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Abstract
In the present paper, we study the mapping properties of some integral operators on certain classes of harmonic
univalent functions associated with generalized Bessel functions of the first kind. To be more precise, we study
the mapping properties of Goodman-Rønning-type harmonic univalent functions in the open unit disc U.
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1. Introduction
Let A denote the class of functions f of the form

f (z) = z+
∞

∑
n=2

anzn, (1.1)

which are analytic in the open unit disk U= {z : z∈C and |z|<
1} and satisfy the normalization condition f (0) = f ′(0)−1 =
0. Now, we recall that the generalized Bessel function of the
first kind w = wp,b,c is defined as the particular solution of the
second-order linear homogeneous differential equation

z2
ω
′′(z)+bzω

′(z)+
[
cz2− p2 +(1−b)p

]
ω(z) = 0, (1.2)

where b, p,c ∈C, which is a natural generalization of Bessel’s
differential equation. This function has the familiar represen-
tation

ω(z) =ωp,b,c(z) =
∞

∑
n=0

(−1)ncn

n!Γ
(

p+n+ b+1
2

) ( z
2

)2n+p
, z∈C. (1.3)

The differential equation (1.2) permits the study of Bessel,
modified Bessel, spherical Bessel function and modified spher-
ical Bessel functions all together. Solutions of (1.2) are re-
ferred to as the generalized Bessel function of order p. The
particular solution given by (1.3) is called the generalized
Bessel function of the first kind of order p. Although the
series defined above is convergent everywhere, the function
ωp,b,c is generally not univalent in U . It is worth mentioning
that, in particular, when b = c = 1, we reobtain the Bessel
function ωp,1,1 = Jp and for c=−1,b= 1 the function ωp,1,−1
becomes the modified Bessel function Ip. Now, consider the
function up,b,c defined by the transformation

up,b,c(z) = 2p
Γ
(

p+ b+1
2

)
z−p/2

ωp,b,c(z1/2).

By using the well-known Pochhammer (or Appell) symbol, de-
fined in terms of the Euler Gamma function for a 6= 0,−1,−2,
· · · by

(a)n =
Γ(a+n)

Γ(a)

=

{
1 : if n = 0
a(a+1) · · ·(a+n−1) : if n = 1,2,3, · · · . ,

We obtain for the function up,b,c by the following representa-
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tion

up,b,c(z) =
∞

∑
n=0

(−c/4)n(
p+

(b+1)
2

)
n

zn

n!
, (1.4)

where p+(b+1)/2 6= 0,−1,−2, · · · . This function is analytic
on C and satisfies the second-order linear differential equation

4z2u′′(z)+2(2p+b+1)zu′(z)+ czu(z) = 0.

For convenience throughout in the sequel, we use the
following notations:

up,b,c = up, k = p+
b+1

2
.

Let H be the family of all harmonic functions of the form
f = h+g, where

h(z) = z+
∞

∑
n=2

Anzn

and

g(z) =
∞

∑
n=1

Bnzn, |B1|< 1, (z ∈ U), (1.5)

are in the class A. Denote by SH the subclass of H that are
univalent and sense-preserving in U . We also let the subclass
S0

H of SH as

S0
H =

{
f = h+g ∈ SH : g′ (0) = B1 = 0

}
.

The classes S0
H and SH were first studied in [5]. Also, we

let K0
H , S∗,0H and C0

H denote the subclasses of S0
H of harmonic

functions which are, respectively, convex, starlike and close-
to-convex in U . For definitions and properties of these classes,
one may refer to [5] or [6].

A function f (z) of the form (1.5) is said to be in the class
NH(β ), where 0 ≤ β < 1, if the the following condition is
satisfied

ℜ

(
f ′ (z)

z′

)
≥ β , z = reiθ ∈ U.

Further we let T NH (β )≡ NH (β )∩T , where T consists
of the functions f = h+ g in SH so that h and g are of the
form

h(z) = z−
∞

∑
n=2
|An|zn, g(z) =

∞

∑
n=1
|Bn|zn. (1.6)

The classes NH(β ), T NH(β ) were studied by Ahuja and Ja-
hangiri [2].

In 2001, Rosy et al. [14] introduced the class GH(γ)
consisting of functions of the form (1.5) if it satisfies the
following condition

ℜ

{(
1+ eiα) z f ′(z)

f (z)
− eiα

}
≥ γ, α ∈ R, z ∈ U.

Further we define T GH(γ)≡ GH(γ)∩T. The class GH(γ) is
called Goodman-Rønning-type harmonic univalent functions
in U .

For complex parameters c1,k1,c2,k2
(k1,k2 6= 0,−1,−2, · · ·), we introduce the following convolu-
tion operator

Ω≡Ω

(
k1, c1
k2, c2

)
: H→ H

defined by

Ω

(
k1, c1
k2, c2

)
f = h(z)∗

∫ z

0
up1(t)dt +g(z)∗

∫ z

0
up2(t)dt

for any function f = h+g in H.
Letting

Ω

(
k1, c1
k2, c2

)
f (z) = H(z)+G(z),

where

H(z) = z+
∞

∑
n=2

(−c1/4)n−1

(k1)n−1n!
Anzn

and

G(z) =
∞

∑
n=1

(−c2/4)n−1

(k2)n−1n!
Bnzn. (1.7)

Similarly we define the Libera type integral operator

L
(

k1, c1
k2, c2

)
f (z) = h(z)∗ 2

z

∫ z

0
zup1(t)dt

+g(z)∗ 2
z

∫ z

0
zup2(t)dt, (1.8)

or equivalently

Ł
(

k1, c1
k2, c2

)
f (z) = H(z)+G(z),

where

H(z) = z+
∞

∑
n=2

2(−c1/4)n−1

(k1)n−1(n+1)(n−1)!
Anzn,

and

G(z) =
∞

∑
n=1

2(−c2/4)n−1

(k2)n−1(n+1)(n−1)!
Bnzn. (1.9)

Throughout this paper, we will frequently use the notation

Ω( f ) = Ω

(
k1, c1
k2, c2

)
f

and

L( f ) = L
(

k1, c1
k2, c2

)
f .
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The generalized Bessel function is a recent topic of study in
the Geometric Function Theory (e.g. see the work of [3], [7]-
[11]). Motivated by results on connections between various
subclasses of analytic and harmonic univalent functions by
using hypergeometric functions (see [1], [4], [12], [13], [15]
and [16]), we establish a number of connections between
the classes GH(γ), K0

H , S∗,0H , C0
H and NH(β ) by applying the

convolution operators Ω and L.

2. Main Results
In order to establish connections between harmonic con-

vex functions and Goodman-Rønning-type harmonic univa-
lent functions, we shall require the following lemmas.

Lemma 2.1. ([5], [6]). If f = h+g ∈ K0
H where h and g are

given by (1.5) with B1 = 0, then

|An| ≤
n+1

2
, |Bn| ≤

n−1
2

.

Lemma 2.2. ([14]). Let f = h + g be given by (1.5). If
0≤ γ < 1 and

∞

∑
n=2

(2n−1− γ) |An|+
∞

∑
n=1

(2n+1+ γ) |Bn| ≤ 1−γ, (2.1)

then f is sense-preserving, Goodman-Rønning-type harmonic
univalent functions in U and f ∈ GH(γ).

Remark 2.3. In [14], it is also shown that f = h+ g given
by (1.6) is in the family T GH(γ), if and only if the coefficient
condition (2.1) holds. Moreover, if f ∈ T GH(γ), then

|An| ≤
1− γ

2n−1− γ
, n≥ 2,

and

|Bn| ≤
1− γ

2n+1+ γ
, n≥ 1.

Lemma 2.4. ([3]). If b, p,c ∈C and k 6= 0,−1,−2, · · · then
the function up satisfies the recursive relation 4ku′p(z) =
−cup+1(z) for all z ∈ C.

Lemma 2.5. If c < 0 and k > 1, then

∞

∑
n=0

(−c/4)n

(k)n(n+1)!
=
−4(k−1)

c
[up−1(1)−1] .

Proof. We can write

∞

∑
n=0

(−c/4)n

(k)n(n+1)!
=

(k−1)
(−c/4)

∞

∑
n=0

(−c/4)n+1

(k−1)n+1(n+1)!

=
−4(k−1)

c
[up−1(1)−1] .

Theorem 2.6. Let c1,c2 < 0, k1,k2 > 1. If for some γ(0 ≤
γ < 1) and the inequality

2u′p1
(1)+(3− γ)up1(1)− (1+ γ)[

−4(k1−1)
c1

[up1−1(1)−1]
]
+2u′p2

(1)+(1+ γ)up2(1)

− (1+ γ)
[
−4(k2−1)

c2
[up2−1(1)−1]

]
≤ 4(1− γ) (2.2)

is satisfied then Ω
(
K0

H
)
⊂ GH(γ).

Proof. Let f = h+g∈K0
H where h and g are of the form (1.5)

with B1 = 0. We need to show that Ω( f ) = H +G ∈ GH (γ),
where H and G defined by (1.7) with B1 = 0 are analytic
functions in U .

In view of Lemma 2.2, we need to prove that

P1 ≤ 1− γ,

where

P1 =
∞

∑
n=2

(2n−1− γ)

∣∣∣∣ (−c1/4)n−1

(k1)n−1n!
An

∣∣∣∣
+

∞

∑
n=2

(2n+1+ γ)

∣∣∣∣ (−c2/4)n−1

(k2)n−1n!
Bn

∣∣∣∣ .
In view of Lemma 2.1, we have

P1 ≤
1
2

[
∞

∑
n=2

(n+1)(2n−1− γ)
(−c1/4)n−1

(k1)n−1n!

+
∞

∑
n=2

(n−1)(2n+1+ γ)
(−c2/4)n−1

(k2)n−1n!

]

=
1
2

[
∞

∑
n=2
{2n(n−1)+(3− γ)n− (1+ γ)}

× (−c1/4)n−1

(k1)n−1n!

+
∞

∑
n=2
{2n(n−1)+(γ +1)n− (γ +1)}

× (−c2/4)n−1

(k2)n−1n!

]
=

1
2

[
2

∞

∑
n=0

(−c1/4)n+1

(k1)n+1n! +(3− γ)
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+1)!

− (1+ γ)
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+2)! +2
∞

∑
n=0

(−c2/4)n+1

(k2)n+1n!

+(γ +1)
∞

∑
n=0

(−c2/4)n+1

(k2)n+1(n+1)!

−(γ +1)
∞

∑
n=0

(−c2/4)n+1

(k2)n+1(n+2)!

]
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=
1
2

[
2 (−c1/4)

k1

∞

∑
n=0

(−c1/4)n

(k1+1)nn! +(3− γ)

{
up1(1)−1

}
− (1+ γ)

∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+2)!

+2 (−c2/4)
k2

∞

∑
n=0

(−c2/4)n

(k2+1)nn! +(1+ γ)

{
up2(1)−1

}
− (1+ γ)

∞

∑
n=0

(−c2/4)n+1

(k2)n+1(n+2)!

]

=
1
2

[
2 (−c1/4)

k1
up1+1(1)+(3− γ)

{
up1(1)−1

}
− (1+ γ)

[
−4(k1−1)

c1
[up1−1(1)−1]−1

]
+2 (−c2/4)

k2
up2+1(1)+(1+ γ)

{
up2(1)−1

}
−(1+ γ)

[
−4(k2−1)

c2
[up2−1(1)−1]−1

]]
=

1
2
[
2u′p1

(1)+(3− γ)(up1(1)−1)

− (1+ γ)
[
−4(k1−1)

c1
[up1−1(1)−1]−1

]
+2u′p2

(1)+(1+ γ)(up2(1)−1)

−(1+ γ)
[
−4(k2−1)

c2
[up2−1(1)−1]−1

]]
.

Now P1 ≤ 1− γ follows from the given condition
This completes the proof of Theorem 2.6.

Analogous to Theorem 2.6, we next find conditions of
the classes S∗,0H , C0

H with Gh(γ). However we first need the
following result which may be found in [5], [6].

Lemma 2.7. If f = h+ g ∈ S∗,0H or C0
H where h and g are

given by (1.5) with B1 = 0, then

|An| ≤ (2n+1)(n+1)
6 , |Bn| ≤ (2n−1)(n−1)

6 .

Theorem 2.8. If c1,c2 < 0, k1,k2 > 1. If for some γ(0≤ γ <
1) and the inequality

4u′′p1
(1)+(16−2γ)u′p1

(1)+(7−5γ)up1(1)

−(1+ γ)
[
−4(k1−1)

c1
[up1−1(1)−1]

]
+4u′′p2

(1)+(8+2γ)u′p2
(1)− (1+ γ)up2(1)

+(1+ γ)
[
−4(k2−1)

c2
[up2−1(1)−1]

]
≤ 12(1− γ) (2.3)

is satisfied, then

Ω(S∗,0H )⊂ GH(γ) and Ω(C0
H)⊂ GH(γ).

Proof. Let f = h+g ∈ S∗,0H (C0
H) where h and g are given by

(1.5) with B1 = 0. We need to show that Ω( f ) = H +G ∈
GH (γ), where H and G defined by (1.7) with B1 = 0 are

analytic functions in U . In view of Lemma 2.2, it is enough
to show that P1 ≤ 1− γ , where

P1 =
∞

∑
n=2

(2n−1− γ) (−c1/4)n−1

(k1)n−1n! |An|

+
∞

∑
n=2

(2n+1+ γ) (−c2/4)n−1

(k2)n−1n! |Bn| .

In view of Lemma 2.7, we have

P1 ≤ 1
6

[
∞

∑
n=2

(2n+1)(n+1)(2n−1− γ) (−c1/4)n−1

(k1)n−1n!

+
∞

∑
n=2

(2n−1)(n−1)(2n+1+ γ) (−c2/4)n−1

(k2)n−1n!

]

= 1
6

[
∞

∑
n=2
{4n(n−1)(n−2)

+(16−2γ)n(n−1)+ (7−5γ)n− (γ +1)}

(−c1/4)n−1

(k1)n−1n! +
∞

∑
n=2
{4n(n−1)(n−2)+(8+2γ)

n(n−1)− (1+ γ)n+(1+ γ)} (−c2/4)n−1

(k2)n−1n!

]
= 1

6

[{
4

∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n−1)! +(16−2γ)

∞

∑
n=0

(−c1/4)n+1

(k1)n+1n! +(7−5γ)
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+1)!

− (1+ γ)
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+2)!

}

+

{
4

∞

∑
n=0

(−c2/4)n+1

(k2)n+1(n−1)! +(8+2γ)
∞

∑
n=0

(−c2/4)n+1

(k2)n+1n!

−(1+ γ)
∞

∑
n=0

(−c2/4)n+1

(k2)n+1(n+1)!

+(1+ γ)
∞

∑
n=0

(−c2/4)n+1

(k2)n+1(n+2)!

}]
= 1

6

[{
4u′′p1

(1)+(16−2γ)u′p1
(1)+(7−5γ){

up1(1)−1
}

− (1+ γ)
[
−4(k1−1)

c1
[up1−1(1)−1]−1

]
+
{

4u′′p2
(1)+(8+2γ)u′p2

(1)− (1+ γ)
{

up2(1)−1
}

+(1+ γ)
[
−4(k2−1)

c2
[up2−1(1)−1]−1

]}]
.

Now P1 ≤ 1− γ follows from the given condition.

In order to determine connection between T NH(β ) and
GH(γ), we need the following results in Lemma 2.9.
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Lemma 2.9. ([2]). Let f = h+g where h and g are given by
(1.6) with B1 = 0, and suppose that 0≤ β < 1. Then

f ∈ T NH (β )⇔
∞

∑
n=2

n |An|+
∞

∑
n=2

n |Bn| ≤ 1−β .

Remark 2.10. If f ∈ T NH(β ), then |An| ≤ 1−β

n and
|Bn| ≤ 1−β

n , n≥ 2.

Theorem 2.11. If c1,c2 < 0, k1,k2 > 1
(k1,k2 6= 0,−1,−2, · · ·). If for some β (0≤ β < 1), γ(0≤ γ <
1) and the inequality

(1−β )
[
2
{

up1(1)−1
}
+(1+ γ) 4(k1−1)

c1[
up1−1(1)−1− (−c1/4)

k1−1

]
+ 2up2(1)− (1+ γ) 4(k2−1)

c2
[up2−1(1)−1]

]
≤ 1− γ

is satisfied then

Ω(T NH(β ))⊂ GH(γ).

Proof. Let f = h + g ∈ T NH(β ) where h and g are given
by (1.5). In view of Lemma 2.2, it is enough to show that
P2 ≤ 1− γ , where

P2 =
∞

∑
n=2

(2n−1− γ) (−c1/4)n−1

(k1)n−1n! |An|+

∞

∑
n=1

(2n+1+ γ) (−c2/4)n−1

(k2)n−1n! |Bn| .

Using Remark 2.10, we have

P2 ≤ (1−β )

[
∞

∑
n=2

{
2− (1+γ)

n

}
(−c1/4)n−1

(k1)n−1n!

+
∞

∑
n=1

{
2+ (1+γ)

n

}
(−c2/4)n−1

(k2)n−1n!

]

= (1−β )

[
2

∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+1)!

− (1+ γ)
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+2)!

+ 2
∞

∑
n=0

(−c2/4)n

(k2)nn! +(1+ γ)
∞

∑
n=0

(−c2/4)n

(k2)n(n+1)!

]
= (1−β )

[
2
{

up1(1)−1
}
− (1+ γ) (k1−1)

(−c1/4)

∞

∑
n=0

(−c1/4)n+2

(k1−1)n+2(n+2)!

+ 2up2(1)+(1+ γ) (k2−1)
(−c2/4)

∞

∑
n=0

(−c2/4)n+1

(k2−1)n+1(n+1)!

]
= (1−β )

[
2
{

up1(1)−1
}
+(1+ γ) 4(k1−1)

c1[
up1−1(1)−1− (−c1/4)

k1−1

]
+ 2up2(1)− (1+ γ) 4(k2−1)

c2
[up2−1(1)−1]

]
≤ 1− γ,

by the given hypothesis.

In next theorem, we establish connections between T GH(γ)
and GH(γ).

Theorem 2.12. Let c1,c2 < 0, k1,k2 > 1. If for some γ(0 ≤
γ < 1) the inequality

4(k1−1)
c1

[up1−1(1)−1]+ 4(k2−1)
c2

[up2−1(1)−1]≥−2 (2.4)

is satisfied, then Ω(T GH(γ))⊂ GH(γ).

Proof. Let f = h + g ∈ T GH(γ) where h and g are given
by (1.6). In view of Lemma 2.2, it is enough to show that
P2 ≤ 1− γ , where

P2 =
∞

∑
n=2

(2n−1− γ) (−c1/4)n−1

(k1)n−1n! |An|+

∞

∑
n=1

(2n+1+ γ) (−c2/4)n−1

(k2)n−1n! |Bn| .

Using Remark 2.3, it follows that

P2 =
∞

∑
n=2

(2n−1− γ) (−c1/4)n−1

(k1)n−1n! |An|+

∞

∑
n=1

(2n+1+ γ) (−c2/4)n−1

(k2)n−1n! |Bn|

≤ (1− γ)

[
∞

∑
n=2

(−c1/4)n−1

(k1)n−1n! +
∞

∑
n=1

(−c2/4)n−1

(k2)n−1n!

]

= (1− γ)

[
∞

∑
n=0

(−c1/4)n+1

(k1)n+1(n+2)!

+
∞

∑
n=0

(−c2/4)n

(k2)n(n+1)!

]
= (1− γ)

[
− 4(k1−1)

c1
[up1−1(1)−1]−1

− 4(k2−1)
c2

[up2−1(1)−1]
]

≤ (1− γ),

by the given condition and this completes the proof.
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In next theorem, we present conditions on the parame-
ters k1,k2,c1,c2 and obtain a characterization for operator Ω

which maps T GH(γ) on to itself.

Theorem 2.13. If c1,c2 < 0, k1,k2 > 1 and γ(0 ≤ γ < 1).
Then

Ω(T GH(γ))⊂ T GH(γ),

if and only if the inequality (2.4) is satisfied.

Proof. The proof of above theorem is similar to that of Theo-
rem 2.4. Therefore we omits the details involved.

Theorem 2.14. Let c1,c2 < 0, k1 > 0,k2 > 2. If for some
γ(0≤ γ < 1) and the inequality

2u′p1
(1)+(1− γ)(up1(1)−1)+2u′p2

(1)+(γ−1)

(up2(1)−1)+2(1− γ)
[
−4(k2−1)

c2
[up2−1(1)−1]−1

]
−2(1− γ)

[
16(k2−2)(k2−1)

c2
2

[up2−2(1)−1

+ c2/4
k2−2 −

(c2/4)2

2(k2−2)(k2−1)

]]
≤ 2(1− γ) (2.5)

is satisfied then L
(
K0

H
)
⊂ GH(γ).

Proof. Let f = h+g∈K0
H where h and g are of the form (1.5)

with B1 = 0. We need to show that L( f ) = H +G ∈ GH (γ),
where H and G defined by (1.9) with B1 = 0 are analytic
functions in U .

In view of Lemma 2.2, we need to prove that

P3 ≤ 1− γ,

where

P3 =
∞

∑
n=2

(2n−1− γ)
∣∣∣ (−c1/4)n−1

(k1)n−1(n−1)!
2An
n+1

∣∣∣+
∞

∑
n=2

(2n+1+ γ)
∣∣∣ (−c2/4)n−1

(k2)n−1(n−1)!
2Bn
n+1

∣∣∣ .
In view of Lemma 2.1, we have

P3 ≤

[
∞

∑
n=2

(2n−1− γ) (−c1/4)n−1

(k1)n−1(n−1)!+

∞

∑
n=2

(2n+1+ γ)n(n−1) (−c2/4)n−1

(k2)n−1(n+1)!

]

=

[
∞

∑
n=2
{2(n−1)+(1− γ)} (−c1/4)n−1

(k1)n−1(n−1)!

+
∞

∑
n=2
{2(n+1)n(n−1)+(γ−1)(n+1)n+

2(1− γ)(n+1)+2(γ−1)} (−c2/4)n−1

(k2)n−1(n+1)!

]

performing the similar calculation as in Theorem 2.6 we ob-
tain the required condition.

This completes the proof.

Theorem 2.15. Let c1,c2 < 0, k1,k2 > 2, 0 ≤ β < 1. If for
some γ(0≤ γ < 1) and the inequality

2(1−β )
[
2
{
−4(k1−1)

c1
(up1−1(1)−1)−1

}
−(3+ γ)

{
16(k1−2)(k1−1)

c2
1

(
up1−2(1)−1+ c1/4

k1−2

)
− 1

2

}

+2
{
−4(k2−1)

c2
(up2−1(1)−1)

}

−(1− γ)
{

16(k2−2)(k2−1)
c2

2

(
up2−2(1)−1+ c2

4(k2−2)

)}]
(2.6)

≤ 1− γ

is satisfied then L(T NH(β ))⊂ GH(γ).

Proof. The proof of above theorem is similar to that of Theo-
rem 2.14, therefore we omit the details involved.
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