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Abstract
In this article, concerning nonlocal generalized fractional integral boundary conditions, we investigate the exis-
tence of solutions for new boundary value problems of generalized Caputo-type fractional differential equations
and inclusions. In the case of equations, we make use of the Banach fixed point theorem and fixed point theorem
due to O’Regan and the nonlinear alternative for contractive maps for inclusions. Examples are given to clarify
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1. Introduction
The technique of dealing with fractional differential equa-

tions (FDEs) wasn’t much for young researchers until the gen-
eralized fractional derivatives defined by various fractional op-
erators were exposed. Generalized fractional differential equa-
tions (GCFDEs) of Caputo type resulted in effective numerical
solutions to differential equations. It is also well-known that
the Caputo derivative plays an essential role in physical mem-
ory problems. Katugampola in [15] has also introduced a new

fractional integral, which acts as a combined integral for the
Riemann-Liouville and Hadamard integrals. Research work in
this area has grown significantly worldwide due to extensive
applications of FDEs in engineering and science. For exam-
ples and details see [1, 3, 6, 7, 9–13, 17, 21, 22, 27–31, 33]
and the references cited therein. In recent years non-local
boundary value problems (BVPs) for FDEs and inclusions
have been studied by many researchers. Ntouyas et.al [23]
has studied the existence of solutions with sum and integral
boundary conditions for fractional differential inclusions. In
[2] the authors analyzed the existence results for the fractional
differential inclusion and the integrated boundary conditions
of the form of type Erdelyi-Kober:

Dqx(t) ∈ F(t,x(t)), t ∈ [0,T ],

x(0) = 0, αx(T ) =
m

∑
i=1

βiI
γi,δi
ηi x(ξi),

where 1 < q ≤ 2, Dq is the Riemann-Liouville fractional
derivative (RLFD) of order q, F : [0,1]×R→ P(R) is a mul-
tivalued map, and P(R) is the family of all nonempty subsets
of R, and α,βi ∈ R, ξi ∈ (0,T ), Iγi,δi

ηi is the Erdelyi-Kober
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fractional integral of order δi > 0, ηi > 0, γi ∈R i = 1,2, ...,m
are given constants. In [4] the authors investigated the FDEs
and inclusion with integral boundary conditions of the form
of Erdelyi-Kober type:

cDqx(t) = f (t,x(t)), t ∈ [0,T ],

x(0) = g(x(t)), x(T ) = αIγ,δ x(ξ ),

and
cDqx(t) ∈ F(t,x(t)), t ∈ [0,T ],

x(0) = g(x), x(T ) = αIγ,δ x(ξ ),

where 1 < q≤ 2, Dq is the Caputo fractional derivative (CFD)
of order q, f : J ×R→ R and g: C (J ,R)→ R are given
continuous functions, and F : [0,1]×R→ P(R) is a multi-
valued map, and P(R) is the family of all nonempty subsets
of R, and α ∈ R, ξ ∈ (0,T ), Iγ,δ

η is the Erdelyi-Kober frac-
tional integral of order δ > 0, η > 0 γ ∈R are given constants.
The GCFDEs have been studied by many researchers in re-
cent years. Zeng et.al [32] discussed FDEs and numerical
solutions of the type of Caputo-Katugampola. FDEs with
Caputo-Katugampola dependence were obtained by Almeida
et.al [5]. Jarad et.al [14] analyzed generalized and Caputo
modification of fractions derivatives. In this paper, we begin
the investigation of GCFDEs BVPs and inclusions improved
with non-local generalized integral boundary conditions. We
examine in exact terms the existence and uniqueness of the
solutions for the GCFDEs and the form:

ρ

C D
ρ y(τ) = h(τ,y(τ)), τ ∈J := [0,T ],

y(0) = 0, ϖ
ρI ς y(ϕ) = g(y),

1 < ρ ≤ 2, 0 < ς < 1, ϕ ∈ (0,T ),
(1.1)

and
ρ

C D
ρ y(τ) ∈ H(τ,y(τ)), τ ∈J := [0,T ],

y(0) = 0, ϖ
ρI ς y(ϕ) = g(y),

1 < ρ ≤ 2, 0 < ς < 1, ϕ ∈ (0,T ),
(1.2)

where ρ

C D
ρ denote the generalized Caputo fractional deriva-

tive (GCFD) of order 1 < ρ ≤ 2, ρI ς denote the general-
ized Riemann-Liouville fractional integral (GRLFI) of order
0 < ς < 1, ρ > 0, and h: J ×R→R and g: C (J ,R)→R
are given continuous functions and ϖ is positive real constant
and H: J ×R→ E (R) is a multivalued function, E (R is the
family of all nonempty subsets of R).

We emphasize that g(y) in (1.1) may be interpreted as

g(y) =
k

∑
j=1

ζ jy(τ j), where ζ j, j = 1,2, · · ·,k are given con-

stants and τ1 < τ2 < · · · < τk ≤ 1. Whatever is left of the
paper is sorted out as follows. Section 2 shows the essen-
tial founding material identified with our problem and has
demonstrated an auxiliary lemma. Section 3 contains the
main results for FDEs. Examples in section 4 are used to
validate the solutions. Section 5 contains the main results for
inclusions. The important observations of the results are made
in Section 6.

2. Preliminaries
In section 2 we present some notations, fractional calculus

definitions and preliminary results needed later on in our proof
[14, 16, 18, 20, 26].
Let us define the space of complex-valued all Lebesgue mea-
surable functions h : (b,c)→ R 3 ‖h‖T p

a
< ∞, where a ∈ R,

1≤ p≤ ∞ and

‖h‖T p
a

=

(∫ c

b
|υah(υ)|p dυ

υ

) 1
p

,1≤ p≤ ∞.

L 1(b,c) refers to the measurable space of all Lebesgue func-
tions φ on (b,c) endowed with the norm:

‖φ‖L 1 =
∫ b

c
|φ(υ)|dυ < ∞.

Definition 2.1. [16] The left and right-sided GRLFIs of order
ρ > 0 and ρ > 0, of a function h ∈ T p

a (b,c), ∀ −∞ < b < τ <
c < ∞, is defined as

(ρI
ρ

b+h)(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

b

υρ−1

(τρ −υρ)1−ρ
h(υ)dυ ,

(ρI
ρ

c−h)(τ) =
ρ1−ρ

Γ(ρ)

∫ c

τ

υρ−1

(υρ − τρ)1−ρ
h(υ)dυ .

Remark 2.2. The above definition for GRLFIs reduce to the
standard Riemann-Liouville fractional integrals for ρ → 1
(see [16]). and Hadmard fractional integrals ρ → 0 respec-
tively (see [18]).

Definition 2.3. [14] For ρ ≥ 0 and h ∈ A C n
δ
[b,c], the left

and right-sided GCFDs of order ρ are described by

ρ

C D
ρ

b+h(ε) =ρD
ρ

b+

[
h(τ)−

n−1

∑
j=0

δ jh(b)
j!

(
τρ −bρ

ρ

) j]
(ε),

ρ

C D
ρ

c−h(ε) =ρD
ρ

c−

[
h(τ)−

n−1

∑
j=0

(−1) jδ jh(c)
j!

(cρ − τρ

ρ

) j]
(ε),

δ =
(

ε
1−ρ d

dε

)
.

Remark 2.4. The above definitions for GCFDs reduces to
the standard Caputo derivatives and Hadamard fractional
derivatives (see for ρ → 1 (see [14])) and ρ → 0 respectively
(see [14]).

Definition 2.5. [14] Let ρ > 0, ρ > 0, n = [ρ]+ 1,0 < b <
τ < c≤ ∞. The operators

(ρD
ρ

b+h)(τ) =
ρρ−n+1

Γ(n−ρ)

(
τ

1−ρ d
dτ

)n ∫ τ

b

υρ−1h(υ)dυ

(τρ −υρ)ρ−n+1 ,

(ρD
ρ

c−h)(τ) =
ρρ−n+1

Γ(n−ρ)

(
− τ

1−ρ d
dτ

)n ∫ c

τ

υρ−1h(υ)dυ

(υρ − τρ)ρ−n+1 ,

for τ ∈ (b,c) are called the left and right sided generalized
Riemann-Liouville fractional derivatives (GRLFDs) of frac-
tional order ρ , respectively.
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Lemma 2.6. Let ρ ≥ 0, n = [ρ]+1 and h ∈ ACn
δ
[b,c], where

0 < b < c < ∞. Then
(1) for ρ /∈ N,

ρ

C D
ρ

b+h(τ) =
1

Γ(n−ρ)

∫
τ

b

(
τρ−υρ

ρ

)n−ρ−1
(δ nh)(υ)dυ

υ1−ρ
,

=ρ I
n−ρ

b+ (δ nh)(τ),

ρ

C D
ρ

c−h(τ) =
1

Γ(n−ρ)

∫ c

τ

(
υρ−τρ

ρ

)n−ρ−1
(−1)n(δ nh)(υ)dυ

υ1−ρ
,

=ρ I
n−ρ

c− (δ nh)(τ).

(2) for ρ ∈ N,
ρ

C D
ρ

b+h = δ
nh, ρ

C D
ρ

c−h = (−1)n
δ

nh.

Lemma 2.7. Let ρ 6= 0, a function h ∈A C n
δ
[b,c]. Then

ρI
ρ

b+
ρ

C D
ρ

b+h(ε) =
[
h(ε)−

n−1

∑
j=0

(δ jh)(b)
j!

(
ερ −bρ

ρ

) j]
,

ρI
ρ

c−
ρ

C D
ρ

c−h(ε) =
[
h(ε)−

n−1

∑
j=0

(−1) j(δ jh)(c)
j!

(cρ − ερ

ρ

) j]
.

In particular, if 0 < ρ ≤ 1, we have
ρI

ρ

b+
ρ

C D
ρ

b+h(ε) = h(ε)−h(b),
ρI

ρ

c−
ρ

C D
ρ

c−h(ε) = h(ε)−h(c).

Lemma 2.8. Let ρ > 0 and ρ ∈ R. Then

ρI ρ
τ

ι =
Γ( ι

ρ
+1)

Γ( ι

ρ
+ρ +1)

τρρ+ι

ρρ
.

Lemma 2.9. Let ρ,ς > 0, 1≤ p≤ ∞, 0 < b < c < ∞. Then
for h ∈ T p

a (b,c), ρ > 0.
ρI

ρ

b+
ρI

ς

b+h = ρI
ρ+ς

b+ h.

We define space H = C (J ,R) endowed with the norm
‖y‖= sup{|y(τ)|,τ ∈J }. Obviously (H ,‖ · ‖) is a Banach
space. Let us introduce A C n

δ
(J ), which consists of the

functions h that have absolutely continuous δ n−1 derivative,
where δ = τ1−ρ d

dτ
. We define the space A C n

δ
(J ,R) =

{h : J → R : δ n−1h ∈A C (J ,R),δ = τ1−ρ d
dτ
}, which is

equipped with the norm ‖h‖C n
δ
= ∑

n−1
k=0 ‖δ

kh‖C .

Lemma 2.10. Let ĥ ∈ C (0,T )∩L 1(0,T ), y ∈ A C 2
δ
(J ),

the function y is the solution of the problem{
ρDρ y(τ) = ĥ(τ), τ ∈J ,
y(0) = 0, ϖ

ρI ς y(ϕ) = g(y),
(2.1)

is equivalent to the integral equation

y(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
ĥ(υ)dυ +

τρ

ϖρϕρ(ς+1)

ρς+1Γ(ς +2)

×
[
g(y)−ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)
ĥ(υ)dυ

]
.(2.2)

The integral solution to the problem (1.1) can be written
in the view of Lemma 2.10.

y(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ ,y(υ))dυ +

τρ

ρσ

[
g(y)

−ϖ
ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ ,y(υ))dυ

(ϕρ −υρ)1−(ρ+ς)

]
, (2.3)

where

σ =
ϖϕρ(ς+1)

ρς+1Γ(ς +2)
6= 0. (2.4)

The operator Ψ : H → H used by

Ψy(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ ,y(υ))dυ +

τρ

ρσ

[
g(y)

−ϖ
ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ ,y(υ))dυ

(ϕρ −υρ)1−(ρ+ς)

]
. (2.5)

We realize that the system (1.1) does not have a solution until
the operator equation Ψy = y and the existence of an operator
Ψ fixed point implies the existence of a problem solution (1.1).

Definition 2.11. A function y ∈ A C 2
δ
(J ,R) is a solution

of the problem (1.2) if y(0) = 0, g(y) = ϖ
ρI ς y(ϕ), and ∃

a function h ∈L 1(J ,R) 3 h(τ) ∈ H(τ,y(τ)) almost every-
where on J and

y(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1h(υ)dυ

(τρ −υρ)1−ρ
+

τρ

ρσ

[
g(y)

−ϖ
ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
. (2.6)

Lemma 2.12. [8] If M : W →Ecl(T ) is upper semi-continuous
then Gr(M ) is a closed subset of W ×T i.e., for every se-
quence ymm∈N⊂W and zmm∈N⊂T if when m→∞, ym→ y∗,
zm→ z∗ and zm ∈M (ym), then z∗ ∈M (y∗). Conversely, if
M is completely continuous and has a closed graph, then it
is upper semi-continuous.

Lemma 2.13. [19] Let W be a Banach space. Let H : J ×
R→ Ecp,c(W ) be an L 1 Caratheodory multivalued map and
let K be a linear continuous mapping from L 1(J ,W )×
C (J ,W ). Then the operator K ◦FH,y : C (J ,W ) →
Ecp,c(C (J ,W )), y 7→ (K ◦ΨH,y)(y)=K (ΨH,y) is a closed
graph operator in C (J ,W )×C (J ,W ).

Theorem 2.14. [24] Denote by U an open set in a closed,
convex set E of a Banach space W . Assume that 0 ∈ U .
Also assume that 	(U ) is bounded and that 	 : U → E is
given by 	=	1 +	2, in which 	1 : U → E is continuous
and completely continuous and 	2 : U → E is nonlinear
contraction (i.e., ∃ a nonnegative nondecreasing function
κ : [0,∞)→ [0,∞) satisfying κ(w)< w for w > 0, 3 ‖	2y−
	2z‖ ≤ κ(‖y− z‖)∀ y,z ∈U ). Then, either
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(i) 	 has a fixed point v ∈U or
(ii) ∃ a point v ∈ ∂U and β ∈ (0,1) with v = β	(v) where
U and ∂U , respectively, represent the closure and boundary
of U .

Theorem 2.15. [25] Let W be a Banach space, and U a
bounded neighborhood of 0 ∈W Let T1 : W → Ecp,c(W ) and
T2 : U → Ecp,c(W ) be two multivalued operators satisfying
(1) T1 is contraction, and
(2) T2 is upper semi-continuous and compact.
Then, if M = T1 +T2 either
(i) M has a fixed point in U or
(ii) there is a point v ∈ ∂U and β ∈ (0,1) with v ∈ βU (v).

In this section, by using Banach and O’Regan’s fixed point
theorems, we obtain the existence and uniqueness results.

3. Main Results : Single-valued case
For computational purposes, we represent:

Θ1 =
T ρρ

ρρ Γ(ρ +1)
+

T ρ

ρ|σ |

[ |ϖ | ϕρ(ρ+ς)

ρρ+ς Γ(ρ + ς +1)

]
, (3.1)

and

Θ2 =
T ρ

ρ|σ |
. (3.2)

The following hypotheses are necessary to prove the exis-
tence and uniqueness results. Let h : J ×R → R and
g : C (J ,R)→ R are continuous functions.

(S1) ∃ a constant K > 03 |h(τ,y)−h(τ,z)| ≤K |y−z|,
for each τ ∈J and y,z ∈ R.

(S2) ∃ a constant k > 03 |g(y)−g(z)| ≤ k|y−z|, k <
1

Θ2
for each y,z ∈ C (J ,R).

(S3) g(0) = 0.
(S4) ∃ a nonnegative function ϑ ∈C (J ,R+) and a non-

decreasing function ξ : [0,∞]→ (0,∞)
3 |h(τ,y)| ≤ ϑ(τ)ξ (‖y‖) for any (τ,y) ∈J ×R.

(S5) sup
ν∈(0,∞)

ν

Θ1‖ϑ‖ξ (ν)
>

1
1−Θ2k

.

(S6) H : J ×R→ Ecp,c(R) is L 1 - Caratheodory mul-
tivalued map.

(S7) ∃ a continuous nondecreasing function ξ : [0,∞]→
(0,∞) and a function

ϑ ∈ C (J ,R+) 3 ‖H(τ,y)‖E = sup{|z| : z ∈H(τ,y)} ≤
ϑ(τ)ξ (|y|) for each

(τ,y) ∈J ×R.
(S8) ∃ a number α > 0 3

(1−Θ2k)α
Θ1‖ϑ‖ξ (α)

> 1, (3.3)

where Θ1 and Θ2 are given by (3.1) and (3.2) respectively.

Theorem 3.1. Suppose that (S1) and (S2) holds. If

η := K Θ1 + kΘ2 < 1, (3.4)

where Θ1,Θ2 are defined by (3.1) and (3.2). Then the BVP
(1.1) has a unique solution on J .

Proof. For y,z∈H and each τ ∈J , the operator Ψ equation
defined by (2.5), and assumptions ((S1),(S2)), we obtain

|(Ψy)(τ)− (Ψz)(τ)|

≤ max
τ∈J

{
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ

×|h(υ ,y(υ))−h(υ ,z(υ))|dυ +
τρ

ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)
|h(υ ,y(υ))−h(υ ,z(υ))|dυ

]
+

τρ

ρ|σ |
|g(y)−g(z)|

}

≤ max
τ∈J

{
K ‖y− z‖

(
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
dυ

+
τρ

ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)
dυ

])

+k‖y− z‖ τρ

ρ|σ |

}
≤ (K Θ1 + kΘ2)‖y− z‖.

Therefore,

‖Ψy−Ψz‖ ≤ (K Θ1 + kΘ2)‖y− z‖.

This follows from the statement (3.4) that Ψ is a contraction
in itself from Banach space H . As a consequence, operator
Ψ has a fixed point by Banach’s fixed point theorem, which
corresponds to the unique solution to the problem (1.1).

Theorem 3.2. Suppose that (S2), (S3), (S4) and (S5)
holds. Then the BVP (1.1) has at least one solution on J .

Proof. Consider the operator Ψ : H →H described by (2.5).
We break down Ψ into two operators,

(Ψy)(τ) = (Ψ1y)(τ)+(Ψ2y)(τ), τ ∈J , (3.5)

where

(Ψ1y)(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ ,y(υ))dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)

×h(υ ,y(υ))dυ

]
, τ ∈J , (3.6)

and

(Ψ2y)(τ) =
τρ g(y)

ρσ
, τ ∈J . (3.7)

Let Qν = {y ∈H : ‖y‖< ν}. From the assumption of (S5),
∃ a number ν0 > 0 3

ν0

Θ1‖ϑ‖ξ (ν0)
>

1
1−Θ2k

. (3.8)
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We will continue to prove that operators Ψ1,Ψ2 meet all The-
orem 2.14 requirements.
Step 1. The set Ψ(Qν0) is bounded. For any y ∈Qν0 , we
procure

‖Ψ1y‖ ≤ ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
|h(υ ,y(υ))|dυ

+
T ρ

ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)

×|h(υ ,y(υ))|dυ

]

≤ ‖ϑ‖ξ (ν0)

{
T ρρ

ρρ Γ(ρ +1)

+
T ρ

ρ|σ |

[ |ϖ | ϕρ(ρ+ς)

ρρ+ς Γ(ρ + ς +1)

]}
≤ ‖ϑ‖ξ (ν0)Θ1.

It demonstrate that Ψ1(Qν0) is uniformly bounded. The as-
sumptions of (S2)
and (S4) imply that

‖Ψ2y‖ ≤ T ρ

ρ|σ |
kν0,

for any y ∈Qν0 . Thus, the set Ψ(Qν0) is bounded.
Step 2. Continuous and completely continuous operator
P. Step 1 means that Ψ1(Qν0) is uniformly bounded. Further-
more, for any τ1,τ2 ∈J , we have

‖(Ψ1y)(τ2)− (Ψ1y)(τ1)‖

≤ ρ1−ρ

Γ(ρ)

∣∣∣∣∣
∫

τ2

0

υρ−1

(τ
ρ

2 −υρ)1−ρ
|h(υ ,y(υ))|dυ

−
∫

τ1

0

υρ−1

(τ
ρ

1 −υρ)1−ρ
|h(υ ,y(υ))|dυ

∣∣∣∣∣
+
|τρ

2 − τ
ρ

1 |
ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)

×|h(υ ,y(υ))|dυ

]

≤ ‖ϑ‖ξ (ν0)

ρρ Γ(ρ +1)

[
2|τρ

2 − τ
ρ

1 |
ρ + |τρρ

2 − τ
ρρ

1 |

]

+
|τρ

2 − τ
ρ

1 |‖ϑ‖ξ (ν0)

ρ|σ |

[ |ϖ | ϕρ(ρ+ς)

ρρ+ς Γ(ρ + ς +1)

]
,

which is independent of y and tends to zero as τ2− τ1→ 0.
Thus, Ψ1 is equicontinuous. Hence, by the Arzela-Ascoli
Theorem, Ψ1(Qν0) is relatively compact. Now let ym,y ∈
Qν0 with ‖ym− y‖ → 0. Then the limit |ym(τ)− y(τ)| → 0
is uniformly valid on J . It follows that ‖h(τ,ym(τ))−
h(τ,y(τ))‖ → 0 is uniformly valid on J from the uniform
continuity of h(τ,y) on the compact set J × [−ν0,ν0]. Then

‖Ψ1ym−Ψ1y‖ → 0 as m→ ∞ that proves Ψ1 is continuity.
The operator Ψ1 is continuous and completely continuous.
Step 3. The operator Ψ2 : Qν0 →H is contractive. Ob-
serve that

|(Ψ2y)(τ)− (Ψ2z)(τ)| =
τρ

ρ|σ |
|g(y)−g(z)|

≤ T ρ

ρ|σ |
k‖y− z‖= λ‖y− z‖,

with λ = Θ2k < 1 by the assumptions of (S2). Hence Ψ2 is
contractive.
Step 4. Furthermore, it will be shown that the case (ii) in
Theorem 2.14 does not occur. For this, we presume that case
(ii) is true. Then, we have that ∃ ζ ∈ (0,1) and y ∈ ∂Qν0 3
y = ζ Ψy. So, we have ‖y‖= ν0 and for τ ∈J ,

y(τ) = ζ

{
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ ,y(υ))dυ +

τρ

ρσ
g(y)

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)

×h(υ ,y(υ))dυ

]}
.

Next, we get

|y(τ)| ≤ ξ (‖y‖)

{
ρ1−ρ

Γ(ρ)

∫ T

0

υρ−1

(T ρ −υρ)1−ρ
ϑ(υ)dυ

+
T ρ

ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1ϑ(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]}

+
T ρ

ρ|σ |
k‖y‖,

with the hypothesis (S3)− (S5). Taking the maximum over
τ ∈J , we get

‖y‖ ≤ ξ (‖y‖)

{
ρ1−ρ

Γ(ρ)

∫ T

0

υρ−1

(T ρ −υρ)1−ρ
ϑ(υ)dυ

+
T ρ

ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1ϑ(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]}

+
T ρ

ρ|σ |
k‖y‖.

Which implies that

ν0 ≤ Θ1‖ϑ‖ξ (ν0)+ kΘ2ν0.

Thus,

ν0

Θ1‖ϑ‖ξ (ν0)
≤ 1

1− kΘ2
,

which contradicts (3.8). Therefore, we have demonstrated
that operators Ψ1 and Ψ2 have fulfilled all the Theorem 2.14
assumptions. Thus, the Theorem 3.2 conclusion implies that
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operator Ψ has at least one fixed point y ∈Qν0 , which is the
solution of the BVP (1.1).

Remark 3.3. Setting ρ → 1, in the problem (1.1), then the
problem reduces to

C Dρ y(τ) = h(τ,y(τ)), τ ∈J ,
y(0) = 0, ϖI ς y(ϕ) = g(y),
1 < ρ ≤ 2,0 < ς < 1, ϕ ∈ (0,T ).

(3.9)

In this case the values of Θ̂1 and Θ̂2 are found to be

Θ̂1 =
T ς

Γ(ς +1)
+

T
|σ̂ |

( |ϖ | ϕρ+ς

Γ(ρ + ς +1)

)
, (3.10)

Θ̂2 =
T
|σ̂ |

, (3.11)

and The operator form (2.5) changes

Ψ̂(y)(τ) =
∫

τ

0

(τ−υ)ρ−1

Γ(ρ)
h(υ ,y(υ))dυ

+
τ

σ̂

[
g(y)−ϖ

∫
ϕ

0

(ϕ−υ)ρ−1

Γ(ρ)
h(υ ,y(υ))dυ

]
,τ ∈J ,

where σ̂ =
ϖϕς+1

Γ(2+ ς)
6= 0.

Corollary 3.4. Suppose that (S1) and (S2) holds. Then the
BVP (3.9), provided that

η1 := KΘ̂1 + kΘ̂2 < 1,

where Θ̂1,Θ̂2 is described by (3.10) and (3.11) respectively,
has a unique solution on J.

Corollary 3.5. Suppose that (S2), (S3),(S4) and (S5) holds.
Then the BVP (3.9), provided that

ν0

Θ̂1‖ϑ‖ξ (ν0)
>

1

1− kΘ̂2
,

has at least one solution on J .

Examples are given in this section to illustrate the feasi-
bility of the results obtained.

4. Examples

Example 4.1. Consider the following BVP
1
2 D

7
4 y(τ) = 1+

( |y|
|y|+1

)
· e−τ2

4(τ +
√

4)2
,

y(0) = 0, 1
10 y( 3

2 ) =
1
2 I

3
4 y( 8

5 ), τ ∈ [0,2].
(4.1)

Here ρ = 7
4 , ς = 3

4 , ϖ = 1, T = 2, ρ = 1
2 , ϕ = 8

5 , k =

1
10 , K = 1

16 , g(y) =
1

10
y
(3

2

)
and h(τ,y) = 1+

( |y|
|y|+1

)
·

e−τ2

4(τ +
√

4)2
. We can acquire values using specified informa-

tion: σ ∼= 3.991024198349486, Θ1 ∼= 6.006235934230121,
Θ2 ∼= 0.7086970622518162, η ∼= 0.4462594521145642, and

|h(τ,y)−h(τ,z)| ≤ 1
16

∣∣∣∣∣ |y||y|+1
− |z|
|z|+1

∣∣∣∣∣
≤ 1

16
|y− z|.

With KΘ1 + kΘ2 < 1∼= 0.4462594521145642, The Theorem
3.1 presumptions are fulfilled. The BVP (4.1) has a unique
solution for [0,2].

Example 4.2. Consider the following BVP{
1
2 D

9
5 y(τ) =

(
|y|+ 1+ |y|

2+ |y|

)
τ

200
, τ ∈ [0,2], (4.2)

Example 4.1 boundary conditions augmented.
Here ρ = 9

5 , ς = 3
4 , ϖ = 1, T = 2, ρ = 1

2 , ϕ = 8
5 , k =

1
10 , g(y) =

1
10

y
(3

2

)
and h(τ,y) =

(
|y|+ 1+ |y|

2+ |y|

)
τ

200
. Us-

ing the specified information, we can acquire values: σ ∼=
4.038195686699365, Θ1 ∼= 6.001791053992137,
Θ2 ∼= 0.700418539414, and |h(τ,y)| = |

(
|y|+ 1+|y|

2+|y|

)
τ

200 | ≤
(1+3|y|+ |y2|) τ

200 , we choose ϑ(τ) = τ

200 and ξ (|y|) = 1+

3|y|+|y2|, and we find that sup
ν∈(0,∞)

ν

Θ1‖ϑ‖ξ (ν)
∼= 3.33233860

0274471 > 1.0753172110360703 ∼=
1

1−Θ2k
. The Theorem

3.2 presumptions are fulfilled. The BVP (4.2) has at least one
solution for [0,2].

In this section, we obtain existence results for the BVP
(1.2) by using the nonlinear alternative for contractive maps.

5. Main Results : Multi-valued case
Theorem 5.1. Suppose that (S2), (S6), (S7) and (S8)
holds. Then the BVP (1.2) has at least one solution on J .

Proof. In order to convert the problem (1.2) into a fixed point
question, the operator Ω : H → E (H ) specified by

Ω(y) =



q ∈H :

q(τ) =

{
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ)dυ

+ τρ

ρσ
g(y)

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]


is considered. For h ∈ΨH,y. Next, we intimate two operators:
Ω1 : H →H by

Ω1y(τ) =
τρ

ρσ
g(y), (5.1)
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and the multivalued operator Ω2 : H → E (H ) by

Ω2(y) =



q ∈H :

q(τ) =

{
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]

.

Observe that Ω = Ω1 +Ω2. We define the operators Ω1 and
Ω2 that follow all of Theorem 2.15 assumptions on J . For
that, we consider the operators Ω1,Ω2 : Bν → Ecp,c(H ),
where Bν = {y∈H : ‖y‖ ≤ ν} is a bounded set in H . Next,
we prove that Ω2 is compact valued on Bν . Considering that
operator Ω2 is the G ◦ΨH composition where G is the linear
continuous operator L 1(J ,R) into H , as described by

G (θ)(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
θ(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1θ(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
.

Suppose y ∈Bν is arbitrary and allow {θm} to be a sequence
in ΨH,y. In this case, we have θm(τ) ∈ H(τ,y(τ)) for al-
most all τ ∈J , by definition of ΨH,y. Because H(τ,y(τ))
is compact for all ∀ τ ∈J , it has a convergent subsequence
of {θm(τ)}, which converges for almost all τ ∈J to some
θ(τ)∈ΨH,y. First, G is continuous, so G (θm)(τ)→ G (θ)(τ)
point-wise on J . To prove that the convergence is uniform,
we retain to demonstrate that the equicontinuous sequence is
{G (θm)}. Let τ1,τ2 ∈J with τ1 < τ2. Then, we find that
‖G (θm)(τ2)−G (θm)(τ1)‖

≤ ρ1−ρ

Γ(ρ)

∣∣∣∣∣
∫

τ2

0

υρ−1

(τ
ρ

2 −υρ)1−ρ
θm(υ)dυ

−
∫

τ1

0

υρ−1

(τ
ρ

1 −υρ)1−ρ
θm(υ)dυ

∣∣∣∣∣
+
|τρ

2 − τ
ρ

1 |
ρ|σ |

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1θm(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]

≤ ‖ϑ‖ξ (ν)
ρρ Γ(ρ +1)

[
2|τρ

2 − τ
ρ

1 |
ρ + |τρρ

2 − τ
ρρ

1 |

]

+
|τρ

2 − τ
ρ

1 |‖ϑ‖ξ (ν)
ρ|σ |

[ |ϖ | ϕρ(ρ+ς)

ρρ+ς Γ(ρ + ς +1)

]
.

The inequality above tends to be zero like τ2 → τ1. There-
fore, the sequence {G (θm)} is equicontinuous and we obtain
a uniform convergent subsequence using the Arzela-Ascoli
theorem. So, there is a subsequence of {θm}, 3 G (θm)→
G (θ). Considering G (θ)∈ G (ΨH,y). Consequently, Ω2(y) =
G (ΨH,y) is compact ∀ y ∈Bν . So Ω2(y) is compact. Now,
we depict that Ω2(y) is convex ∀ y ∈H . Let v1,v2 ∈Ω2(y).

We nominate h1,h2 ∈ΨH,y 3

v j(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h j(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h j(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
,

j = 1,2 for almost all τ ∈J . Let 0≤ γ ≤ 1. Then, we have

[γv1 +(1− γ)v2](τ)

=
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
[γh1(υ)+(1− γ)h2(υ)]dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)

×[γh1(υ)+(1− γ)h2(υ)]dυ

]
.

Since H has convex values, so GH,y is convex and γh1(υ)+
(1− γ)h2(υ) ∈ GH,y. Thus, γv1 +(1− γ)v2 ∈Ω2(y). Hence,
Ω2 is convex-valued. Undoubtedly, Ω1 is compact and convex-
valued. The remaining facts contains multiple phases and
statements.
Step 1. We demonstrate that Ω1 is a contraction on H . This
is a result of (S2), and the evidence in Step 2 of Theorem 3.2
is similar to that of Operator Ψ2.
Step 2. We will proceed to demonstrate that the operator Ω2 is
compact and upper semicontinuous. This is shown in number
of claims.
Claim I: Ω2 maps bounded sets into bounded sets in H . To
see this, let Bν = {y ∈H : ‖y‖ ≤ ν} be a bounded set in H .
Then, for each q ∈Ω2(y), y ∈Bν , ∃ h ∈ΨH,y 3

q(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
.

Then, for τ ∈J , we have

|q(τ)|

≤ ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
|h(υ)|dυ

+
τρ

ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1|h(υ)|dυ

(ϕρ −υρ)1−(ρ+ς)

]

≤ ξ (‖y‖)

{
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
ϑ(υ)dυ

+
τρ

ρ|σ |

[
|ϖ |ρ

1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1ϑ(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]}

≤ ξ (ν)

{
T ρρ

ρρ Γ(ρ +1)
+

T ρ

ρ|σ |

[ |ϖ | ϕρ(ρ+ς)

ρρ+ς Γ(ρ + ς +1)

]}
‖ϑ‖.
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Thus, ‖q‖ ≤ ξ (ν)Θ1‖ϑ‖.
Claim II: Next, we show that Ω2 maps bounded sets into
equicontinuous sets. Let τ1,τ2 ∈J , and y ∈Bν . For each
q ∈Ω2(y), we get

|q(τ2)−q(τ1)|

≤ ρ1−ρ

Γ(ρ)

∣∣∣∣∣
∫

τ2

0

υρ−1

(τ
ρ

2 −υρ)1−ρ
h(υ)dυ

−
∫

τ1

0

υρ−1

(τ
ρ

1 −υρ)1−ρ
h(υ)dυ

∣∣∣∣∣
+
|τρ

2−τ
ρ

1 |
ρ|σ |

[
ϖρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1

(ϕρ −υρ)1−(ρ+ς)
h(υ)dυ

]

≤ ‖ϑ‖ξ (ν)
ρρ Γ(ρ +1)

[
2|τρ

2 − τ
ρ

1 |
ρ + |τρρ

2 − τ
ρρ

1 |

]

+
|τρ

2 − τ
ρ

1 |‖ϑ‖ξ (ν)
ρ|σ |

[ |ϖ | ϕρ(ρ+ς)

ρρ+ς Γ(ρ + ς +1)

]
.

The right side of the above inequality obviously tends to be
zero, independent of y ∈Bν as τ2− τ1→ 0. Therefore, the
Arzela-Ascoli theorem that Ω2 : H → Ecp,c(H ), is com-
pletely continuous. By Lemma 2.12, Ω2 is semi-continuous if
we prove it has a closed graph since Ω2 is already shown to
be absolutely continuous. We set it out in the next paragraph.
Claim III: Ω2 has a closed graph. Let ym → y∗ and qm ∈
Ω2(ym) and qm→ q∗. Then, we need to show that q∗ ∈Ω2(y∗)
associated with qm ∈ Ω2(ym), ∃ hm ∈ ΨH,ym 3 for each τ ∈
J ,

qm(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
hm(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1hm(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
.

And it is enough to show ∃ h∗ ∈ΨH,y∗ 3 for each τ ∈J ,

q∗(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h∗(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h∗(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
.

Let us consider the linear operator Ω : L 1(J ,R)→H de-
fined by

h 7→Ω(h)(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
.

Observe that

‖qm(τ)−q∗(τ)‖

=

∥∥∥∥∥ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1(hm(υ)−h∗(υ))dυ

(τρ −υρ)1−ρ
− τρ

ρσ

×

[
ϖρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1(hm(υ)−h∗(υ))dυ

(ϕρ −υρ)1−(ρ+ς)

]∥∥∥∥∥→ 0,

as m→ ∞. Thus, using by Lemma 2.13 that Ω ◦ΨH,y is
a closed graph operator. Furthermore, we have qm(τ) ∈
Ω(ΨH,ym). Since ym→ y∗, therefore, we have

q∗(τ) =
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h∗(υ)dυ

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h∗(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]
,

for some h∗ ∈ ΨH,y∗ . Consequently Ω2 has a closed graph.
Ω2 is upper semi-continuous. Operators Ω1 and Ω2 satisfy
all the criteria of the theorem and its implementation, thus
results, in either case, (i) or case (ii). We define the case (ii),
as not probable. If y ∈ µΩ1(y)+µΩ2(y) for µ ∈ (0,1), then
∃ h ∈ΨH,y 3

y(τ) = µ

{
ρ1−ρ

Γ(ρ)

∫
τ

0

υρ−1

(τρ −υρ)1−ρ
h(υ)dυ +

τρ

ρσ
g(y)

− τρ

ρσ

[
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1h(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

]}
,

for τ ∈J . Consequently, we have

|y(τ)| ≤ ξ (‖y‖)‖ϑ‖

[
ρ1−ρ

Γ(ρ)

∫ T

0

υρ−1

(T ρ −υρ)1−ρ
dυ

+
T ρ

ρ|σ |

(
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1dυ

(ϕρ −υρ)1−(ρ+ς)

)]

+
T ρ

ρ|σ |
k‖y‖,τ ∈J ,

which, on taking supremum over τ ∈J , yields

‖y‖ ≤ ξ (‖y‖)

[
ρ1−ρ

Γ(ρ)

∫ T

0

υρ−1

(T ρ −υρ)1−ρ
ϑ(υ)dυ

+
T ρ

ρ|σ |

(
ϖ

ρ1−(ρ+ς)

Γ(ρ + ς)

∫
ϕ

0

υρ−1ϑ(υ)dυ

(ϕρ −υρ)1−(ρ+ς)

)]

+
T ρ

ρ|σ |
k‖y‖

≤ ξ (‖y‖)‖ϑ‖Θ1 +Θ2k‖y‖.

If case (ii) of Theorem 2.15 holds, then ∃ µ ∈ (0,1) and
y ∈ ∂Bα with y = µΩ(y). Then, y is a solution of (3.5) with
‖y‖= α . Now, the last inequality implies that

α(1− kΘ2)

ξ (α)‖ϑ‖Θ1
≤ 1,
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which contradicts (3.3). Hence Ω has a fixed point in J by
Theorem 2.15, and hence the problem (1.2) has a solution.

The problem comparison results (4.1) and (3.9) are presented
in this section.

6. Discussion
Here, two cases, where been discussed, and also ρ = 0.5 hap-
pens to be case 1, case 2 is for ρ = 1. Rest of the values
are kept in common for problems (4.1) and (3.9). Problem
(4.1) signifies the generalized Caputo case and problem (3.9)
delineates the Caputo case. The assumption value of the
uniqueness of solutions for the problem (4.1) is η and is il-
lustrated in Figure. 1. Likewise, η1 depicts the assumption
value for the problem (3.9) and is represented in Figure.2.
Here we demonstrate the comparison results of assumption
values of the problem (4.1), and (3.9) is represented in Fig-
ure.3. From the above-said figure, we justify the values of
η ,η1 by showing the influence of ρ for its differing values
on the characteristics of a fractional derivative. It is evident
from the figure that when ρ > 0, we can get positive solutions
under the assumptions of Theorem 3.1. According to Figure.1
and Figure.2, the behavior of the fractional derivative con-
cerning ρ leads to a new path regarding control applications.
We came to realize that in favor of the results stated at the
top, the problem of GCFDEs with non-local GRLFI boundary
condition holds good for existing conditions. Therefore, the
reader can build the problem with ample ideas with certain
consistent estimates of the problem parameters. We enrolled
below a few special cases.

• If ρ → 1, after that we acquire the solution for the
problem of Caputo type FDEs with non-local Riemann-
Liouville fractional integral boundary conditions.

• If ρ → 0, in that case, we come to have the results (by
noting that

lim
ρ→0

(
τρ −bρ

ρ

)
= ln

(
τ

b

)
and lim

ρ→0

(cρ − τρ

ρ

)
= ln

( c
τ

)
)

for the problem of
Caputo-Hadamard type FDEs with non-local Hadamard
fractional integral
boundary conditions. Make note that the generalized
fractional derivative and
integral in the problem reduces to the Caputo-Hadamard
fractional derivative and Hadamard integral in the limit
ρ → 0 with the help of L’Hospital’s rule.
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