

https://doi.org/10.26637/MJM0803/0064

A L **and** A L ²**-Paracompact spaces**

S. Umamaheswari^{1*} and M. Saraswathi²

Abstract

This paper deals with the new concepts of $\mathscr{A}\mathscr{L}$ -Paracompact spaces and $\mathscr{A}\mathscr{L}_2$ -Paracompact spaces. Also we have proved that every $\mathscr{A} \mathscr{L}$ -Paracompactness and $\mathscr{A} \mathscr{L}_2$ -Paracompactness has a topological property.

Keywords

Angelic spaces, L -Paracompact, L_2 -Paracompact, L -Normal, L_2 -Paracompact, L_2 -Paracompact, L_2 normal.

AMS Subject Classification

46A50, 54D10, 54D20.

1,2*Department of Mathematics, Kandaswami Kandar's College, Velur-638182,Tamil Nadu, India.* ***Corresponding author**: ¹ umamaheswari.maths@gmail.com; ²msmathsnkl@gmail.com **Article History**: Received **13** March **2020**; Accepted **11** June **2020** ©2020 MJM.

Contents

1. Introduction

Paracompact space was introduced by Dieudonne.J [\[7\]](#page-3-2). Paracompactness [\[7\]](#page-3-2) is the most useful generalization of compactness. Many researchers have studied certain stronger as well as weaker forms of paracompactness. C -Paracompact and \mathcal{C}_2 –Paracompact were defined by Arhangel'skii. \mathcal{C} -Paracompact and \mathcal{L}_2 -Paracompact were studied in [\[17\]](#page-3-3). L.Kalantan defined \mathscr{L} -Paracompact and \mathscr{L}_2 -Paracompact.L. Kalantan and M. Saeed defined the \mathcal{L} -normality. Fermlin's concept of angelic space [\[6\]](#page-3-4) and some of its emanation bring us with he mandatory tools for presenting those results in a mordant idea.

2. Preliminaries

Definition 2.1. *[\[2\]](#page-3-5) A topological space (shortly, T S) T is termed as angelic, if for each relatively countably compact subset* $\mathscr S$ *of* T *the ensuing hold: (a)* $\mathscr S$ *is relatively compact (b)* If $s \in \overline{\mathscr{S}}$, then \exists *a* sequence in \mathscr{S} that converges to s.

Definition 2.2. *[\[12\]](#page-3-6) A T S X is paracompact, if each open cover has a locally finite open refinement.*

Definition 2.3. *[\[15\]](#page-3-7) A T S M termed as* C *-paracompact if* ∃ *a* paracompact space N and a bijective function $p : M \to N$ \Rightarrow *the restriction* $p|_{S}: S \rightarrow p(S)$ *is homeomorphism for every compact subspace* $S \subseteq M$.

Definition 2.4. [\[15\]](#page-3-7) A TS M is termed as \mathcal{C}_2 -Paracompact if ∃ *a Hausdorff paracompact space N and a bijective mapping* $p : M \to N \ni$ *the restriction* $p|_S : S \to p(S)$ *is homeomorphism for every compact subspace* $S \subseteq M$.

Definition 2.5. *[\[12\]](#page-3-6) A space for which open covering includes a countable subcovering is called a Lindelof. ¨*

Definition 2.6. *[\[11\]](#page-3-8) A* TSX *is temed as* L *-Paracompact if* \exists *a* paracompact space Y and a bijective mapping $f: X \rightarrow Y$ \Rightarrow *the restriction* $f|_A : A \rightarrow f(A)$ *is homeomorphism for every Lindelof subspace* $A \subseteq X$.

Definition 2.7. *[\[11\]](#page-3-8) A TS X is termed as* \mathcal{L}_2 *-paracompact if* ∃ *a Hausdorff paracompact space Y and a bijective mapping* $f: X \to Y \ni$ *the restriction* $f|_A: A \to f(A)$ *is a homeomorphism for each Lindelöf subspace* $A \subseteq X$ *.*

Definition 2.8. *[\[8\]](#page-3-9) A space M is termed as* \mathscr{L} *-Normal if* \exists *a normal space N and a function* $p : M \to N \ni$ *the restriction* $p|S: S \rightarrow p(S)$ *is homeomorphism for each Lindelöf subspace S* ⊆ *M.*

Definition 2.9. *[\[17\]](#page-3-3) A space M termed as mildly normal, if for any two disjoint closed domains U and V of M* ∃ *two disjoint open sets U and V of* $M \ni U \subseteq U$ *and* $V \subseteq V$ *.*

Definition 2.10. *[\[12\]](#page-3-6) A T S X is normal if for each A, B of disjoint closed sets of X,* ∃ *disjoint open sets including A and B, respectively.*

Definition 2.11. *[\[12\]](#page-3-6) A T S X termed as regular if for each pair consisting of a point x and a closed set B disjoint from x,* ∃ *disjoint open sets including x and B, respectively.*

Definition 2.12. *[\[20\]](#page-3-11) A T S M termed as completely Hausdorff, if for each distinct element* $a, b \in M \exists$ *two open sets U and* $V \ni a \in U$ *,* $b \in V$ *and* $\overline{U} \cup \overline{V} = \emptyset$ *.*

Definition 2.13. *[\[4\]](#page-3-12) A space X termed as countable tightness if for every subset A and each* $x \in X$ *with* $x \in \overline{A} \exists a$ *countable subset* $B \subseteq A \ni x \in \overline{B}$.

Definition 2.14. *[\[3\]](#page-3-13) Let X be TS. If* $\exists X' = X \times \{1\}$ *and* $X \cap$ $X' = \emptyset \ni A(X) = X \cup X'$, then $A(X)$ with the unique topology τ *is termed as Alexandroff duplicate of X.*

3. $\mathscr{A}\mathscr{L}$ and $\mathscr{A}\mathscr{L}$ ₂-Paracompact spaces

Definition 3.1. Let \mathcal{P} be an angelic space and \mathcal{A} be an an*gelic Lindelöf subspace of* \mathcal{P} *. If there is a bijection mapping* $g: \mathscr{P} \to \mathscr{Q}, \mathscr{Q}$ *is an angelic paracompact space and the restriction* $g|_{\mathscr{A}} : \mathscr{A} \to g(\mathscr{A})$ *is a homeomorphism, then* \mathscr{P} *is said to be an* A L *-paracompact space.*

Definition 3.2. Let \mathcal{P} be an angelic space and \mathcal{A} be an an*gelic Lindelöf subspace of* \mathcal{P} *. If there is a bijection mapping* $g: \mathscr{P} \to \mathscr{Q}, \mathscr{Q}$ *is a Hausdorff paracompact space and the restriction* $g|_{\mathscr{A}} : \mathscr{A} \to g(\mathscr{A})$ *is a homeomorphism, then* \mathscr{P} *is said to be an* A L *-paracompact space.*

Theorem 3.3. If \mathcal{P} is an $\mathcal{A} \mathcal{L}$ -paracompact ($\mathcal{A} \mathcal{L}_2$ -paraco*mpact)* and of countable tightness and $g : \mathcal{P} \rightarrow \mathcal{Q}$ is a wit*ness function of the* A L *-paracompact (*A L ²*-paracompact) space of* \mathcal{P} *, then g is continuous.*

Proof. Since $\mathscr A$ is a non-empty subset of $\mathscr P$. Consider $q \in$ $g(\mathscr{A})$ is arbitrary and $p \in \mathscr{P}$ is a unique element $\exists g(P) = q$. Then $p \in \mathcal{A}$. choose a countable subset $\mathcal{A}_1 \subseteq \mathcal{A} \ni p \in \mathcal{A}_1$. Take $B = \{p\} \cup \mathcal{A}_0$; then $\mathcal B$ is a Lindelöf subspace of $\mathcal P$, and $g|_{\mathscr{B}} : \mathscr{B} \to g(\mathscr{B})$ is homeomorphism. Suppose $V \subseteq \mathscr{Q}$ is a open neighborhood of *q*; next $V \cap g(\mathscr{B})$ is open in subspace *g*(\mathscr{B}) including *q*. hence, $g^{-1}(V) \cap \mathscr{B}$ is open in \mathscr{B} including *q*. Hence, $g^{-1}(V) \cap \mathscr{B} \cap \mathscr{A}_0 \neq \emptyset$. So $g^{-1}(V) \cap \mathscr{B} \cap \mathscr{A}_0 \neq \emptyset$. Thus, $\emptyset \neq g(g^{-1}(V) \cap \mathscr{B}) \cap \mathscr{B} \subseteq g(g^{-1}(V) \cap \mathscr{A}) = V \cap \mathscr{A}$. Hence $q \in g(\mathcal{A})$ and *g* is continuous. \Box

Corollary 3.4. *Any* $\mathscr{A} \mathscr{L}_2$ -paracompact space which is of *countable tightness must be at least Hausdorff.*

Theorem 3.5. Let \mathcal{P} be the T_3 separable $\mathcal{A} \mathcal{L}$ -paracompact *and of countable tightness. Then* $\mathcal P$ *is an angelic paracompact T*4*.*

Proof. Suppose $\mathscr Q$ be an angelic paracompact space and g : $\mathscr{P} \rightarrow \mathscr{Q}$ be a bijective witness to an $\mathscr{A} \mathscr{L}$ -paracompactness of

 \mathscr{P} . Then *g* is continuous because \mathscr{P} is of countable tightness, by Theorem 3.1. Consider *D* is a countable dense subset of $\mathscr P$. We produce *g* is closed. Assume that *H* is a non-empty closed proper subset of $\mathscr P$. Suppose $g(p)$ inf(*H*); next $p \notin H$. Using regularity, let *U* and *V* be disjoint open subsets of *P* including *p* and *H*, respectively. Then $U \cap (D \cup \{p\})$ is open in the angelic Lindelöf subspace $D \cup \{p\}$ including *p*, so $g(U \cap (D \cup \{p\}))$ is open in the subspace $g(D \cup \{p\})$ of $\mathscr Q$ including q. Thus $g(U \cap (D \cup \{p\})) = g(U) \cap g(D \cup p) =$ $W \cap g(D \cap \{p\})$ for some open subset *W* in $\mathscr Q$ with $q \in W$. We claim that $W \cap g(H) = \emptyset$. Suppose otherwise, and take *q* ∈ *W* ∩ *g*(*H*). Let *p* ∈ *H* \ni *g*(*p*) = *q*. Note that *p* ∈ *V*. By reason of *D* is dense in \mathcal{P}, D is also dense in the open set *V*. Thus $p \in V \cap D$. Presently since *W* is open in \mathcal{Q} and *g* is continuous, $g^{-1}(W)$ is an open set in \mathcal{P} ; it also includes *p*. Thus we can choose $d \in g^{-1}(W) \cap V \cap D$. Next *p*(*d*) ∈ *W* ∩*g*(*V* ∩*D*) ⊆ *W* ∩*g*(*D* ∪ {*p*}) = *g*(*U* ∩(*D* ∪ {*p*}). So $g(d) \in g(u) \cap g(V)$. Hence $W \cap g(H) = \emptyset$. Note that *q* ∈ *W*. As *q* ∈ $\mathcal{Q}/g(H)$ was arbitrary, *g*(*H*) is closed. So *g* is a homeomorphism and $\mathscr P$ is an angelic paracompact. Since $\mathscr P$ is also T_2 , $\mathscr P$ is normal. Note that $\mathscr P$ is also an angelic Lindelöf being separable and an angelic paracompact. П

Theorem 3.6. *Every* $\mathscr{A} \mathscr{L}$ -paracompactness ($\mathscr{A} \mathscr{L}_2$ -paraco*mpactness) has a topological property.*

Proof. Suppose $\mathcal P$ is an $\mathcal A$ $\mathcal L$ -paracompact space and $\mathcal P \cong Z$. Since \mathscr{Q} be an angelic paracompact space and $g : \mathscr{P} \to \mathscr{Q}$ be a bijection $\exists g|_{\mathscr{A}} : \mathscr{A} \to g(\mathscr{A})$ is homeomorphism for every angelic Lindelöf subspace $\mathscr A$ of $\mathscr P$. Take $h : \mathscr P \to Z$ is homeomorphism. Then $g \circ h : Z \to \mathscr{P}$ fulfills topological property. П

Theorem 3.7. *Every* $\mathscr{A} \mathscr{L}$ -paracompactness ($\mathscr{A} \mathscr{L}_2$ -paraco*mpactness) has an additive property.*

Proof. Since \mathcal{P}_{α} be an $\mathcal{A} \mathcal{L}$ -paracompact space for every $\alpha \in \Lambda$. Consider their sum $\oplus_{\alpha} \oplus_{\alpha \in \Lambda} \mathscr{P}_{\alpha}$ is an $\mathscr{A} \mathscr{L}$ -paracompact. For every $\alpha \in \Lambda$, take an angelic paracompact space \mathscr{P}_{α} and a bijective function $p_{\alpha}: \mathscr{P}_{\alpha} \to \mathscr{Q}_{\alpha} \ni g_{\alpha/C_{\alpha}}: C_{\alpha} \to$ $g_\alpha(C_\alpha)$ is homeomorphism for every angelic Lindelöf subspace $C(\alpha)$ of \mathcal{P}_{α} . Suppose \mathcal{Q}_{α} is an angelic paracompact for every $\alpha \in \Lambda$, afterwords the sum $\bigoplus_{\alpha \in A} \mathscr{Q}_{\alpha}$ is an angelic paracompact. . Consider the function sum, $\oplus_{\alpha \in \Lambda} p_{\alpha} : \oplus_{\alpha \in \Lambda} \mathscr{P}_{\alpha} \to$ $\bigoplus_{\alpha \in \Lambda} \mathcal{Q}_{\alpha}$ defined by $\bigoplus_{\alpha \in \Lambda} p_{\alpha}(m) = p(m)$ if $m \in M_{\beta}, \beta \in \Lambda$. Presently, a subspace $C \subseteq \bigoplus_{\alpha \in \Lambda} \mathcal{P}_{\alpha}$ is an angelic Lindelöf iff the $\Lambda_0 = {\alpha \in \Lambda : S \cap \mathscr{P}_\alpha \notin \emptyset}$ is finite and $C \cap \mathscr{P}_\alpha$ is an angelic compact in \mathcal{P}_{α} for each $\alpha \in \Lambda_0$. If $S \subseteq \bigoplus_{\alpha \in \Lambda} \mathcal{P}_{\alpha}$ is an angelic compact, hence $(\bigoplus_{\alpha \in \Lambda} \mathscr{P}_{\alpha})|_{C}$ is homeomorphism as $p_{\alpha/C \cap \mathscr{P}_{\alpha}}$ is homeomorphism for every $\alpha \in \Lambda_0$.

Theorem 3.8. Let \mathcal{P} be the second countable $\mathcal{A} \mathcal{L}_2$ -paraco*mpact space. Then* P *is metrizable.*

Proof. Since $\mathscr P$ is a second countable space, then $\mathscr P$ is an angelic Lindelöf. If $\mathscr P$ is also $\mathscr{A} \mathscr{L}_2$ -paracompact, then $\mathscr P$ will be homeomorphic to a T_2 angelic paracompact space $\mathscr Q$

and, in particular, $\mathscr Q$ is T_4 . Thus $\mathscr P$ is second countable and regular, hence metrizable. \Box

Corollary 3.9. Let \mathscr{P} T_2 second countable \mathscr{A} \mathscr{L} -paracompa*ct space. Then* P *is metrizable.*

Example 3.10. An $\mathscr{A} \mathscr{L}_2$ -paracompact space whose a dis*crete extension of it is Tychonoff but not* A L *-paracompact.*

Proof. Since $\mathbb R$ with the rational sequence topology is a first countable Tychonoff locally angelic compact separable space which is neither normal nor angelic paracompact. Thus $\mathbb R$ with the rational sequence topology has a one-point compactification. Let $\mathcal{P} = \mathbb{R} \cup \{p\}$, where $p \notin \mathbb{R}$, be a one-point compactification of R. Since $\mathscr P$ is T_2 angelic compact, then it is an $\mathscr{A} \mathscr{L}_2$ -paracompact. We prove that the discrete extension $\mathscr{P}_{\mathbb{R}}$ is not $\mathscr{A}L_2$ -paracompact. Observe that in $\mathscr{P}_{\mathbb{R}} = \mathbb{R} \cup \{p\},\$ the singleton $\{p\}$ is closed-and-open. $\mathcal{P}_\mathbb{R}$ is first countable and T_3 because R with the rational sequence topology is, thus $\mathscr{P}_{\mathbb{R}}$ is of countable tightness. $\mathscr{P}_{\mathbb{R}}$ is also separable because $Q \cup \{p\}$ is a countable dense subset of $\mathscr{P}_{\mathbb{R}}$. Presently, $\mathbb R$ with the rational sequence topology is not normal. Pick any two closed disjoint subsets $\mathscr A$ and $\mathscr B$ of $\mathbb R$ cannot be separated by disjoint open sets in $\mathbb R$. Then $\mathscr A$ and $\mathscr B$ will be also closed and disjoint in $\mathcal{P}_\mathbb{R}$ cannot be separated by disjoint open sets in $\mathscr{P}_{\mathbb{R}}$. We conclude that $\mathscr{P}_{\mathbb{R}}$ is not normal. By Theorem 3.2, Hence $\mathcal{P}_{\mathbb{R}}$ cannot be an $\mathcal{A} \mathcal{L}$ -paracompact. \Box

4. A L **-normal and its Properties**

Definition 4.1. *A T S* \mathcal{P} *is termed as an* $\mathcal{A} \mathcal{L}$ *-Normal if* $\exists a$ *normal space* $\mathscr Q$ *and a bijective function* $g : \mathscr P \to \mathscr Q$, $\mathscr Q$ *is an angelic paracompact space and the restriction* $g|_{\mathscr{A}} : \mathscr{A} \rightarrow$ $g(\mathscr{A})$ *for each angelic Lindelöf subspace* $\mathscr{A} \subseteq \mathscr{P}$ *.*

Example 4.2. $\mathcal{A} \mathcal{L}$ -normal does not imply $\mathcal{A} \mathcal{L}$ -paracompa*ctness*

Proof. Consider $\mathcal{P} = [0, \infty)$. Define $\tau = \{0, \mathcal{P}\} \cup \{[0, p)$: $p \in \mathbb{R}, 0 \lt p$. declare that (\mathcal{P}, τ) is normal because there are no two non-empty closed disjoint subsets. Thus (\mathscr{P}, τ) is an $\mathscr{A} \mathscr{L}$ -normal. Declare that (\mathscr{P}, τ) is second countable, thus hereditary angelic Lindelöf. (\mathscr{P}, τ) cannot be an angelic paracompact because τ is coarser than the particular point topology on \mathscr{P} , here the particular point is 0. That is because any non-empty open set includes 0. Therefore, $\mathscr P$ is an $\mathscr A \mathscr L$ normal but not an $\mathscr{A} \mathscr{L}$ -paracompact. \Box

Theorem 4.3. *Every* T_3 *separable* $\mathscr{A} \mathscr{L}$ *-normal and of countable tightness is normal.*

Proof. If $\mathscr Q$ is a normal space and $g : \mathscr P \to \mathscr Q$ be a mapping witness to $\mathscr{A} \mathscr{L}$ -normality of \mathscr{P} . Then *g* is continuous because $\mathscr P$ is of countable tightness. Consider *D* is a countable dense subset of \mathscr{P} . We produce *g* is closed. Assume *H* is a non-empty closed proper subset of \mathscr{P} . Suppose $g(p) = q \in \mathcal{Q}/g(H)$; then $p \notin H$. Using regularity, consider *U* and *V* be disjoint open subsets of $\mathscr P$ including *p*

and *H*, respectively. Then $U \cap (D \cup \{p\})$ is open in Lindelof subspace $D \cup \{p\}$ including *p*, so $g(U ∩ (D ∪ \{p\}))$ is open in the subspace $g((D \cap \{p\}))$ of $\mathscr Q$ including *q*. Thus, *g*(*U* ∩ (*D* ∪ {*p*}) = *g*(*U*) ∩ *g*(*D* ∩ {*p*}) = *W* ∩ *g*(*D* ∩ {*p*}) for some open subset *W* in $\mathscr Q$ with $q \in W$.

We claim that $W \cap f(H) = \emptyset$. Suppose otherwise, and take *q* ∈ *W* ∩ *g*(*H*). Let *p* ∈ *H* ∋ *g*(*p*) = *q*. Note that *p* ∈ *V*. As *D* is dense in \mathcal{P}, D is also dense in the open set *V*. Thus, ap $p \in V \cap D$. Presently since *W* is open in $\mathscr Q$ and *g* is continuous, $g^{-1}(W)$ is an open set in \mathcal{P} ; it also includes p. Thus, we can choose $d \in g^{-1}(W) \cap V \cap D$. Next $g(d) \in W \cap g(V \cap D) \subseteq$ *W* ∩ $g(D \cup \{p\}) = g(U ∩ {D \cup \{p\}})$. So $g(d) \in g(U ∩ g(V))$ is contradiction. Hence, $W \cap g(H) = \emptyset$. Note that $q \in W$. As $q \in \mathcal{Q}/g(H)$ was arbitrary, $g(H)$ is closed. Thus *g* is a homeomorphism and $\mathscr P$ is normal. П

Theorem 4.4. Let \mathcal{P} be an $\mathcal{A}\mathcal{C}$ -normal space \exists each an*gelic Lindelof subspace is included in an angelic compact ¨ subspace. Then* $\mathcal P$ *is an* $\mathcal A$ $\mathcal L$ *-normal.*

Proof. Since $\mathcal P$ is a $\mathcal A\mathcal C$ -Normal space \ni if $\mathcal A$ is a angelic Lindelöf subspace of \mathscr{P}, \exists an angelic compact subspace $\mathscr{B} \ni$ $\mathscr{A} \subseteq \mathscr{B}$. Consider \mathscr{Q} is a normal space and $g : \mathscr{P} \to \mathscr{Q}$ be a bijective mapping $\exists g |_{\mathscr{C}} : \mathscr{C} \to g(\mathscr{C})$ is homeomorphism for every angelic compact subspace $\mathscr C$ of $\mathscr P$. Presently, consider $\mathscr A$ be any angelic Lindelöf subspace of $\mathscr P$. Take an angelic compact subspace B of $\mathcal{P} \ni \mathcal{A} \subseteq \mathcal{B}$; $g|_{\mathcal{B}} : \mathcal{B} \to g(\mathcal{B})$ is homeomorphism; thus, $g|_{\mathscr{A}} : \mathscr{A} \to g(\mathscr{A})$ is a homeomorphism as $(g|_{\mathscr{B}})|_{\mathscr{A}} = g|\mathscr{B}.$ □

Theorem 4.5. If \mathcal{P} is an $\mathcal{A}\mathcal{L}$ -Normal, then its Alexandroff duplicate $A(\mathscr{P})$ is also an $\mathscr{A}\mathscr{L}$ -normal.

Proof. Since P is an A L -Normal space. Consider a normal space $\mathscr Q$ and a bijective mapping $g : \mathscr P \to \mathscr Q \ni g|_{\mathscr C} : \mathscr C \to$ $g(\mathscr{C})$ is homeomorphism for every angelic Lindelöf subspace $C \subseteq \mathscr{P}$. Choose the Alexandroff duplicate spaces $A(\mathscr{P})$ and $A(\mathcal{Q})$ of $\mathcal P$ and $\mathcal Q$, respectively. By reason of the Alexandroff duplicate of a normal space is normal. Hence, $A(\mathscr{P})$ is normal. Construct $g : A(\mathscr{P}) \to A(\mathscr{P})$ by $h(a) = g(a)$ if $a \in \mathscr{P}$ and *b* is the unique element in $\mathcal{P} \ni b' = a$, also construct $h(a) =$ $(g(b))'$. Thus *g* is a bijective mapping. Presently, a subspace $C \subseteq A(\mathscr{P})$ is an angelic Lindelöf iff $C \cap \mathscr{P}$ is an angelic Lindelöf in \mathscr{P} , and for every open set *U* in \mathscr{P} with $C \cap \mathscr{P} \subseteq$ $\mathscr A$, we state that $(C \cap \mathscr P')/U'$ is countable. Choose $C \subseteq A(\mathscr P)$ is an angelic Lindelöf subspace. We produce $h|_C : C \to h(C)$ is a homeomorphism. Let *a* ∈ *C* be arbitrary. Take *a* ∈ *C* ∩ \mathscr{P}' and $b \in \mathcal{P}$ are the unique element $\exists b' = a$. The smallest basic open neighborhood $\{g(b)\}$ of $h(a)$ here $\{a\}$ is open in C and $h({a}) \subseteq { (g(b))'}$. If $a \in C \cap \mathcal{P}$. Consider *W* is an open set in $\mathcal{Q} \ni h(a) = g(a) \in W$ and $H = (W \cup (W'\{g(a)'\})) \cap$ $h(C)$ is a basic open neighborhood of $g(a)$ in $g(C)$. Because $g|_{C \cap \mathscr{P}} : C \cap \mathscr{P} \to g(C \cap \mathscr{P})$ is homeomorphism, next ∃ an open set $U \in \mathcal{P}$, $a \in U$ and $h|_{C \cap \mathcal{P}(U \cap C)} \subseteq W \cap h(C \cap \mathcal{P})$. Presently, $(U \cup (U'/\{a'\}) \cap q(C)$ is open in $C \ni a \in G$ and *h*_{*c*(*G*)} ⊆ *H*. Thus, *h*|*C* is continuous. Presently, produce the *h*| \overline{C} is open. Consider $K \cup (K'/\{k'\})$, here $k \in K$ and *K* is

open in \mathscr{P} , is a basic open set in *A*(\mathscr{P}), afterwords (*K* ∩ C)∪(($K' \cap C$)/{ k' }) is a basic open set in *C*. As $\mathscr{P} \cap C$ is *Lindelof in* \mathcal{P} , so $h|_{C(K \cap (\mathcal{P} \cap C))} = h|_{\mathcal{P} \cap C(K \cap (\mathcal{P} \cap C))}$ is open in $Q \cap h(C \cap \mathscr{P})$ as $g|_{\mathscr{P} \cap C}$ is homeomorphism. hence, *K* ∩ *C* is open in $Q \cap g(\mathcal{P} \cap C)$. In addition, $h(K' \cap C)/\{k'\}$ is open in $\mathscr{Q}' \cap g(C)$ being a set of isolated points. Then, $h|_C$ is an open mapping. Hence, $h|_C$ is homeomorphism. \Box

5. Conclusion

Our main results includes the two new concepts of an $\mathscr{A}\mathscr{L}$ -Paracompact spaces and an $\mathscr{A}\mathscr{L}_2$ -Paracompact spaces. Also proved that, every $\mathscr{A} \mathscr{L}$ -Paracompactness and an $\mathscr{A} \mathscr{L}_2$ -Parac- ompactness has a topological property. We also investigated the $\mathscr{A}\mathscr{L}$ -normal and its properties.

References

- [1] S. AlZahrani and L. Kalantan, *C*-normal topological property, *Filomat*, 31 (2017), 407–411.
- [2] J. Bourgain, D.H. Fermlin and M. Talagrand, Pointwise compact sets of Baire-measurable functions, *Amer. J. Math.*, 100(1978), 845–886.
- [3] R. Engelking, *On the double circumference of Alexandroff*, *Bull Acad Pol Sci Ser Astron Math Phys.*, 16(8)(1968), 629–634.
- [4] R. Engelking, *General Topology*, Heldermann, Berlin, 1989.
- [5] Eric K. van Douwen, *The integers and topology in Handbook of Set-Theoretic Topology*, Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: NorthHolland, (1984), 111–167.
- [6] I. Juhasz, K. Kunen and M.E. Rudin, *Two More Hereditarily Separable non-Lindelöf spaces, Cand. J. Math.,* 28(1976), 998–1005.
- [7] L. Kalantan, Results about *k*-normality, *Topo. Appl.*, 125(2002), 47–62.
- [8] L. Kalantan and M. Saeed, *L*-Normality, *Topology Proceedings*, 50 (2017), 141–149.
- [9] L. Kalantan and P. Szeptycki, *k*-normality and products of ordinals, *Topo. Appl.*, 123(2002), 537–545.
- [10] Lufti N. Kalantan and A. Fateh, On almost normality, *Demon Stratio Math.*, 41(4)(2008), 961–968.
- [11] Lufti N. Kalantan, *L*-paracompactness and *L*2 paracompactness, *Hacet. J.Math. Stat.*, 48(3)(2019), 779–784.
- [12] Munkers. R. James, *Topology*, Second Edition, Pearson Education Pte. Ltd., Singapore.
- [13] M.E. Rudin, *A Separable Dowker space, Symposia Mathematica*, Instituto Nazionale di Alta Mathematica, 1973.
- [14] M.M. Saeed, Countable Normality, *J. Math. Anal.*, 9(1)(2018), 116–123.
- [15] M.M. Saeed, L. Kalantan and J. Alzumi,*C* - Paracompactness and *C*2- Paracompactness, *Turk. J. Math.,* 43(2019), 9–20.
- [16] E.V. Shchepin, *Real valued functions and spaces close to normal*, *Sib. J. Math.*, 13(1972), 1182–1196.
- [17] M. Singal and A.R. Singal, Mildly normal spaces, *Kyungpook Math J*, 13 (1973), 29–31.
- [19] M.K. Singal, Singal and Shashi Prabha Arya, Almost normal and almost completely regular spaces, *Glasnik Mat. Ser. III*, 25(5)(1970), 141–152.
- [20] L. Steen and J.A. Seebach, *Counterexamples in Topology*, Mineola, NY, USA: USA; Dover Publications, 1995.
- [21] E.K. Van Douwen, *The Integers and Topology. In: KunenK, editor. Handbook of Set-Theoretic Topology*, Amsterdam, the Netherlands: North-Holland, (1984), 111-167.
- [22] W. Weiss, Small Dowker Spaces, *Pacific J. Math.*, (1981), 485–492.
- [23] V. Zaicev, Some classes of *T S*s and their bicompact extensions (Russian), *Dokl. Akad. Nauk SSSR*, 178(1968), 778–779.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

