

https://doi.org/10.26637/MJM0803/0059

Measures of (i, j)-semi-connectedness of *L*-fuzzy bitopological spaces

P. Gomathi Sundari¹ and R. Menaga^{2*}

Abstract

In this paper, we use L-fuzzy (i, j)-semi-open operator to introduce the degree of (i, j)-s-separatedness and the degree of (i, j)-s-connectedness in *L*-fuzzy bitopological spaces. Many characterizations of the degree of (i, j)-s-connectedness are presented in *L*-fuzzy bitopological spaces.

Keywords

L-topological spaces, fuzzy (i, j)-*s*-connected, fuzzy (i, j)-*s*-connectedness degree.

AMS Subject Classification

54A40, 54D30, 03E72.

¹ Department of Mathematics, Rajah Serfoji Government College (Affiliated to Bharathidasan University), Thanjavur-613005, Tamil Nadu, India. ² Department of Mathematics, Sengamala Thayaar Educational Trust Women's College (Affiliated to Bharathidasan University),

Mannargudi-614016, Tamil Nadu, India.

*Corresponding author: ¹rsgcgomathi18@gmail.com; ²menagamohan2008@gmail.com Article History: Received 11 April 2020; Accepted 19 June 2020

©2020 MJM

Contents

1	Introduction 1074
2	Preliminaries 1074
3	On (<i>i</i> , <i>j</i>)- <i>s</i> -separatedness degree
	References

1. Introduction

It is well known that after the introduction of the L-fuzzy topological space by Kubiak [6] and Sostak [9] in 1985, a large number of Mathematicians have taken great interests in generalizing and extending different concepts of set topology and Chang's fuzzy topology [1] into L-fuzzy topology. The concept of connectedness along with some of its allied forms is one of the directions that have been ventured with meticulous attention. In [4], the authors introduced the notion of *L*-fuzzy (i, j)-semi-open operator $\tau_{(i,j)s}$ in L-fuzzy bitopological spaces as a generalization of (i, j)-semi-open L-subsets, where *L* completely distributive DeMorgan algebra. $\tau_{(i,i)s}(A)$ can be regarded as the degree to which A is (i, j)-semi-open. So that, actually $\tau_{(i,i)s}$ reflects the essence of *L*-fuzzy bitopology. In this paper, we use L-fuzzy (i, j)-semi-open operator to introduce the degree of (i, j)-s-separatedness and the degree of (i, j)-s-connectedness in L-fuzzy bitopological spaces. Many characterizations of the degree of (i, j)-s-connectedness are presented in L-fuzzy bitopological spaces.

2. Preliminaries

Throughout this paper, $(L, \lor, \land, ')$ is a complete De Morgan algebra, X a nonempty set and L^X the set of all L-fuzzy sets (or *L*-sets for short) on *X*. The smallest element and the largest element in L are denoted by 0 and 1. The smallest element and the largest element in L^X are denoted by 0 and 1. An element *a* in *L* is called a prime element if $b \wedge c \leq a$ implies that $b \le a$ or $c \le a$. a in L is called a co-prime element if a' is a prime element [2]. The set of nonunit prime elements in L is denoted by P(L) and the set of nonzero co-prime elements in L by M(L). The binary relation \prec in L is defined as follows: for $a, b \in L, a \prec b$ if and only if for every subset $D \subseteq L$, the relation $b \leq \sup D$ always implies the existence of $d \in D$ with $a \leq d$ [2]. In a completely distributive De Morgan algebra L, each element b is a sup of $\{a \in L | a \prec b\}$. The set $s(b) = \{a \in L | a \prec b\}$ is called the greatest minimal family of b in the sense of [7, 10].

Definition 2.1. [6, 9] Let X be a universe of discourse, $\tau \in \Im(P(X))$, satisfying the following conditions:

- *1*. $\tau(\underline{0}) = \tau(\underline{1}) = 1;$
- 2. for any $A, B \in L^X$, $\tau(A \wedge B) \ge \tau(A) \wedge \tau(B)$;
- 3. for any $A_{\lambda} \in L^X$, $\lambda \in \Delta$, $\tau(\bigvee_{\lambda \in \Delta} A_{\lambda}) \ge \bigwedge_{\lambda \in \Delta} \tau(A_{\lambda})$.

The pair (X, τ) is called an *L*-fuzzy topological space. $\tau(U)$ is called the degree of openness of U, $\tau^*(U) = \tau(U')$ is called the degree of closedness of U, where U' is the *L*-complement of U.

Theorem 2.2. [8] Let $\tau : L^X \to L$ be a function. Then the following conditions are equivalent:

- 1. τ is an L-fuzzy topology on X,
- 2. $\tau_{[a]} = \{A \in L^X : \tau(A) \ge a\}$ is an L-topology on X for each $a \in M(L)$.

Definition 2.3. An L-fuzzy bitopological space (or L-fbts for short) is an ordered triple (X, τ_1, τ_2) , where τ_1 and τ_2 are subfamilies of L^X which contains 0, 1 and is closed for any suprema and finite infima.

Definition 2.4. Let (X, τ_1, τ_2) be an L-fbts. For $A \in L^X$, define $\tau_{(i,j)s} : L^X \to L$ by

$$\tau_{(i,j)s}(A) = \bigwedge_{x_\lambda \prec A} \bigvee_{x_\lambda \prec B} \{\tau(B) \land \bigwedge_{y_\lambda \prec A} \bigwedge_{y_\mu \nleq D \ge A} (\tau(D'))'\}.$$

Then $\tau_{(i,j)s}$ is called L-fuzzy (i, j)-semi-open operator induced by τ_1 and τ_2 , where $\tau_{(i,j)s}(A)$ can be regarded as the degree to which A is (i, j)-semi-open and $\tau_{(i,j)s}^*(A) = \tau_{(i,j)s}(A')$ can be regarded as the degree to which A is (i, j)-semi-closed.

Theorem 2.5. Let (X, τ_1, τ_2) be an *L*-fbts and $A \in L^X$. Then $A \in (\tau_{(i,j)s})_{[a]}$ if and only if *A* is (i, j)-semi-open in $\tau_{[a]}$, where $a \in M(L)$ and $(\tau_{(i,j)s})_{[a]} = \{A \in L^X : \tau_{(i,j)s}(A) \ge a\}.$

Lemma 2.6. Let $\tau_{(i,j)s} : L^X \to L$ be an L-fuzzy (i, j)-semiopen operator induced by τ . Then $\tau_{(i,j)s}$ satisfies the following conditions:

1.
$$\tau_{(i,j)s}(\underline{0}) = \tau_{(i,j)s}(\underline{1}) = 1;$$

2. for any $A_{\lambda}, \lambda \in \Delta, \tau_{(i,j)s}(\bigvee_{\lambda \in \Delta} A_{\lambda}) \ge \bigwedge_{\lambda \in \Delta} \tau_{(i,j)s}(A_{\lambda})$

Definition 2.7. An L-fuzzy (i, j)-s-closure operator on X is a mapping (i, j)-s Cl : $L^X \to L^{M(L^X)}$ satisfying the following conditions:

1. (i, j)-s Cl $(A)(x_{\lambda}) = \bigwedge_{\mu \prec \lambda} (i, j)$ -s Cl $(A)(x_{\mu})$ for all $x_{\lambda} \in M(L^X)$,

2.
$$(i, j)$$
-s Cl $(\underline{0})(x_{\lambda}) = 0$ for all $x_{\lambda} \in M(L^X)$,

- 3. (i, j)-s Cl $(A)(x_{\lambda}) = 1$ for all $x_{\lambda} \leq A$,
- 4. for all $a \in L_0$, $((i, j)-s \operatorname{Cl}(\lor(i, j)-s \operatorname{Cl}(A))_{[a]}))_{[a]} \subset ((i, j)-s \operatorname{Cl}(A))_{[a]}$,

(i, j)-s Cl $(A)_{(x_{\lambda})}$ is called the degree to which x_{λ} belongs to the (i, j)-s-closure of A.

Theorem 2.8. Let $\tau_{(i,j)s} : L^X \to L$ be the L-fuzzy (i, j)-semiopen operator on X and (i, j)-s $Cl^{\tau_{(i,j)s}}$ be the L-fuzzy (i, j)-sclosure operator induced by $\tau_{(i,j)s}$. Then for each $x_\lambda \in M(L^X)$ and $A \in L^X$, (i, j)-s $Cl^{\tau_{(i,j)s}}(A)(x_\lambda) = \bigwedge_{\substack{x \leq D > A}} (\tau_{(i,j)s}(D'))'$.

3. On (i, j)-s-separatedness degree

Definition 3.1. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $A, B \in L^X$. The (i, j)-s-separatedness degree of A and B defined by $\mathscr{P}(A, B) = (\bigwedge_{x_\lambda \leq A} ((i, j) - s \operatorname{Cl}(B)(x_\lambda))') \land$

$$(\bigwedge_{y_{\mu}\leq B}((i,j)-s\operatorname{Cl}(A)(y_{\mu}))').$$

Proposition 3.2. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $A, B \in L^X$. Then $\mathscr{P}(A, B) = 1$ if and only if A and B are (i, j)-s-separated in (X, τ_1, τ_2) .

Lemma 3.3. Let (X, τ_1, τ_2) be an L-fbts and $A, B \in L^X$. If $A \wedge B \neq \underline{0}$, then $\mathscr{P}(A, B) = 0$.

Proof. Let
$$z_{\mu} \in M(L^{X})$$
 such that $x_{\mu} \leq A \wedge B$. Then $\mathscr{P}(A, B) = (\bigwedge_{x_{\lambda} \leq A} ((i, j) - s \operatorname{Cl}(B)(x_{\lambda}))') \wedge (\bigwedge_{x_{\lambda} \leq B} ((i, j) - s \operatorname{Cl}(A)(x_{\lambda}))') \leq ((i, j) - s \operatorname{Cl}(B)(z_{\mu}))' \wedge ((i, j) - s \operatorname{Cl}(A)(z_{\mu}))' = 1' \wedge 1' = 0.$

Lemma 3.4. Let (X, τ_1, τ_2) be an L-fbts and $A, B, C, D \in L^X$. If $C \leq A$ and $D \leq B$, then $\mathscr{P}(A, B) \leq \mathscr{P}(C, D)$.

Proof. If
$$C \leq A$$
 and $D \leq B$, then (i, j) - $s \operatorname{Cl}(C) \leq (i, j)$ - $s \operatorname{Cl}(A)$
and (i, j) - $s \operatorname{Cl}(D) \leq (i, j)$ - $s \operatorname{Cl}(B)$. Hence we have $\mathscr{P}(A, B) =$
 $(\bigwedge_{x_{\lambda} \leq A} ((i, j)$ - $s \operatorname{Cl}(B)(x_{\lambda}))') \land (\bigwedge_{y_{s} \leq B} ((i, j)$ - $s \operatorname{Cl}(C)(y_{s}))') \leq$
 $(\bigwedge_{x_{\lambda} \leq A} ((i, j)$ - $s \operatorname{Cl}(D)(x_{\lambda}))') \land (\bigwedge_{y_{s} \leq B} ((i, j)$ - $s \operatorname{Cl}(C)(y_{s}))') \leq$
 $(\bigwedge_{x_{\lambda} \leq C} ((i, j)$ - $s \operatorname{Cl}(D)(x_{\lambda}))') \land (\bigwedge_{y_{s} \leq D} ((i, j)$ - $s \operatorname{Cl}(C)(y_{s}))') =$
 $\mathscr{P}(C, D).$

Lemma 3.5. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space, $A, B \in L^X$ and $a \in M(L)$. Then $(\mathscr{P}(A, B))' \geq a$ if and only if there exist $D, E \in L^X$ such that $D \geq A$, $E \geq B$, $D \wedge B = E \wedge A = \underline{0}$ and $(\tau_{(i,j)s}(D'))' \vee (\tau_{(i,j)s}(E'))' \ngeq a$.

Proof. Suppose that $(\mathscr{P}(A,B))' \ge a$. Then $(\mathscr{P}(A,B))' \ge b$ for some $b \in s^*(a)$. Then $\bigvee_{x_{\lambda} \le A} (i,j) - s\operatorname{Cl}(B)(x_{\lambda}) \lor \bigvee_{y_{\delta} \le B} (i,j) - c\operatorname{Cl}(A)(x_{\lambda}) \lor \bigcup_{y_{\delta} \ge B} (i,j) - c\operatorname{Cl}(A)(x_{\lambda}) \lor \bigcup_{y_{\delta} \ge B} (i,j) - c\operatorname{Cl}(A)(x_{\lambda}) \lor \bigcup_{y_{\delta} \lor B} (i,j) - c$

 $s\operatorname{Cl}(A)(y_s) \not\geq b. \text{ Moreover, we have} \\ \bigvee_{x_{\lambda} \leq A} (\tau_{(i,j)s}(E'))' \lor \bigvee_{y_s \leq B} (\tau_{(i,j)s}(D'))' \not\geq b. \text{ Hence} \\ \text{for any } x_{\lambda} \leq A \text{ and for any } y_s \leq B, \text{ there exist } D_{y_s}, E_{x_{\lambda}} \in L^X \\ \text{such that } x_{\lambda} \notin E_{x_{\lambda}} \geq B, y_s \notin D_{y_s} \geq A \text{ and } (\tau_{(i,j)s}(D'_{y_s}))' \lor \\ (\tau_{(i,j)s}(E'_{x_{\lambda}}))' \not\geq b. \text{ Let } E = \bigwedge_{x_{\lambda} \leq A} E_{x_{\lambda}} \text{ and } D = \bigwedge_{y_s \leq B} D_{y_s}. \text{ Then} \\ \text{we have } D \geq A, E \geq B, D \land B = E \land A = \underline{0} \text{ and } (\tau_{(i,j)s}(D'_{y_s}))' \lor \\ (\tau_{(i,j)s}(E'_{x_{\lambda}}))' = (\tau_{(i,j)s}(\bigvee_{y_s \leq B} D'_{y_s}))' \lor (\tau_{(i,j)s}(\bigvee_{x_{\lambda} \leq B} E'_{\lambda}))' \leq \\ \bigvee_{y_s \leq B} (\tau_{(i,j)s}(D'_{y_s}))' \lor \bigvee_{x_{\lambda} \leq A} (\tau_{(i,j)s}(E'_{x_{\lambda}}))' \not\geq a. \text{ Conversely, there} \\ \text{exist } D, E \in L^X \text{ with } D \geq A, E \geq B, D \land B = E \land A = \underline{0} \text{ and} \\ (\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))' \not\geq a. \text{ So } (\mathscr{P}(A,B))' = \bigvee_{x_{\lambda} \leq A} (i,j) \cdot \\ s\operatorname{Cl}(B)(x_{\lambda}) \lor \bigvee_{y_s \leq B} (i,j) \cdot s\operatorname{Cl}(A)(y_s) = \bigvee_{x_{\lambda} \leq A} (\tau_{(i,j)s}(G'_{y_s}))' \\ \lor_{y_s \leq B} y_{s \notin H \geq A} (\tau_{(i,j)s}(H'_{y_s}))' \leq (\tau_{(i,j)s}(D'_{y_s}))' \lor (\tau_{(i,j)s}(E'_{x_{\lambda}}))'. \\ \text{Then } (\mathscr{P}(A,B))' \not\geq a.$

Definition 3.6. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Define (i, j)-s $\mathscr{C}(G) = \land \{\mathscr{P}(A, B)' : A, B \in L^X \setminus \{\underline{0}\}, G = A \lor B\}$. Then (i, j)-s $\mathscr{C}(G)$ is said to be the (i, j)-s-connectedness degree of G. That is, (i, j)-s $\mathscr{C}(G) = \land \{\bigvee_{A,B \in L^X \setminus \{\underline{0}\}, G = A \lor B \mid x_\lambda \leq A} \lor \bigvee_{y_s \leq B} (\operatorname{Cl}(A)(y_s)\}.$

Theorem 3.7. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then (i, j)-s $\mathscr{C}(G) =$ $\bigwedge \{(\tau_{(i,j)s}(A'_{y_s}))' \lor (\tau_{(i,j)s}(B'_{x_\lambda}))'\}.$ $_{G \land A \neq 0, G \land B \neq 0, G \land A \land B \neq 0, G \leq A \lor B}$

$$\begin{array}{l} Proof. \text{ We have } (i,j)\text{-}s\mathscr{C}(G) = \bigwedge_{A,B \in L^X \setminus \{0\}, G = A \lor B} \\ \{\bigvee_{x_{\lambda} \leq A} (i,j)\text{-}s\operatorname{Cl}(B)(x_{\lambda}) \lor \bigvee_{y_{s} \leq B} (i,j)\text{-}s\operatorname{Cl}(A)(y_{s})\} = \\ & \bigwedge \{\bigvee_{y_{s} \leq B} (\tau_{(i,j)s}(D'))' \lor \\ A,B \in L^X \setminus \{0\}, G = A \lor B \ x_{\lambda} \leq A x_{\lambda} \neq D \geq B} \\ \bigvee_{y_{s} \leq B y_{s} \notin E \geq A} (\tau_{(i,j)s}(E'))'\} = \bigwedge_{G \land A \neq 0, G \land B \neq 0, G \land A \land B \neq 0, G = A \lor B} \\ \{\bigvee_{x_{\lambda} \leq G \land A x_{\lambda} \notin D \geq G \land B} (\tau_{(i,j)s}(D'))' \lor \bigvee_{y_{s} \leq G \land B y_{s} \notin E \geq G \land A} (\tau_{(i,j)s}(E'))'\} \leq \bigwedge_{G \land A \neq 0, G \land B \neq 0, G \land A \land B \neq 0, G = A \lor B} \\ \{\bigvee_{x_{\lambda} \leq G \land A x_{\lambda} \notin D \geq G \land B} (\tau_{(i,j)s}(D'))' \lor \bigvee_{y_{s} \leq G \land B \neq 0, G \land A \land B \neq 0, G = A \lor B} \\ \{\bigvee_{x_{\lambda} \leq G \land A} (\tau_{(i,j)s}(D'))' \lor \bigvee_{y_{s} \leq G \land B} (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land B \neq 0, G \land A \land B \neq 0, G = A \lor B} \\ \{(\tau_{(i,j)s}(D)))' \lor \bigvee_{y_{s} \leq G \land B} \{(\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land B \neq 0, G \land A \land B \neq 0, G = A \lor B} \\ \{(\tau_{(i,j)s}(D')))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land A \land B \neq 0, G = A \lor B} \\ \{(\tau_{(i,j)s}(D')))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land A \land B \neq 0, G \in A \land B \neq 0, G \in A \lor B} \\ \{(\tau_{(i,j)s}(D)))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land A \land B \neq 0, G \in A \lor B} \\ \{(\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land A \land B \neq 0, G \in A \lor B} \\ \{(\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land A \land B \neq 0, G \in A \lor B} \\ \{(\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land A \land B \neq 0, G \in A \lor B} \\ \{(\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))'\} \\ = \bigwedge_{G \land A \neq 0, G \land A \land B \neq 0, G \in A \lor B} \\ \{(\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))'\}$$

Conversely, suppose (i, j)-s $\mathscr{C}(G) \not\geq a$ where $a \in M(L)$. Then there exist $A, B \in L^X \setminus \{\underline{0}\}$ with $G = A \lor B$ and $(\mathscr{P}(A, B)) \not\geq a$. By Lemma 3.5, there exist $D, E \in L^X$ such that $D \geq A, E \geq B$, $D \land B = E \land A = \underline{0}$ and $(\tau_{(i,j)s}(D'))' \lor (\tau_{(i,j)s}(E'))' \not\geq a$. Hence $\bigwedge \{(\tau_{(i,j)s}(B'))' \lor (\tau_{(i,j)s}(E'))'\}$ $\not\geq a$. Then (i, j)-s $\mathscr{C}(G) \geq \bigwedge_{G \land A \neq \underline{0}, G \land B \neq \underline{0}, G \land A \neq \underline{0}, G \land B = \underline{0}, G \leq A \lor B}$ $\{(\tau_{(i,j)s}(B'))' \lor \tau_{(i,j)s}(E'))'\}$ and this completes the proof. \Box

Corollary 3.8. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space. Then (i, j)-s $\mathscr{C}(\underline{1}) = \bigwedge_{A \neq \underline{0}, A \land B = \underline{0}, A \lor B = \underline{0}, A \lor B = \underline{0}} \{(\tau_{(i,j)s}(A))' \lor A \lor B \in \underline{0}, A \lor B = \underline{0}, A \lor B =$

 $(\tau_{(i,j)s}(B))'$.

Theorem 3.9. For any $x_{\lambda} \in M(L^X)$, it follows that (i, j)- $s\mathscr{C}(x_{\lambda}) = 1$.

Proof. Straightforward.

Theorem 3.10. For any $G \in L^X$, we have $\bigvee_{b \in \mathcal{M}(L^X)} ((i, j) \cdot s\mathscr{C}(\lor((i, j) \cdot s\operatorname{Cl}(G))_{[b]}) \ge (i, j) \cdot s\mathscr{C}(G).$

Proof. Let $a \leq (i, j)$ -s $\mathscr{C}(G)$ where $a \in M(L)$ and suppose that $\bigvee_{b \in M(L^X)} (i, j)$ -s $\mathscr{C}(\lor((i, j)$ -s $\operatorname{Cl}(G))_{[b]})) \not\geq a$. Then (i, j)-

 $s\mathscr{C}(\vee((i, j) - s\operatorname{Cl}(G))_{[a]}) \not\geq a$. By using Theorem 3.7, there exist $A, B \in L^X$ with $(\vee((i, j) - s\operatorname{Cl}(G))_{[a]}) \wedge A \neq 0$, $(\vee((i, j) - s\operatorname{Cl}(G))_{[a]}) \wedge B \neq \underline{0}$, $(\vee((i, j) - s\operatorname{Cl}(G))_{[a]}) \wedge A \wedge B \neq \underline{0}$, $(\vee((i, j) - s\operatorname{Cl}(G))_{[a]}) \leq A \wedge B$ and $(\tau_{(i,j)s}(B'))' \vee (\tau_{(i,j)s}(A'))' \not\geq a$. Since $(\vee((i, j) - s\operatorname{Cl}(G))_{[a]}) \wedge A \neq \underline{0}$, there exist $x_\lambda \leq A$ with $(i, j) - s\operatorname{Cl}(G)(x_\lambda) \geq a$. Since $(\vee((i, j) - s\operatorname{Cl}(G))_{[a]}) \wedge A \wedge B = \underline{0}$, we have $x_\lambda \not\leq B$. If $G \wedge A \neq \underline{0}$, then $G \leq \vee(((i, j) - s\operatorname{Cl}(G))_{[a]} \leq A \vee$ *B* we have $G \leq B$, hence it follows that $a \leq (i, j)$ -s $\operatorname{Cl}(G)(x_{\lambda}) = \bigwedge_{x_{\lambda} \nleq E \geq G} (\tau_{(i,j)s}(E'))' \leq (\tau_{(i,j)s}(B'))'$, which is a contradiction. Analogously we can prove $G \land B \neq \underline{0}$. Thus by $G \land A \neq \underline{0}, G \land B \neq \underline{0}, G \land A \land B \neq \underline{0}, G \leq A \lor B, (\tau_{(i,j)s}(B'))' \lor (\tau_{(i,j)s}(A'))' \ngeq a$ and Theorem 3.7, we know that (i, j)-s $\mathscr{C}(G) \ngeq a$, contradicting (i, j)-s $\mathscr{C}(G) \geq a$. It is proved that $\bigvee_{b \in \mathcal{M}(L^X)} (i, j)$ -

$$s\mathscr{C}(\vee((i,j)-s\operatorname{Cl}(G))_{[b]}) \ge (i,j)-s\mathscr{C}(G).$$

Theorem 3.11. For any $G, H \in L^X$, we have (i, j)-s $\mathscr{C}(G \vee H) \ge (\mathscr{P}(G,H))' \land (i, j)$ -s $\mathscr{C}(G) \land (i, j)$ -s $\mathscr{C}(H)$.

Proof. Let $a \leq (\mathscr{P}(G,H))' \wedge (i,j) - s\mathscr{C}(G) \wedge (i,j) - s\mathscr{C}(H)$, where $a \in M(L)$ and suppose that (i, j)-s $\mathscr{C}(G \lor H) \not\geq a$. Then by using Theorem 3.7, there exist $A, B \in L^X$ such that $(G \lor$ H) $\land A \neq 0, (G \lor H) \land B \neq 0, (G \lor H) \land A \land B = 0, G \lor H \leq A \lor$ *B* and $(\tau_{(i,j)s}(B'))' \lor (\tau_{(i,j)s}(A'))' \not\geq a$. Since $(G \lor H) \land A \neq \underline{0}$, we have $G \land A \neq 0$ and $H \land A \neq 0$. Suppose that $G \land A \neq 0$ (The case of $H \wedge A \neq 0$ is analogous). Then we have $G \wedge B = 0$, otherwise if $G \land B \neq 0$, then by $G \land A \neq 0$, $G \land B \neq 0$, $G \land A \land$ $B = \underline{0}, G \leq A \vee B$ and $(\tau_{(i, j)s}(B'))' \vee (\tau_{(i, j)s}(E'))' \geq a$, we know that (i, j)-s $\mathscr{C}(G) \not\geq a$, which is a contradiction. In this case by $(G \lor H) \land B \neq \underline{0}$, we know that $H \land B \neq \underline{0}$. Analogously we can prove $H \wedge A = 0$. Thus by $G \vee H \leq A \vee B$ we can obtain that $G \leq A$ and $H \leq B$. Hence by $G \leq A$, $H \leq B$, $G \wedge B = H \wedge A =$ $\underline{0}, (\tau_{(i,j)s}(B'))' \vee (\tau_{(i,j)s}(A'))' \geq a$ and by Lemma 3.5, we have $(\mathscr{P}(G,H))' \geq a$, which is a contradiction. This shows that (i, j)-s $\mathscr{C}(G \lor H) \ge a$ and this completes the proof. \square

Corollary 3.12. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G, H \in L^X$. If $A \land B \neq \underline{0}$, then (i, j)-s $\mathscr{C}(G \lor H) \geq (i, j)$ -s $\mathscr{C}(G) \land (i, j)$ -s $\mathscr{C}(H)$.

Theorem 3.13. Let (X, τ_1, τ_2) be an L-fuzzy bitopological space and $G \in L^X$. Then (i, j)-s $\mathscr{C}(G) = \bigwedge_{x_{\lambda}, y_s \leq G} \lor \{(i, j)$ -s $\mathscr{C}(D_{x_{\lambda}, y_s}) : x_{\lambda}, y_s \leq D_{x_{\lambda}, y_s} \leq G\}.$

 $\begin{array}{l} \textit{Proof.} \quad \bigwedge_{x_{\lambda}, y_{s} \leq G} \lor \{(i, j) \text{-}s\mathscr{C}(D_{x_{\lambda}, y_{s}}) : x_{\lambda}, y_{s} \leq D_{x_{\lambda}, y_{s}} \leq G\} \geq a, \\ \textit{where } a \in M(L). \text{ Take } x_{\lambda} \leq G \text{ fixed. Then for any } y_{s} \leq G, \\ \textit{there exist } D_{x_{\lambda}, y_{s}} \in L^{X} \text{ such that } x_{\lambda}, y_{s} \leq D_{x_{\lambda}, y_{s}} \leq G \text{ and } (i, j) \text{-} \\ s\mathscr{C}(D_{x_{\lambda}, y_{s}}) \geq a. \text{ Let } D_{x_{\lambda}} = \bigvee_{y_{s} \leq G} D_{x_{\lambda}, y_{s}}. \text{ Then } D_{x_{\lambda}} = G \text{ and} \\ \bigvee_{y_{s} \leq G} D_{x_{\lambda}, y_{s}} \neq 0. \text{ By using Corollary 3.12, we have } (i, j) \text{-} \\ s\mathscr{C}(G) = (i, j) \text{-}s\mathscr{C}(D_{x_{\lambda}}) \geq \bigvee_{y_{s} \leq G} \lor (i, j) \text{-}s\mathscr{C}(D_{x_{\lambda}, y_{s}}) \geq a. \text{ This} \\ \text{shows that } (i, j) \text{-}s\mathscr{C}(G) \geq \bigwedge_{x_{\lambda}, y_{s} \leq G} \lor \{(i, j) \text{-}s\mathscr{C}(D_{x_{\lambda}, y_{s}}) : x_{\lambda}, y_{s} \leq D_{x_{\lambda}, y_{s}} \leq G\}. \text{ Since } (i, j) \text{-}s\mathscr{C}(G) \leq \bigwedge_{x_{\lambda}, y_{s} \leq G} \lor \{(i, j) \text{-}s\mathscr{C}(D_{x_{\lambda}, y_{s}}) : x_{\lambda}, y_{s} \leq D_{x_{\lambda}, y_{s}} \leq G\} \text{ is clear. Then we have } (i, j) \text{-}s\mathscr{C}(G) = \bigwedge_{x_{\lambda}, y_{s} \leq G} \lor \{(i, j) \text{-}s\mathscr{C}(D_{x_{\lambda}, y_{s}}) : x_{\lambda}, y_{s} \leq G\}. \square \\ \bigwedge_{x_{\lambda}, y_{s} \leq G} (i, j) \text{-}s\mathscr{C}(D_{x_{\lambda}, y_{s}}) : x_{\lambda}, y_{s} \leq D_{x_{\lambda}, y_{s}} \leq G\}. \square \end{array}$

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- [2] P. Dwinger, Characterizations of the complete homomorhic images of a completely distributive complete lattice, I, *Nedreal. Akad. Wetensh. Indag. Math.*, 44(1982), 403–414.
- [3] G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove and D.S. Scott, A Compendium of Continuous Lattices, Springer Verlang, Berlin, 1980.
- ^[4] P. Gomathi Sundari and R. Menaga, On Fuzzy (*i*, *j*)-semiopen sets in *L*-fuzzy bitopological spaces (submitted).
- [5] P. Gomathi Sundari and R. Menaga, Some mappings on *L*-fuzzy bitopological spaces (submitted).
- ^[6] T. Kubiak, *On Fuzzy Topologies*, Ph.D. Thesis, A.Mickiewicz, Poznan, 1985.
- [7] Y. M. Liu and M. K. Luo, *Fuzzy Topology*, World Scientific Publishing, Singapore, 1998.
- [8] F.G. Shi, J. Zhang and C.Y. Zheng, On L-fuzzy topological spaces, *Fuzzy Sets and Systems*, 160(2009), 1218–1232.
- [9] A. P. Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palermo-SirII, 11(1985), 89–103.
- ^[10] G.J. Wang, *Theory of L-fuzzy Topological Spaces*, Shaanxi Normal University Press, Xi'an, 1988.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

