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Abstract
In the paper, we develop the Adomian Decomposition Method for fractional order nonlinear Kuramoto-Sivashinsky
(KS) equation. Caputo fractional derivatives are used to define fractional derivatives. We know that KS equation
has many applications in physical phenomenon such as reaction diffusion system, long waves on the boundary
of two viscous fluids and hydrodynamics. In this paper, we will solve time fractional KS equation which may
help to researchers for their work. We solve some examples numerically, which will show the efficiency and
convenience of Adomian Decomposition Method.
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1. Introduction
In the present scenario fractional calculus is useful in

the various fields of science. In past few years, the increase
of interest in the subject is witnessed by series of confer-
ences, research papers and several monographs. The dynamic
models of a large number of phenomena can be modeled
by fractional order partial differential equations which are
characterized by fractional space and/or time derivatives [2].
Fractional calculus is pragmatic to archetypal occurrences
dependent damping behavior of many viscoelastic materials,

continuum mechanics, statistical mechanics, economics etc
[1]. But, many times it is difficult to obtain exact solutions,
hence numerical methods must be used. Now a days, Ado-
mian Decomposition Method (ADM) is used to obtain the
solution of fractional differential equations . This method
gives rapidly convergent series solutions by using a few iter-
ations for both linear and nonlinear equations. This method
is very useful to avoid linearization, perturbation, massive
computation and transformations [3, 4]. Various instabili-
ties and spatio - temporal chaotic behavior are exhibited in
many thermodynamical systems. Pattern formation, travelling
wave problems, reaction-diffusion systems, long waves on
thin films, unstable drift waves in plasmas etc. are some of the
physical phenomenon which arise from chaotic instabilities.
In this context Kuramoto-Sivashinsky (KS) equation has a
wide range of applicability in science. It is used to model fluc-
tuations of the position of a flame front, the motion of a fluid
going down a vertical wall, spatially uniform oscillating chem-
ical reaction in a homogeneous medium, solitary pulses in a
falling thin film [5] etc. It is also useful to physical problems
such as viscous flow problems, hydrodynamics in thin films,
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Belousov-Zhabotinsky reactions and instabilities of solidifica-
tion fronts of dilute binary alloys [6]. Kuramoto Sivashinsky
equation was developed by Kuramoto and Sivashinsky is writ-
ten as follow

wt +λ1wwx +λ2wxx +λ3wxxxx = 0 (1.1)

where λ1, λ2, λ3 are unknown parameters. The second order
and fourth order spatial derivatives are making this equation’s
behaviour complicated and interesting. The nonlinear term
transforms energy from low to high wave numbers. Also,
Maziar Raissi and George have developed methodology ap-
plied to the problem of learning, system identification or data-
driven discovery of partial differential equation and provides
new direction to design learning machines without requiring
large quantities of data. They gave following observations for
values of parameters λ1, λ2, λ3 with clean and noisy data [7]:
(i) The correct KS partial differential equation is

wt +wwx +wxx +wxxxx = 0 (1.2)

(ii) The identified KS partial differential equation (clean data)
is

wt +0.952wwx +1.005wxx +0.980wxxxx = 0 (1.3)

(iii) The identified KS partial differential equation
One percent noisy data is

wt +0.908wwx +0.951wxx +0.927wxxxx = 0 (1.4)

Recently, some researchers have used Homotopy Perturbation
Method [8], He’s Variational Iteration Method [9] and Lattice
Boltzmann mehod [10] to solve KS equation. Saad A. Manna,
Fadhil H. Easif [11] have used ADM to solve KS equation.
Weishi Yin, Fei Xu et.al. found the asymptotic expansion of
solutions to time-space fractional KS equation by residual
power series method [12].
Therefore, models which represent wave phenomenon needs
to study travelling wave solutions. As per Abdul Wazwaz,
in the study of solitary wave theory, we can obtain travelling
wave solutions. These solutions are used by scientists to study
various physical applications in plasma physics. In [13], the
researchers used Bogning-Dijeumen Tchalo-Kofane method
(BDK Method) to solve very strong nonlinear KS equation.
By applying BDK method they make up modulated soliton so-
lution of KS equation. In paper [14] KS equation was solved
by truncated expansion method and compared with Ansatz
method. Also researchers analyzed new solitary wave solu-
tions of KS equation with comparison of solutions given by
Chen and Zhand, Wazwaz and Wazaan. In this connection in
our paper, we used ADM to solve time fractional KS equation
because ADM is a powerful method to obtain the solution of
linear and nonlinear fractional partial differential equations of
higher order.
We organize the paper as follows: We have given some for-
mulae and theorem in Section 2, which are useful for further

developments. Section 3, is devoted for ADM to solve time
fractional KS equation and prove convergence. In section 4,
numerical problems are solved and presented their solutions
graphically by using mathematica software.

2. Preliminaries
Some basic concepts, which we will be using are as

follows:-

Definition 2.1. The Caputo fractional derivative [? ] of the
function f (x) is defined as

Dβ
∗ f (x) = J(m−β )Dm f (x)

=
1

Γ(m−β )

∫ x

0

1
(x− t)(1−m+β )

f (m)(t)dt,

for m−1 < β ≤ m, m ∈ N,x > 0, f ∈Cm
−1.

Properties:
For f (x) ∈Cµ , µ ≥−1, α,β ≥ 0 and γ >−1 [15], we have

(i) Jα Jβ f (x) = Jα+β f (x),

(ii) Jα Jβ f (x) = Jβ Jα f (x),

(iii) Jα xγ = Γ(γ+1)
Γ(α+γ+1)x(α+γ).

Lemma 2.2. If m−1 < α ≤ m, m ∈ N and f ∈Cm
µ , µ ≥−1,

then

Dα
∗ Jα f (x) = f (x)

Jα Dα
∗ f (x) = f (x)−

m−1

∑
k=0

f (k)(0+)
xk

k!
,x > 0.

3. Fractional Adomian Decomposition
Method

We consider following time fractional KS equation to de-
velop the time Fractional ADM [15] for solving KS equation,

wα
t +λ1wwx +λ2wxx +λ3wxxxx = 0, 0 < α ≤ 1, t > 0

(3.1)

initial condition : w(x,0) = f (x) (3.2)

We will operate Jα on R.H.S. and L.H.S. of equation,

Jα

[
wα

t +λ1wwx+λ2wxx+λ3wxxxx = 0
]
= 0, 0<α ≤ 1, t > 0

Now, consider following decomposition series:-

w(x, t) =
∞

∑
n=0

wn(x, t) (3.3)

The decomposed series of nonlinear terms Nw(x, t) are:

Nw(x, t) =
∞

∑
n=0

An (3.4)
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where the formula for Adomian polynomial is as follows:

An =
1
n!

[
dnN
dλ n

( n

∑
k=0

λ
kuk

)]
λ=0

(3.5)

From (3.3) and using lemma (2.1), we get

∞

∑
n=0

wn(x, t) =
m−1

∑
k=0

∂ kw(x,0)
∂ tk

tk

k!
− Jα

[
λ2

∞

∑
n=0

D2
xwn(x, t)

+λ3

∞

∑
n=0

D4
xwn(x, t)+λ1

∞

∑
n=0

An

]
, x > 0

The value of wn(x, t), n≥ 0 can be obtained as follows:

w0(x, t) = w(x,0) = f (x) (3.6)

wn+1(x, t) =−Jα

[
λ2D2

xwn(x, t)+λ3D4
xwn(x, t)+λ1An

]
(3.7)

For , x > 0, now we can obtain solution by calculating
value of each component.

φN(x, t) =
N−1

∑
n=0

wn(x, t) (3.8)

lim
N→∞

φN = w(x, t) (3.9)

Theorem 3.1. Uniqueness Theorem [16]
Consider time fractional KS equation for λ1 = 1, λ2 = 1, and
λ3 = 1, as follows

wα
t +wwx +wxx +wxxxx = 0, 0 < α ≤ 1, t > 0

(3.10)

initial condition : w(x,0) = f (x) (3.11)

The equation has a unique solution whenever 0 < γ < 1 where
γ = (C1+C2+C3)tα

Γα+1 .

Proof:- Let X = (C(I),‖.‖) be the Banach space of all
continuous functions on I = [0,T ] with norm

‖w(t)‖= max
t∈I
| w(t) | .

We define a mapping M : X → X , such that

M(w(t)) = f (x)− Jα N(w(t))− Jα S(w(t))− Jα F(w(t)).

Now, N(w(t)) denotes nonlinear term and S(w(t)) denotes
second order spatial term and F(w(t)) denotes fourth order
spatial term. Also nonlinear term N(w(t)) is Lipschitzian that
is

| N(w)−N(p) |≤C1 | w− p |

where C1 is Lipschitz constant. Let w,w′ ∈ X , we have

||M(w)−M(w′)||=max
t∈I
|−Jα N(w(t))−Jα S(w(t)−Jα F(w(t)

+Jα N(w′(t))+ Jα S(w′(t)+ Jα F(w′(t)|

=max
t∈I
| −Jα(Nw−Nw′)−Jα(Sw−Sw′)−Jα(Fw−Fw′) |

= max
t∈I
| Jα(Nw−Nw′)+Jα(Sw−Sw′)+Jα(Fw−Fw′) |

≤max
t∈I
| Jα(Nw−Nw′) |+ | Jα(Sw−Sw′) |+ | Jα(Fw−Fw′) |

Now suppose S(w(t)) and F(w(t)) are also Lipschitzian that is

| S(w)−S(p) |≤C2 | w− p |

and
| F(w)−F(p) |≤C3 | w− p |,

where C2 and C3are Lipschitz constants.
Therefore

‖M(w)−M(w′) ‖≤max
t∈I

(C1Jα |w−w′ |+C2Jα |w−w′ |

+C3Jα | w−w′ |)≤ (C1 +C2 +C3) ‖ w−w′ ‖ tα

Γα +1

‖M(w)−M(w′) ‖≤ γ ‖w−w′ ‖,where γ =
(C1 +C2 +C3)tα

Γα +1
Therefore, whenever 0 < γ < 1, the mapping is contraction.
Hence with the reference of Banach fixed point theorem for
contraction, we proved that equation has unique solution.

Theorem 3.2. Convergence Theorem[16]
Let Qn be the nth partial sum, that is

Qn =
n

∑
i=0

wi(x, t) (3.12)

Then we shall prove that {Qn} is a Cauchy sequence in Ba-
nach space X.

Proof: For proving this theorem, we consider

‖ Qn+p−Qn ‖= max
t∈I
| Qn+p−Qn |

= max
t∈I
|

n+p

∑
i=n+1

wi(x, t)|

= max
t∈I
|− Jα

n+p

∑
i=n+1

Swi−1(x, t)− Jα

n+p

∑
i=n+1

Fwi−1(x, t)

−Jα

n+p

∑
i=n+1

Nwi−1(x, t)|

= max
t∈I
|Jα SQn+p−1−SQn−1 + Jα FQn+p−1−FQn−1

+Jα NQn+p−1−NQn−1|
≤max

t∈I
Jα (|(SQn+p−1−SQn−1|)+max

t∈I
Jα (|(FQn+p−1−FQn−1|)

+max
t∈I

Jα |NQn+p−1−NQn−1|

≤C2 max
t∈I

Jα (|(Qn+p−1−Qn−1|)+C3 max
t∈I

Jα (|(Qn+p−1−Qn−1|)
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+C1 max
t∈I

Jα |Qn+p−1−Qn−1|

≤ (C1 +C2 +C3)
tα

Γα +1
‖ Qn+p−1−Qn−1 ‖

‖ Qn+p−Qn ‖≤ γ ‖ Qn+p−1−Qn−1 ‖,
where γ = (C1 +C2 +C3)

tα

Γα+1

‖ Qn+p−Qn ‖≤ γ ‖ Qn+p−1−Qn−1 ‖

Similarly, we have

‖ Qn+p−Qn ‖ ≤ γ
2 ‖ Qn+p−2−Qn−2 ‖

...
≤ γ

n ‖ Qp−Q0 ‖
≤ γ

n ‖ Q1−Q0 ‖, f orp = 1
≤ γ

n ‖ w1 ‖

Now, for n > m, where n,m ∈ N,

‖ Qn−Qm ‖ ≤‖ Qm+1−Qm ‖+ ‖ Qm+2−Qm+1 ‖
+ · · ·+ ‖ Qn−Qn−1 ‖
≤ (γm + γ

m+1 + · · ·+ γ
n−1) ‖ w1 ‖

≤ γ
m
[

1− γn−m

1− γ

]
‖ w1 ‖

Since, 0 < γ < 1, then 1− γn−m < 1, so we have,

‖ Qn−Qm ‖≤
γm

1− γ
‖ w1 ‖

Since, w(t) is bounded, therefore ‖ w1 ‖< ∞

lim
n→∞
‖ Qn−Qm ‖→ 0

Hence, we proved that solution is convergent because {Qn} is
a Cauchy sequence in X .

4. Numerical Examples
Example 4.1: We will consider the following time fractional
KS equation

wα
t +wwx +wxx +wxxxx = 0, 0 < α ≤ 1, t > 0 (4.1)

initial condition : w(x,0) = sech2
(

x
2

)
(4.2)

Now, using equations (3.6) and (3.7), we have

w0(x, t) = w(x,0) = f (x)

wk+1(x, t) =−Jα

[
Ak +D2

xwk(x, t)+D4
xwk(x, t)

]
, x > 0

w0(x, t) = w(x,0) = sech2
(

x
2

)
w1(x, t) =−Jα

[
A0 +D2

xw0(x, t)+D4
xw0(x, t)

]

A0 = w0(w0)x =

[
− 1

2
tanh

(
x
4

)
+ tanh3

(
x
4

)
− 1

2
tanh5

(
x
4

)]
D2

xw0(x, t) =
[
− 1

8
sech2

(
x
4

)
+

3
8

tanh2
(

x
4

)
− 3

8
tanh4

(
x
4

)]
D2

xw0(x, t) =
[
− 1

8

(
1− tanh2

(
x
4

))
+

3
8

tanh2
(

x
4

)
− 3

8
tanh4

(
x
4

)]
D2

xw0(x, t) =
[
− 1

8
+

1
2

tanh2
(

x
4

)
− 3

8
tanh4

(
x
4

)]
D4

xw0(x, t) =
[

1
16

sech2
(

x
4

)
− 15

32
tanh2

(
x
4

)
sech2

(
x
4

)
+

15
32

tanh4
(

x
4

)
sech2

(
x
4

)]
D4

xw0(x, t) =
[

1
16

(
1− tanh2

(
x
4

))
− 15

32
tanh2

(
x
4

)
+

15
32

tanh4
(

x
4

)(
1− tanh2

(
x
4

))]
D4

xw0(x, t) =
[

1
16
− 17

32
tanh2

(
x
4

)
+

15
16

tanh4
(

x
4

)]

w1(x, t) =−Jα

[
A0 +D2

xw0(x, t)+D4
xw0(x, t)

]
w1(x, t) =−Jα

[
− 1

2
tanh

(
x
4

)
+ tanh3

(
x
4

)
− 1

2
tanh5

(
x
4

)
− 3

8
tanh4

(
x
4

)
+

1
16
− 17

32
tanh2

(
x
4

)]
w1(x, t) =−Jα

[
− 1

16
− 1

2
tanh

(
x
4

)
− 1

32
tanh2

(
x
4

)
+

9
16

tanh4
(

x
4

)
− 1

2
tanh5

(
x
4

)
− 15

32
tanh6

(
x
4

)]
w1(x, t) =

[
1

16
+

1
2

tanh
(

x
4

)
+

1
32

tanh2
(

x
4

)
− tanh3

(
x
4

)
− 9

16
tanh4

(
x
4

)
+

1
2

tanh5
(

x
4

)]
tα

Γ(α +1)
...

After calculating and substituting values of various compo-
nents, we have

w(x, t) = w0(x, t)+w1(x, t)+ · · ·

w(x, t) = sech2
(

x
2

)
+

[
1
16

+
1
2

tanh
(

x
4

)
+

1
32

tanh2
(

x
4

)
− tanh3

(
x
4

)
− 9

16
tanh4

(
x
4

)
+

1
2

tanh5
(

x
4

)
+

15
32

tanh6
(

x
4

)]
tα

Γ(α +1)
· · ·
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Figure 1. 3DPlot of time fractional KS eqn for α = 1

Figure 2. 3DPlot of time fractional KS eqn with α = 0.9

Example 4.2: We will solve the following time fractional KS
equation

wα
t +wwx +wxx +wxxxx = 0, 0 < α ≤ 1, t > 0 (4.3)

initial condition : w(x,0) = cos
(

x
2

)
(4.4)

Now, using equation (3.3) and (3.6), we have

w0(x, t) = w(x,0) = f (x)

wk+1(x, t) =−Jα

[
Ak +D2

xwk(x, t)+D4
xwk(x, t)

]
, x > 0

w0(x, t) = w(x,0) = cos
(

x
2

)
w1(x, t) =−Jα

[
D2

xw0(x, t)+D4
xw0(x, t)+A0

]
A0 = w0(w0)x =−

1
4

sin(x)

D2
xw0(x, t) =−

1
4

cos
(

x
2

)
, D4

xw0(x, t) =
1

16
cos
(

x
2

)
w1(x, t) =

[
1
4

sinx+
1
4

cos
(

x
2

)
− 1

16
cos
(

x
2

)]
tα

Γ(α +1)

w1(x, t) =
[

1
4

sinx+
3
16

cos
(

x
2

)]
tα

Γ(α +1)

w2(x, t) =−Jα

[
D2

xw1(x, t)+D4
xw1(x, t)+A1

]
A1 = w1(w0)x +w0(w1)x

A1 =

[
− 9

64
sin(x)+

1
4

cos
(

3x
2

)]
tα

Γ(α +1)

D2
xw1(x, t) =

[
− 1

4
sin(x)− 3

64
cos
(

x
2

)]
tα

Γ(α +1)

D4
xw1(x, t) =

[
1
4

sin(x)+
3

256
cos
(

x
2

)]
tα

Γ(α +1)

w2(x, t) =
[

9
64

sin(x)+
9

256
cos
(

x
2

)]
t2α

Γ(2α +1)
...

After calculating and substituting values of various compo-
nents, we have

w(x, t) = w0(x, t)+w1(x, t)++ · · · (4.5)

w(x, t)

= cos
(

x
2

)
+

[
1
4

sinx+
3

16
cos
(

x
2

)]
tα

Γ(α +1)

+

[
9

64
sin(x)+

9
256

cos
(

x
2

)]
t2α

Γ(2α +1)
+ · · ·
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Figure 3. Plots of time fractional KS eqn α = 1

Figure 4. Plots of time fractional KS eqn with α = 0.9

5. Conclusion
The time fractional KS equation is solved by using ADM

and we can say that the formula of ADM polynomials is
powerful to obtain the solution of nonlinear fractional partial
differential equation. The graphical presentation of solutions
of time fractional KS equation reveals the reliability of the
mathematical procedure. We also prove the uniqueness and
convergence theorem for time fractional KS equation.
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