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Abstract
In this present investigation, we study a new class of functions that are analytic and Univalent with finitely many
fixed coefficients defined by modified Hadamard product involving Bessel function. Further, we also establish
coefficient condition, radii of starlikeness and convexity, extreme points and integral operators applied to functions
in this class.
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1. Introduction
Let A denote the class of functions of the form

f (z) = z+
∞

∑
n=2

anzn, (1.1)

which are analytic and univalent in the open disc

D= {z : |z|< 1}.

Let S denote the subclass of A where in addition the func-
tions in S are also univalent in D. The class SD(α) was
introduced in [8] and was recently considered in [12] that
consists functions of the form (1.1) satisfying the criteria

ℜ

{
f (z)

z

}
≥ α

∣∣∣∣ f ′(z)− f (z)
z

∣∣∣∣,α ≥ 0. (1.2)

New subclasses of S by fixing a finite number of coefficients
of functions has been considered earlier by many authors

(see [4, 5] for details). We also denote by T a subclass
of A introduced and studied by Silverman [9],consisting of
functions of the form

f (z) = z−
∞

∑
n=2

anzn, an > 0;z ∈ D. (1.3)

Robertson [7] introduced the subclasses of A , given by S ∗(β )
and C (β ) respectively called as starlike functions of order β

and convex functions of order β consisting of functions which
satisfy the following inequalities:

ℜ

{
z f ′(z)
f (z)

}
> β and ℜ

{
1+

z f ′′(z)
f ′(z)

}
> β .

The generalized Bessel function ωu,b,c(z) of the first kind
of order u in terms of Euler gamma function is given by the
representation

ωu,b,c(z) =
∞

∑
n=0

(−c)n

n!Γ(u+n+ b+1
2 )

(
z
2

)2n+u

,z ∈C. (1.4)

The function ϕu,b,c(z) defined by the transformation

ϕu,b,c(z) = 2u
Γ(u+

b+1
2

)z1− u
2 ωu,b,c(

√
z), (1.5)

using the generalised Bessel function ωu,b,c(z) is studied by
many researchers [2, 3]. Ramachandran et al.[6] obtained the
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following series representation for the function ϕu,b,c(z) given
by (1.5)

ϕu,b,c(z) = z+
∞

∑
n=1

(−c)n

4n(κ)nn!
zn+1,z ∈ C (1.6)

where κ = u+
b+1

2
/∈ Z−0 ,N = {1,2, · · ·},

Z−0 = {0,−1,−2, · · ·}. and (κ)n is the Pochhammer symbol
given by

(κ)n =

{
1, n = 0
κ(κ +1)(κ +2) · · ·(κ +n−1),n ∈ N

=
Γ(κ +n)

Γ(κ)
. (1.7)

The Hadamard product or convolution of two functions f

given by (1.1) and g defined as g(z) = z+
∞

∑
n=2

bnzn is defined

by

( f ∗g)(z) = z+
∞

∑
n=2

anbnzn. (1.8)

For convenience, ϕu,b,c(z) is replaced by ϕκ,c(z).
Ramachandran et al. [6] introduced a operator Bc

κ : S→S
which is defined by the convolution

Bc
κ f (z) = ϕκ,c(z)∗ f (z)

= z+
∞

∑
n=1

(−c)n

4n(κ)nn!
zn+1

= z+
∞

∑
n=2

(−c)n−1

4n−1(κ)n−1(n−1)!
zn

= z+
∞

∑
n=2

E (c,κ,n)anzn, (1.9)

where E (c,κ,n) =
(−c)n−1

4n−1(κ)n−1(n−1)!
The function Bc

κ of the form (1.9) which is nothing but a trans-
formation of the generalized hypergeometric function.

Also Bc
κ f (z) = z0F1

(
κ,−cz

4

)
∗ f (z) and

ϕ(κ,c)
(
−cz

4

)
= z0F1(κ,z)

A class UB(λ ,η ,k,c) has been recently studied by Shan-
mugam et al. [10] and [11]. A function f of the form (1.3) is
said to be in the class UB(λ ,η ,k,c) if

ℜ

{
zG′′(z)
G′(z)

}
> k
∣∣∣∣ zG′′(z)

G′(z)
−1
∣∣∣∣+η , (1.10)

where c > 1,0≤ λ < 1,k ≥ 0,0≤ η < 1,z ∈ D and

G(z) = (1−λ )(Bc
κ f (z))+λ z(Bc

κ f (z))′.

Motivated by the work of Ramachandran et al. [6], here
we consider and study the subclass BSD(α,λ ,c) with fixed

finitely many coefficients defined by modified Hadamard prod-
uct with Bessel function.
We begin with the definition of the class BSD(α,λ ,c).

Definition 1.1. Let c> 1,0≤ λ < 1,α ≥ 0. A function f ∈S
is in BSD(α,λ ,c), if it satisfies the following inequality

ℜ

{
G(z)

z

}
≥ α

∣∣∣∣G′(z)− G(z)
z

∣∣∣∣, (1.11)

where G(z) = (1−λ )(Bc
κ f (z))+λ z(Bc

κ f (z))′.

Further, let T BSD(α,λ ,c) = T ∩BSD(α,λ ,c).

Theorem 1.2. Let the function f be of the form (1.3). Then,
f ∈ T BSD(α,λ ,c) if and only if for α ≥ 0

∞

∑
n=2

(1+(n−1)λ )(1+(n−1)α)E (c,κ,n)|an| ≤ 1. (1.12)

Proof. Let f of the form (1.3) satisfies (1.12). Then we have

ℜ

{
G(z)

z

}
−α

∣∣∣∣G′(z)− G(z)
z

∣∣∣∣
=

{
ℜ

{
G(z)

z
−1
}
+1
}
−α

∣∣∣∣G′(z)− G(z)
z

∣∣∣∣
≥ 1−

∣∣∣∣G(z)
z
−1
∣∣∣∣−α

∣∣∣∣G′(z)− G(z)
z

∣∣∣∣
= 1−

∣∣∣∣ ∞

∑
n=2

(1+(n−1)λ )E (c,κ,n)anzn−1
∣∣∣∣

−α

∣∣∣∣ ∞

∑
n=2

(n−1)(1+(n−1)λ )E (c,κ,n)anzn−1
∣∣∣∣

= 1−
∞

∑
n=2

(1+(n−1)λ )E (c,κ,n)|an|

−α

∞

∑
n=2

(n−1)(1+(n−1)λ )D(c,κ,n)|an|

≥ 0.

Therefore, f ∈ T BSD(α,λ ,c). Conversely, let

ℜ

{
G(z)

z

}
−α

∣∣∣∣G′(z)− G(z)
z

∣∣∣∣> 0.

This implies,

ℜ

{
1−

∞

∑
n=2

(1+(n−1)λ )E (c,κ,n)|an|zn−1

}

−α

∣∣∣∣ ∞

∑
n=2

(n−1)(1+(n−1)λ )E (c,κ,n)anzn−1
∣∣∣∣> 0.

If we allow z to take real values and as z→ 1, we get

1−
∞

∑
n=2

(1+(n−1)λ )E (c,κ,n)|an|

−α

∞

∑
n=2

(n−1)(1+(n−1)λ )E (c,κ,n)an ≥ 0
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or

∞

∑
n=2

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)|an| ≤ 1.

Corollary 1.3. Let f ∈ T BSD(α,λ ,c). Then,

an≤
1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)
,n≥ 2. (1.13)

The subclass T BSD(α,λ ,c, pk) of T BSD(α,λ ,c)
consists of functions

f (z) = z −
k

∑
i=2

pi

(1+(i−1)α)(1+(i−1)λ )E (c,κ,n)
zi

−
∞

∑
n=k+1

anzn (1.14)

where α ≥ 0,0≤ pi ≤ 1 and 0≤
k

∑
i=2

pi ≤ 1.

2. Main Results
We start with obtaining the coefficient bounds for the class

T BSD(α,λ ,c, pk) for functions f of the form (1.14).

Theorem 2.1. A function of the form (1.14) belongs to the
class T BSD(α,λ ,c, pk) if and only if

∞

∑
n=k+1

(1+(n−1)λ )(1+(n−1)α)E (c,κ,n)an

≤ 1−
k

∑
i=2

pi (2.1)

where α ≥ 0, 0≤ pi ≤ 1 and 0≤
k

∑
i=2

pi ≤ 1. The result

is sharp.

Proof. From (1.14), we have for i = 2,3, · · ·k,

ai =
pi

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
, (2.2)

0≤ pi ≤ 1, 0≤
k

∑
i=2

pi ≤ 1.

By Theorem 1.2,

∞

∑
n=2

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)an

=
k

∑
i=2

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)ai

+
∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)an

=
k

∑
i=2

pi

+
∞

∑
n=k+1

(1+(i−1)α)(1+(i−1)λ )E (c,κ,n)an

≤ 1.

Conversely,

ℜ

{
G(z)

z

}
−α

∣∣∣∣G′(z)− G(z)
z

∣∣∣∣
≥ 1−

∣∣∣∣G(z)
z
−1
∣∣∣∣−α

∣∣∣∣G′(z)− G(z)
z

∣∣∣∣
= 1−

∞

∑
n=2

(1+(n−1)λ )E (c,κ,n)|an|

−α

∞

∑
n=2

(n−1)(1+(n−1)λ )E (c,κ,n)|an|

= 1−
∞

∑
n=2

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)|an|

= 1−
k

∑
i=2

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)|ai|

−
∞

∑
n=k+1

(1+(n−1)λ )(1+(n−1)α)E (c,κ,n)|an|

= 1−
k

∑
i=2

pi

−
∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)|an|

≥ 0.

Hence f ∈ T BSD(α,λ ,c, pk).

Finally, it is observed that the inequality (2.1) of Theorem
2.1 is sharp and for n≥ 1, the extremal function is given by

f (z) = z−
k

∑
i=2

pi

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
zi

−
1−

k
∑

i=2
pi

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)
zn.

(2.3)

Corollary 2.2. Let f ∈ T BSD(α,λ ,c, pk). Then,
for n≥ k+1,

an ≤
1−

k

∑
i=2

pi

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)
zn.
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The sharpness is obtained for the function f given by
(2.3).

Theorem 2.3. The class T BSD(α,λ ,c, pk) is convex.

Proof. Let f ,g ∈ T BSD(α,λ ,c, pk).
Then,

f (z) = z −
k

∑
i=2

pi

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
zi

−
∞

∑
n=k+1

anzn

and

g(z) = z −
k

∑
i=2

pi

(1+(i−1)λ )(1+(i−1)α)E (c,κ, i)
zi

−
∞

∑
n=k+1

bnzn,

0≤ pi ≤ 1, 0≤
k

∑
i=2

pi ≤ 1.

Let us assume that h(z) = µ f (z)+(1−µ)g(z). Hence,

h(z) = z −
k

∑
i=2

pi

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
zi

−
∞

∑
n=k+1

(µan +(1−µ)bn)zn

Consider,
∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)(µan +(1−µ)bn)

= µ

∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)an

+ (1−µ)
∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)bn

≤ µ

(
1−

k

∑
i=2

pi

)
+(1−µ)

(
1−

k

∑
i=2

pi

)

= 1−
k

∑
i=2

pi.

Therefore, h(z) ∈ T BSD(α,λ ,c, pk).

Theorem 2.4. Let

fk(z)= z−
k

∑
i=2

pi

(1+(i−1)λ )(1+(i−1)α)E (c,κ, i)
zi (2.4)

and for n≥ k+1, let

fn(z) = z−
k

∑
i=2

pi

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
zi

−

(
1−

k

∑
i=2

pi

)
(1+(n−1)λ )(1+(n−1)α)E (c,κ,n)

zn. (2.5)

Then f ∈ T BSD(α,λ ,c, pk) if and only if the function f can
be represented in the form

f (z) =
∞

∑
n=k

λn fn(z), (2.6)

where λn ≥ 0, (n≥ k) and
∞

∑
n=k

λn = 1.

Proof. Let f ∈ T can be expressed in the form (2.6). Then

f (z) = z−
k

∑
i=2

pi

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
zi

−
∞

∑
n=k+1

λn

(
1−

k

∑
i=2

pi

)
(1+(n−1)λ )(1+(n−1)α)E (c,κ,n)

zn.

(2.7)

Now,

∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)λn

×

(
1−

k

∑
i=2

pi

)
(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)

=
∞

∑
n=k+1

λn

(
1−

k

∑
i=2

pi

)

=

(
1−

k

∑
i=2

pi

)
∞

∑
n=k+1

λn

=

(
1−

k

∑
i=2

pi

)
(1−λk)

≤ 1−
k

∑
i=2

pi,

which implies f ∈ T BSD(α,λ ,c, pk).
Conversely, for n≥ k+1, let

λn =
(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)(

1−
k

∑
i=2

pi

) , (2.8)

and λk = 1−
∞

∑
n=k+1

λn.

Thus f can be expressed as f (z) =
∞

∑
n=k

λn fn(z).

Corollary 2.5. The extreme points of the class
T BSD(α,λ ,c, pk) are the functions fn,(n≥ k) given by (2.4)
and (2.5).

Next, we prove few theorems by using integral operators.
The Alexander operator [1] for the functions in the class S

1088



On certain subclass of univalent functions with finitely many fixed coefficients defined by Bessel function —
1089/1091

maps the class of starlike functions onto the class of close to
convex functions and is defined as

I( f ) =
z∫

0

f (t)
t

dt.

Theorem 2.6. Let f of the form (1.14) be in the class
T BSD(α,λ ,c, pk). Then I( f ) ∈ T BSD(α,λ ,c, pk)

where qk =
p
k
.

Proof. First of all,

I( f ) = z−
k

∑
i=2

qi

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
zi

−
∞

∑
n=k+1

an

n
zn.

Now,
∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)
an

n

≤ 1
k+1

∞

∑
n=k+1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)an

≤ 1
k+1

(
1−

k

∑
i=2

pi

)
=

1
k+1

−
k

∑
i=2

p
k+1

≤ 1−
∞

∑
i=2

p
i
.

Hence I( f ) ∈ T BSD(α,λ ,c, pk).

Next, we obtain the radii results for the function in the
class T BSD(α,λ ,c, pk) to be starlike or convex of order β .
These results are stated in next two theorems.

Theorem 2.7. Let the function f given by (1.14) belongs to
the class
T BSD(α,λ ,c, pk). Then f ∈ S ∗(β ) in the disk |z| < r1,
where r1 is the largest value that satisfies

∞

∑
i=2

[
(2− i)−β

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
piri−1

]

+

((2−n)−β )

(
1−

k

∑
i=2

pi

)
(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)

rn−1 ≤ β .

(2.9)

Proof. To show the theorem, it is enough to establish that∣∣∣∣ z f ′(z)
f (z)

−1
∣∣∣∣≤ 1−β for |z|< r1.

Now, Upon simple computations, we have∣∣∣∣ z f ′(z)
f (z)

−1
∣∣∣∣ ≤ 1−β , for |z|< r, if and only if

k

∑
i=2

[
((2− i)−β )

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
piri−1

]
+

∞

∑
n=k+1

((2−n)−β )anrn−1 ≤ 1−β . (2.10)

By using Corollary 1.3, we get

an =

1−
k

∑
i=2

pi

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)
λn, (2.11)

where λn ≥ 0, n≥ k+1 and
∞

∑
n=k+1

λn ≤ 1.

For each fixed r, choosing an integer n0 = n0(r), for which

((2−n)−β )rn−1

(1+(n−1)λ )(1+(n−1)α)E (c,κ,n)

is a maximum, we obtain
∞

∑
n=k+1

((2−n)−β )anrn−1

≤
((2−n0)−β )

(
1−

k

∑
i=2

pi

)
(1+(n0−1)λ )(1+(n0−1)α)D(c,κ,n0)

rn0−1. (2.12)

Hence f is starlike of order β in |z| ≤ r1, provided

k

∑
i=2

[
((2− i)−β )

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
piri−1

]

+

((2−n0)−β )

(
1−

k

∑
i=2

pi

)
(1+(n0−1)λ )(1+(n0−1)α)D(c,κ,n0)

rn0−1

(2.13)

≤ 1−β .

We find the value of r0 and corresponding n0(r0), so that

k

∑
i=2

[
((2− i)−β )

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)
piri−1

0

]

+

((2−n0)−β )

(
1−

k

∑
i=2

pi

)
(1+(n0−1)α)(1+(n0−1)λ )E (c,κ,n0)

rn0−1
0

(2.14)

= 1−β .

This is the radius of starlikeness of order β for functions in
the class T BSD(α,λ ,c, pk).
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The radius of convexity for functions in the class
T BSD(α,λ ,c, pk) is given in the next theorem.

Theorem 2.8. Let the function f given by (1.14) belong to the
class T BSD(α,λ ,c, pk). Then f ∈ C (β ) in |z|< r2, where r2
is the largest value that satisfies

∞

∑
i=2

i(i−β )piri−1

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)

+

n(n−β )

(
1−

k

∑
i=2

pi

)
rn−1

(1+(n−1)α)(1+(n−1)λ )E (c,κ,n)
≤ 1−β .

(2.15)

Proof. Upon simple computations,for |z|< r,∣∣∣∣ z f ′′(z)
f (z)

∣∣∣∣≤ 1−β

if and only if
∞

∑
i=2

i(i−β )ri−1

(1+(i−1)α)(1+(i−1)λ )

+
∞

∑
n=k+1

n(n−β )anrn−1 ≤ 1−β . (2.16)

By virtue of Corollary 1.3 and for each fixed r, choosing an
integer n0 = n0(r) for which

n0(n0−β )rn0−1

(1+(n0−1)α)(1+(n0−1)λ )E (c,κ,n0)

is maximum, we get
∞

∑
n=k+1

n(n−β )anrn−1

≤
n0(n0−β )

(
1−

k

∑
i=2

pi

)
rn0−1

0

(1+(n0−1)α)(1+(n0−1)λ )E (c,κ,n0)
. (2.17)

Therefore, f is convex of order β in |z|< r2, provided
∞

∑
i=2

i(i−β )ri−1

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)

+

n0(n0−β )

(
1−

k

∑
i=2

pi

)
rn0−1

(1+(n0−1)α)(1+(n0−1)λ )E (c,κ,n0)
(2.18)

≤ 1−β .

We find the value of r0 and corresponding n0(r0), so that
∞

∑
i=2

i(i−β )ri−1
0

(1+(i−1)α)(1+(i−1)λ )E (c,κ, i)

+

n0(n0−β )

(
1−

k

∑
i=2

pi

)
rn0−1

0

(1+(n0−1)α)(1+(n0−1)λ )E (c,κ,n0)

= 1−β .

This gives the radius of convexity of order β for the functions
f in T BSD(α,λ ,c, pk).
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