *A*,
- *4. for all* $a \in L_0$, $((i, j)$ -*s*Cl(\vee (i, j)-*s*Cl(A))_[a]))_[a] ⊂ ((i, j) $sCl(A))_{[a]},$

 (i, j) -s $Cl(A)_{(x_{\lambda})}$ is called the degree to which x_{λ} belongs to *the* (i, j) -s-closure of A.

Theorem 2.8. Let $\tau_{(i,j)s}: L^X \to L$ be the L-fuzzy (i, j) -semi*open operator on X and* (i, j) - s Cl^{τ _{(*i*, *j*)*s*} *be the L-fuzzy* (i, j) - s -} c *losure operator induced by* $\tau_{(i,j)s}$ *. Then for each* $x_\lambda \in M(L^X)$ $and A \in L^X$, (i, j) - $s \text{Cl}^{\tau_{(i,j)s}}(A)(x_\lambda) = \bigwedge$ $\bigwedge_{x \not\leq D \geq A} (\tau_{(i,j)s}(D'))'.$

3. On (*i*, *j*)**-***s***-separatedness degree**

Definition 3.1. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $A, B \in L^X$. The (i, j) -s-separatedness degree of *A* and *B* defined by $\mathscr{P}(A,B) = (\Lambda \ (i,j)$ -sCl(*B*)(*x*_{λ}))') \wedge *x*^λ ≤*A*

$$
(\bigwedge_{y_{\mu}\leq B}((i,j)\text{-}s\operatorname{Cl}(A)(y_{\mu})){}').
$$

Proposition 3.2. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $A, B \in L^X$. Then $\mathscr{P}(A, B) = 1$ *if and only if A and B* are (i, j) -s-separated in (X, τ_1, τ_2) .

Lemma 3.3. *Let* (X, τ_1, τ_2) *be an L-fbts and* $A, B \in L^X$. *If* $A \wedge B \neq 0$, then $\mathscr{P}(A, B) = 0$.

Proof. Let
$$
z_{\mu} \in M(L^X)
$$
 such that $x_{\mu} \leq A \wedge B$. Then $\mathscr{P}(A, B) =$
\n
$$
(\bigwedge_{x_{\lambda} \leq A} ((i, j) \cdot s \operatorname{Cl}(B)(x_{\lambda}))') \wedge (\bigwedge_{x_{\lambda} \leq B} ((i, j) \cdot s \operatorname{Cl}(A)(x_{\lambda}))') \leq
$$
\n
$$
((i, j) \cdot s \operatorname{Cl}(B)(z_{\mu}))' \wedge ((i, j) \cdot s \operatorname{Cl}(A)(z_{\mu}))' = 1' \wedge 1' = 0. \quad \Box
$$

Lemma 3.4. *Let* (X, τ_1, τ_2) *be an L-fbts and* $A, B, C, D \in L^X$. *If* $C \leq A$ *and* $D \leq B$ *, then* $\mathcal{P}(A,B) \leq \mathcal{P}(C,D)$ *.*

Proof. If
$$
C \leq A
$$
 and $D \leq B$, then $(i, j) \cdot s \text{Cl}(C) \leq (i, j) \cdot s \text{Cl}(A)$
and $(i, j) \cdot s \text{Cl}(D) \leq (i, j) \cdot s \text{Cl}(B)$. Hence we have $\mathscr{P}(A, B) =$
 $(\bigwedge ((i, j) \cdot s \text{Cl}(B)(x_{\lambda}))') \wedge (\bigwedge ((i, j) \cdot s \text{Cl}(A)(y_{s}))') \leq$
 $x_{\lambda} \leq A$
 $(\bigwedge ((i, j) \cdot s \text{Cl}(D)(x_{\lambda}))') \wedge (\bigwedge ((i, j) \cdot s \text{Cl}(C)(y_{s}))') \leq$
 $(\bigwedge ((i, j) \cdot s \text{Cl}(D)(x_{\lambda}))') \wedge (\bigwedge ((i, j) \cdot s \text{Cl}(C)(y_{s}))') =$
 $x_{\lambda} \leq C$
 $\mathscr{P}(C, D).$

Lemma 3.5. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space,* $A, B \in L^X$ *and* $a \in M(L)$ *. Then* $(\mathscr{P}(A,B))' \ge a$ *if and only if there exist* $D, E \in L^X$ *such that* $D \ge A, E \ge B, D \wedge B =$ $E \wedge A = \underline{0}$ *and* $(\tau_{(i,j)s}(D'))' \vee (\tau_{(i,j)s}(E'))' \ngeq a.$

Proof. Suppose that $(\mathcal{P}(A,B))' \geq a$. Then $(\mathcal{P}(A,B))' \geq b$ for some $b \in s^*(a)$. Then $\bigvee (i, j)$ - $sCl(B)(x_\lambda) \vee \bigvee (i, j)$ *x*^λ ≤*A ys*≤*B*

 $sCl(A)(y_s) \not\geq b$. Moreover, we have $\bigwedge_{x_\lambda \nleq E \geq B} (\tau_{(i,j)s}(E'))' \vee \bigvee_{y_s \leq B}$ $\bigwedge_{y_s \not\leq D \geq A} (\tau_{(i,j)s}(D'))' \not\geq b$. Hence W \wedge \wedge *x*^λ ≤*A ys*≤*B* for any $x_{\lambda} \leq A$ and for any $y_s \leq B$, there exist $D_{y_s}, E_{x_{\lambda}} \in L^X$ such that $x_{\lambda} \nleq E_{x_{\lambda}} \geq B$, $y_s \nleq D_{y_s} \geq A$ and $(\tau_{(i,j)s}(\tilde{D}_{y_s}))' \vee$ $(\tau_{(i,j)s}(E'_{x_{\lambda}}))^{\prime} \ngeq b$. Let $E = \bigwedge_{i=1}^{n} E_{x_{\lambda}}$ and $D = \bigwedge_{i=1}^{n} E_{x_{\lambda}}$ $\bigwedge_{y_s \leq B} D_{y_s}$. Then *x*^λ ≤*A* we have $D \ge A, E \ge B, D \wedge B = E \wedge A = 0$ and $(\tau_{(i,j)s}(D'_{y_s}))' \vee$ $(\tau_{(i,j)s}(E'_{x_{\lambda}}))' = (\tau_{(i,j)s}(\bigvee_{j\in S_{\lambda}}\mathcal{C}_{j})$ $(D_{y_S}^\prime))^\prime \vee (\tau_{(i,j)s}(\,\,\,\forall j)$ $(E'_{x_{\lambda}}))^{n} \leq$ *ys*≤*B x*^λ ≤*B* $\bigvee_{y_s \leq B} (\tau_{(i,j)s}(D'_{y_s}))' \vee \bigvee_{x_{\lambda} \leq B}$ $(\tau_{(i,j)s}(E'_{x_{\lambda}}))^{\prime} \ngeq a$. Conversely, there W *x*^λ ≤*A* exist $D, E \in L^X$ with $D \ge A, E \ge B, D \wedge B = E \wedge A = 0$ and $(\tau_{(i,j)s}(D'))' \vee (\tau_{(i,j)s}(E'))' \ngeq a$. So $(\mathscr{P}(A,B))' = \bigvee (i,j)$ *x*^λ ≤*A* $\bigwedge_{x_\lambda \nleq G \geq B} (\tau_{(i,j)s}(G'_{y_s}))'$ *s*Cl(*B*)(*x*_λ)∨ \vee $\bigvee_{y_s \leq B} (i, j)$ -*s*Cl(*A*)(*y_s*) = $\bigvee_{x_{\lambda} \leq B}$ \wedge *x*^λ ≤*A* $\bigwedge_{y_s \nleq H \geq A} (\tau_{(i,j)s}(H'_{y_s}))' \leq (\tau_{(i,j)s}(D'_{y_s}))' \vee (\tau_{(i,j)s}(E'_{x_A})).$ ∨ W \wedge *ys*≤*B* Then $(\mathscr{P}(A,B))' \ngeq a$. П

Definition 3.6. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological* $space$ and $G \in L^{X}$ *. Define* (i, j) *-s* $\mathscr{C}(G) = \wedge \{ \mathscr{P}(A, B)' : A, B \in \mathscr{C}$ $L^X \setminus \{0\}$, $G = A \vee B$ }*. Then* (i, j) -s $\mathscr{C}(G)$ *is said to be the* (i, j) -s-connectedness degree of *G*. That is, (i, j) -s $\mathcal{C}(G)$ = \wedge *A*,*B*∈*L*^{*X*} \setminus {<u>0</u>},*G*=*A*∨*B* { W *x*^λ ≤*A* (i, j) -*s*Cl(*B*)(*x*_λ) ∨ ∨ $\bigvee_{y_s \leq B}$ (Cl(*A*)(*y*_{*s*})}.

Theorem 3.7. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space* $and G \in L^{X}$ *. Then* (i, j) *-s* $\mathscr{C}(G)$ = \wedge $\bigwedge_{G \wedge A \neq 0, G \wedge B \neq 0, G \wedge A \wedge B \neq 0, G \leq A \vee B} \{(\tau_{(i,j)s}(A'_{y_s}))' \vee (\tau_{(i,j)s}(B'_{x_{\lambda}}))'\}.$

Proof. We have
$$
(i, j) \cdot s\mathcal{C}(G) = \bigwedge_{A, B \in L^X \setminus \{0\}, G = A \vee B}
$$

\n
$$
\{\bigvee_{x_{\lambda} \leq A} (i, j) \cdot s\mathbf{Cl}(B)(x_{\lambda}) \vee \bigvee_{y_{s} \leq B} (i, j) \cdot s\mathbf{Cl}(A)(y_{s})\} =
$$
\n
$$
\bigwedge_{x_{\lambda} \leq A} \{\bigvee_{y_{s} \leq B} \bigwedge_{x_{\lambda} \leq A} (x_{(i,j)s}(D'))' \vee
$$
\n
$$
\bigvee_{y_{s} \leq B} \bigwedge_{y_{s} \leq E \geq A} (x_{(i,j)s}(E'))'\} = \bigwedge_{x_{\lambda} \leq G \wedge A \neq 0, G \wedge B \neq 0, G \wedge A \wedge B \neq 0, G = A \vee B}
$$
\n
$$
\{\bigvee_{x_{\lambda} \leq G \wedge A} \bigwedge_{x_{\lambda} \neq D \geq G \wedge B} (x_{(i,j)s}(D'))' \vee \bigvee_{y_{s} \leq G \wedge B} \bigwedge_{y_{s} \leq G \wedge B} (x_{(i,j)s}(E'))'\} \leq \bigwedge_{G \wedge A \neq 0, G \wedge A \wedge B \neq 0, G = A \vee B}
$$
\n
$$
\{\bigvee_{x_{\lambda} \leq G \wedge A} (x_{(i,j)s}(D'))' \vee \bigvee_{y_{s} \leq G \wedge B} (x_{(i,j)s}(E'))'\} \vee x_{\lambda} \leq G \wedge A
$$
\n
$$
= \bigwedge_{G \wedge A \neq \underline{0}, G \wedge B \neq \underline{0}, G \wedge A \wedge B \neq \underline{0}, G = A \vee B} \{\{(\tau_{(i,j)s}(D'))' \vee (\tau_{(i,j)s}(E'))'\}.
$$

Conversely, suppose (i, j) -*s* $\mathscr{C}(G) \not\geq a$ where $a \in M(L)$. Then there exist $A, B \in L^X \setminus \{0\}$ with $G = A \vee B$ and $(\mathscr{P}(A, B)) \ngeq a$. By Lemma [3.5,](#page-1-1) there exist $D, E \in L^X$ such that $D \ge A, E \ge B$, $D \wedge B = E \wedge A = 0$ and $(\tau_{(i,j)s}(D'))' \vee (\tau_{(i,j)s}(E'))' \ngeq a$. Hence \wedge $G \wedge A \neq \underline{0}, G \wedge B \neq \underline{0}, G \wedge A \wedge B = \underline{0}, G \leq A \vee B$ {(**τ**(*i*,*j*)*s*</sub>(*B*^{*'*}))^{*'*} \vee (**τ**_{(*i*,*j*)*s*}(*E'*))[']} $\ngeq a$. Then (i, j) -*s*°C (G) ≥ \wedge

G∧A≠<u>0</u>,*G∧B≠*0,*G∧A∧B=*0,*G*≤*A∨B* $\{(\tau_{(i,j)s}(B'))' \vee \tau_{(i,j)s}(E'))'\}$ and this completes the proof.

Corollary 3.8. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space. Then* (i, j) *-s*^C (1) = $\bigwedge_{A \neq 0, A \land B = 0, A \lor B = 0}$ $\{(\tau_{(i,j)s}(A))' \lor$ $(\tau_{(i,j)s}(B))$ ['] }.

Theorem 3.9. *For any* $x_{\lambda} \in M(L^X)$, *it follows that* (i, j) $s\mathscr{C}(x_\lambda) = 1.$

Proof. Straightforward.

Theorem 3.10. *For any* $G \in L^X$ *, we have* \bigvee $((i, j)$ *-s* $\mathscr{C}(\vee((i, j)$ *-s*Cl $(G))_{[b]}) \geq (i, j)$ *-s* $\mathscr{C}(G)$ *. b*∈*M*(L^X)

Proof. Let $a \leq (i, j)$ -*s* $\mathcal{C}(G)$ where $a \in M(L)$ and suppose that \forall (i, j) - $s\mathscr{C}(\forall((i, j)$ - $s\text{Cl}(G))_{[b]})) \ngeq a$. Then (i, j) *b*∈*M*(L^X)

 $s\mathscr{C}(\vee((i,j)\text{-}sC1(G))_{[a]})\not\geq a$. By using Theorem [3.7,](#page-2-1) there exist $A, B \in L^X$ with $(\vee((i, j) \cdot s\text{Cl}(G))_{[a]}) \wedge A \neq 0, (\vee((i, j) \cdot s\text{Cl}(G))_{[a]})$ *s*Cl(*G*))_[*a*] \land *B* \neq <u>0</u>, (∨((*i*, *j*)-*s*Cl(*G*))_[*a*]) \land *A* \land *B* \neq <u>0</u>, (∨((*i*, *j*) $s\text{Cl}(G)$ ^{[*a*}]</sub> $\leq A \wedge B$ and $(\tau_{(i,j)s}(B'))' \vee (\tau_{(i,j)s}(A'))' \not\geq a$. Since $(\vee((i, j) \cdot s\text{Cl}(G))_{[a]}) \wedge A \neq \underline{0}$, there exist $x_{\lambda} \leq A$ with (i, j) *s*Cl(*G*)(*x*_{λ}) ≥ *a*. Since (\vee ((*i*, *j*)-*s*Cl(*G*))_[*a*])∧*A* ∧ *B* = <u>0</u></u>, we have $x_{\lambda} \nleq B$. If $G \wedge A \neq \underline{0}$, then $G \leq \vee ((i, j)$ -sCl $(G))_{[a]} \leq A \vee$

B we have $G \leq B$, hence it follows that $a \leq (i, j)$ - $s \text{Cl}(G)(x_{\lambda}) =$ \bigwedge $(\tau_{(i,j)s}(E'))' \leq (\tau_{(i,j)s}(B'))'$, which is a contradiction. $x_λ$ $\nleq E$ \geq *G* Analogously we can prove $G \wedge B \neq \underline{0}$. Thus by $G \wedge A \neq \underline{0}$, $G \wedge$ $B \neq 0, G \wedge A \wedge B \neq 0, G \leq A \vee B, (\tau_{(i,j)s}(B'))' \vee (\tau_{(i,j)s}(A'))' \ngeq 0$ *a* and Theorem [3.7,](#page-2-1) we know that (i, j) -*s* $\mathcal{C}(G) \not\geq a$, contradicting (i, j) -*s* $\mathscr{C}(G) \ge a$. It is proved that \forall (i, j) $b∈M(L^X)$

$$
s\mathscr{C}(\vee((i,j)\text{-}s\operatorname{Cl}(G))_{[b]})\geq (i,j)\text{-}s\mathscr{C}(G).
$$

Theorem 3.11. *For any* $G, H \in L^X$, *we have* (i, j) *-s* $\mathscr{C}(G \vee$ H) \geq $(\mathscr{P}(G,H))' \wedge (i,j)$ *-s* $\mathscr{C}(G) \wedge (i,j)$ *-s* $\mathscr{C}(H)$ *.*

Proof. Let $a \leq (\mathcal{P}(G,H))' \wedge (i, j)$ -s $\mathcal{C}(G) \wedge (i, j)$ -s $\mathcal{C}(H)$, where $a \in M(L)$ and suppose that (i, j) - $s\mathcal{C}(G \vee H) \not\geq a$. Then by using Theorem [3.7,](#page-2-1) there exist $A, B \in L^X$ such that $(G \vee$ *H*)∧*A* \neq 0, (*G*∨*H*)∧*B* \neq 0, (*G*∨*H*)∧*A*∧*B* = 0, *G*∨*H* ≤ *A*∨ *B* and $(\tau_{(i,j)s}(B'))' \vee (\tau_{(i,j)s}(A'))' \ngeq a$. Since $(G \vee H) \wedge A \neq \underline{0}$, we have $G \wedge A \neq 0$ and $H \wedge A \neq 0$. Suppose that $G \wedge A \neq 0$ (The case of $H \wedge A \neq 0$ is analogous). Then we have $G \wedge B = 0$, otherwise if $G \wedge B \neq \underline{0}$, then by $G \wedge A \neq \underline{0}$, $G \wedge B \neq \underline{0}$, $G \wedge A \wedge$ $B = 0, G \leq A \vee B$ and $(\tau_{(i,j)s}(B'))' \vee (\tau_{(i,j)s}(E'))' \ngeq a$, we know that (i, j) -*s* $\mathscr{C}(G) \not\geq a$, which is a contradiction. In this case by $(G\vee H)\wedge B\neq 0$, we know that $H\wedge B\neq 0$. Analogously we can prove $H \wedge A = 0$. Thus by $G \vee H \leq A \vee B$ we can obtain that *G* ≤ *A* and *H* ≤ *B*. Hence by *G* ≤ *A*, *H* ≤ *B*, *G* ∧ *B* = *H* ∧ *A* = $\underline{0}, (\tau_{(i,j)s}(B'))' \vee (\tau_{(i,j)s}(A'))' \ngeq a$ and by Lemma [3.5,](#page-1-1) we have $(\mathscr{P}(G,H))' \not\geq a$, which is a contradiction. This shows that (i, j) -*s* $\mathscr{C}(G \vee H) \ge a$ and this completes the proof. \Box

Corollary 3.12. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $G, H \in L^X$ *. If* $A \wedge B \neq \underline{0}$ *, then* (i, j) *-s* $\mathscr{C}(G \vee H) \geq$ (i, j) *-s* $\mathscr{C}(G) \wedge (i, j)$ *-s* $\mathscr{C}(H)$ *.*

Theorem 3.13. *Let* (X, τ_1, τ_2) *be an L-fuzzy bitopological space and* $G \in L^X$ *. Then* (i, j) -s $\mathscr{C}(G) = \Lambda$ $\bigwedge_{x_\lambda, y_s \leq G} \vee \{(i,j) \cdot s\mathscr{C}(D_{x_\lambda, y_s}) : x_\lambda, y_s \leq D_{x_\lambda, y_s} \leq$ *G*}*.*

Proof. \land $\bigwedge_{x_{\lambda}, y_s \leq G} \forall \{(i, j) \text{-} s\mathscr{C}(D_{x_{\lambda}, y_s}) : x_{\lambda}, y_s \leq D_{x_{\lambda}, y_s} \leq G\} \geq a$, where $a \in M(L)$. Take $x_{\lambda} \leq G$ fixed. Then for any $y_s \leq G$, there exist $D_{x_\lambda, y_s} \in L^X$ such that $x_\lambda, y_s \le D_{x_\lambda, y_s} \le G$ and (i, j) $s\mathscr{C}(D_{x_{\lambda},y_s}) \geq a$. Let $D_{x_{\lambda}} = \bigvee$ $\bigvee_{y_s \leq G} D_{x_\lambda, y_s}$. Then $D_{x_\lambda} = G$ and W $\bigvee_{y_s \le G} D_{x_\lambda, y_s} \neq 0$. By using Corollary [3.12,](#page-2-2) we have (i, j) $s\mathscr{C}(G) = (i, j)$ - $s\mathscr{C}(D_{x_{\lambda}}) \geq \forall$ $\bigvee_{y_s \leq G} (i, j)$ -*s* $\mathscr{C}(D_{x_\lambda, y_s}) \geq a$. This shows that (i, j) - $s\mathscr{C}(G) \geq \bigwedge$ $\bigwedge_{x_\lambda, y_s \leq G} \vee \{(i, j)$ -*s* $\mathscr{C}(D_{x_\lambda, y_s})$: $x_\lambda, y_s \leq$ $D_{x_\lambda, y_s} \leq G$. Since (i, j) -*s* $\mathscr{C}(G) \leq \bigwedge$ $\bigwedge_{x_\lambda, y_s \leq G} \vee \{(i, j)$ -*s*C (D_{x_λ, y_s}) : $x_{\lambda}, y_s \leq D_{x_{\lambda}, y_s} \leq G$ is clear. Then we have (i, j) -*s* $\mathscr{C}(G)$ = \wedge $\bigwedge_{x_{\lambda}, y_{s} \leq G} \vee \{(i, j) \cdot s\mathscr{C}(D_{x_{\lambda}, y_{s}}) : x_{\lambda}, y_{s} \leq D_{x_{\lambda}, y_{s}} \leq G\}.$

 \Box

References

- [1] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.,* 24(1968), 182–190.
- [2] P. Dwinger, Characterizations of the complete homomorhic images of a completely distributive complete lattice, I, *Nedreal. Akad. Wetensh. Indag. Math.*, 44(1982), 403–414.
- [3] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D.S. Scott, *A Compendium of Continuous Lattices*, Springer Verlang, Berlin, 1980.
- [4] P. Gomathi Sundari and R. Menaga, On Fuzzy (*i*, *j*)-semiopen sets in *L*-fuzzy bitopological spaces (submitted).
- [5] P. Gomathi Sundari and R. Menaga, Some mappings on *L*-fuzzy bitopological spaces (submitted).
- [6] T. Kubiak, *On Fuzzy Topologies*, Ph.D. Thesis, A.Mickiewicz, Poznan, 1985.
- [7] Y. M. Liu and M. K. Luo, *Fuzzy Topology*, World Scientific Publishing, Singapore, 1998.
- [8] F.G. Shi, J. Zhang and C.Y. Zheng, On L-fuzzy topological spaces, *Fuzzy Sets and Systems*, 160(2009), 1218–1232.
- [9] A. P. Sostak, On a fuzzy topological structure, *Suppl. Rend. Circ. Matem. Palermo-SirII*, 11(1985), 89–103.
- [10] G.J. Wang, *Theory of L-fuzzy Topological Spaces*, Shaanxi Normal University Press, Xi'an, 1988.

 $* * * * * * * * * * *$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 ? ? ? ? ? ? ? ? ?

