

# $\mathscr{A}\mathscr{L}$ and $\mathscr{A}\mathscr{L}_2$ -Paracompact spaces

## S. Umamaheswari<sup>1</sup>\* and M. Saraswathi<sup>2</sup>

#### **Abstract**

This paper deals with the new concepts of  $\mathscr{AL}$ -Paracompact spaces and  $\mathscr{AL}_2$ -Paracompact spaces. Also we have proved that every  $\mathscr{AL}$ -Paracompactness and  $\mathscr{AL}_2$ -Paracompactness has a topological property.

#### Keywords

Angelic spaces,  $\mathscr{L}$ -Paracompact,  $\mathscr{L}_2$ -Paracompact,  $\mathscr{AL}$ -Paracompact,  $\mathscr{AL}_2$ -P

#### **AMS Subject Classification**

46A50, 54D10, 54D20.

Article History: Received 13 March 2020; Accepted 11 June 2020

©2020 MJM

#### **Contents**

| 1 | Introduction11                                                                | 10  |
|---|-------------------------------------------------------------------------------|-----|
| 2 | Preliminaries11                                                               | 10  |
| 3 | $\mathscr{A}\mathscr{L}$ and $\mathscr{A}\mathscr{L}_2$ -Paracompact spaces11 | 111 |
| 4 | $\mathscr{A}\mathscr{L}$ -normal and its Properties11                         | 12  |
| 5 | Conclusion11                                                                  | 13  |
|   | References11                                                                  | 13  |

### 1. Introduction

Paracompact space was introduced by Dieudonne.J [7]. Paracompactness [7] is the most useful generalization of compactness. Many researchers have studied certain stronger as well as weaker forms of paracompactness.  $\mathscr{C}$ -Paracompact and  $\mathscr{C}_2$ -Paracompact were defined by Arhangel'skii.  $\mathscr{C}$ -Paracompact and  $\mathscr{L}_2$ -Paracompact were studied in [17]. L.Kalantan defined  $\mathscr{L}$ -Paracompact and  $\mathscr{L}_2$ -Paracompact.L. Kalantan and M. Saeed defined the  $\mathscr{L}$ -normality. Fermlin's concept of angelic space [6] and some of its emanation bring us with he mandatory tools for presenting those results in a mordant idea.

#### 2. Preliminaries

**Definition 2.1.** [2] A topological space (shortly, TS) T is termed as angelic, if for each relatively countably compact subset  $\mathscr{S}$  of T the ensuing hold: (a)  $\mathscr{S}$  is relatively compact (b) If  $s \in \mathscr{T}$ , then  $\exists$  a sequence in  $\mathscr{S}$  that converges to s.

**Definition 2.2.** [12] A TS X is paracompact, if each open cover has a locally finite open refinement.

**Definition 2.3.** [15] A TS M termed as  $\mathscr{C}$ -paracompact if  $\exists$  a paracompact space N and a bijective function  $p: M \to N$   $\ni$  the restriction  $p|_S: S \to p(S)$  is homeomorphism for every compact subspace  $S \subseteq M$ .

**Definition 2.4.** [15] A TS M is termed as  $\mathcal{C}_2$ -Paracompact if  $\exists$  a Hausdorff paracompact space N and a bijective mapping  $p: M \to N \ni$  the restriction  $p|_S: S \to p(S)$  is homeomorphism for every compact subspace  $S \subseteq M$ .

**Definition 2.5.** [12] A space for which open covering includes a countable subcovering is called a Lindelöf.

**Definition 2.6.** [11] A TS X is temed as  $\mathcal{L}$ -Paracompact if  $\exists$  a paracompact space Y and a bijective mapping  $f: X \to Y$   $\ni$  the restriction  $f|_A: A \to f(A)$  is homeomorphism for every Lindelof subspace  $A \subseteq X$ .

**Definition 2.7.** [11] A TS X is termed as  $\mathcal{L}_2$ -paracompact if  $\exists$  a Hausdorff paracompact space Y and a bijective mapping  $f: X \to Y \ni$  the restriction  $f|_A: A \to f(A)$  is a homeomorphism for each Lindelöf subspace  $A \subseteq X$ .

**Definition 2.8.** [8] A space M is termed as  $\mathcal{L}$ -Normal if  $\exists$  a normal space N and a function  $p: M \to N \ni$  the restriction  $p|S: S \to p(S)$  is homeomorphism for each Lindelöf subspace  $S \subseteq M$ .

**Definition 2.9.** [17] A space M termed as mildly normal, if for any two disjoint closed domains U and V of  $M \ni two$  disjoint open sets U and V of  $M \ni U \subseteq U$  and  $V \subseteq V$ .

<sup>&</sup>lt;sup>1,2</sup> Department of Mathematics, Kandaswami Kandar's College, Velur-638182,Tamil Nadu, India.

<sup>\*</sup>Corresponding author: 1 umamaheswari.maths@gmail.com; 2msmathsnkl@gmail.com

**Definition 2.10.** [12] A TS X is normal if for each A, B of disjoint closed sets of X,  $\exists$  disjoint open sets including A and B, respectively.

**Definition 2.11.** [12] A TS X termed as regular if for each pair consisting of a point x and a closed set B disjoint from x,  $\exists$  disjoint open sets including x and B, respectively.

**Definition 2.12.** [20] A TS M termed as completely Hausdorff, if for each distinct element  $a,b \in M \exists$  two open sets U and  $V \ni a \in U$ ,  $b \in V$  and  $\overline{U} \cup \overline{V} = \emptyset$ .

**Definition 2.13.** [4] A space X termed as countable tightness if for every subset A and each  $x \in X$  with  $x \in \overline{A} \exists a$  countable subset  $B \subseteq A \ni x \in \overline{B}$ .

**Definition 2.14.** [3] Let X be TS. If  $\exists X' = X \times \{1\}$  and  $X \cap X' = \emptyset \ni A(X) = X \cup X'$ , then A(X) with the unique topology  $\tau$  is termed as Alexandroff duplicate of X.

## 3. $\mathscr{AL}$ and $\mathscr{AL}_2$ -Paracompact spaces

**Definition 3.1.** Let  $\mathscr{P}$  be an angelic space and  $\mathscr{A}$  be an angelic Lindelöf subspace of  $\mathscr{P}$ . If there is a bijection mapping  $g: \mathscr{P} \to \mathscr{Q}$ ,  $\mathscr{Q}$  is an angelic paracompact space and the restriction  $g|_{\mathscr{A}}: \mathscr{A} \to g(\mathscr{A})$  is a homeomorphism, then  $\mathscr{P}$  is said to be an  $\mathscr{AL}$ -paracompact space.

**Definition 3.2.** Let  $\mathscr{P}$  be an angelic space and  $\mathscr{A}$  be an angelic Lindelöf subspace of  $\mathscr{P}$ . If there is a bijection mapping  $g: \mathscr{P} \to \mathscr{Q}$ ,  $\mathscr{Q}$  is a Hausdorff paracompact space and the restriction  $g|_{\mathscr{A}}: \mathscr{A} \to g(\mathscr{A})$  is a homeomorphism, then  $\mathscr{P}$  is said to be an  $\mathscr{A}\mathscr{L}$ -paracompact space.

**Theorem 3.3.** If  $\mathcal{P}$  is an  $\mathscr{AL}$ -paracompact ( $\mathscr{AL}_2$ -paracompact) and of countable tightness and  $g: \mathscr{P} \to \mathscr{Q}$  is a witness function of the  $\mathscr{AL}$ -paracompact ( $\mathscr{AL}_2$ -paracompact) space of  $\mathscr{P}$ , then g is continuous.

*Proof.* Since  $\mathscr{A}$  is a non-empty subset of  $\mathscr{P}$ . Consider  $q \in g(\overline{\mathscr{A}})$  is arbitrary and  $p \in \mathscr{P}$  is a unique element  $\ni g(P) = q$ . Then  $p \in \mathscr{A}$ . choose a countable subset  $\mathscr{A}_1 \subseteq \mathscr{A} \ni p \in \mathscr{A}_n$ . Take  $B = \{p\} \cup \mathscr{A}_0$ ; then  $\mathscr{B}$  is a Lindelöf subspace of  $\mathscr{P}$ , and  $g|_{\mathscr{B}} : \mathscr{B} \to g(\mathscr{B})$  is homeomorphism. Suppose  $V \subseteq \mathscr{Q}$  is a open neighborhood of q; next  $V \cap g(\mathscr{B})$  is open in subspace  $g(\mathscr{B})$  including q. hence,  $g^{-1}(V) \cap \mathscr{B}$  is open in  $\mathscr{B}$  including q. Hence,  $g^{-1}(V) \cap \mathscr{B} \cap \mathscr{A}_0 \neq \emptyset$ . So  $g^{-1}(V) \cap \mathscr{B} \cap \mathscr{A}_0 \neq \emptyset$ . Thus,  $\emptyset \neq g(g^{-1}(V) \cap \mathscr{B}) \cap \mathscr{B} \subseteq g(g^{-1}(V) \cap \mathscr{A}) = V \cap \mathscr{A}$ . Hence  $q \in g(\mathscr{A})$  and g is continuous. □

**Corollary 3.4.** Any  $\mathscr{AL}_2$ -paracompact space which is of countable tightness must be at least Hausdorff.

**Theorem 3.5.** Let  $\mathcal{P}$  be the  $T_3$  separable  $\mathcal{AL}$ -paracompact and of countable tightness. Then  $\mathcal{P}$  is an angelic paracompact  $T_4$ .

*Proof.* Suppose  $\mathcal Q$  be an angelic paracompact space and  $g: \mathcal P \to \mathcal Q$  be a bijective witness to an  $\mathscr A \mathcal L$ -paracompactness of

 $\mathcal{P}$ . Then g is continuous because  $\mathcal{P}$  is of countable tightness, by Theorem 3.1. Consider D is a countable dense subset of  $\mathscr{P}$ . We produce g is closed. Assume that H is a non-empty closed proper subset of  $\mathscr{P}$ . Suppose  $g(p)\inf(H)$ ; next  $p \notin H$ . Using regularity, let U and V be disjoint open subsets of P including p and H, respectively. Then  $U \cap (D \cup \{p\})$  is open in the angelic Lindelöf subspace  $D \cup \{p\}$  including p, so  $g(U \cap (D \cup \{p\}))$  is open in the subspace  $g(D \cup \{p\})$  of  $\mathcal{Q}$  including q. Thus  $g(U \cap (D \cup \{p\})) = g(U) \cap g(D \cup p) =$  $W \cap g(D \cap \{p\})$  for some open subset W in  $\mathcal{Q}$  with  $q \in W$ . We claim that  $W \cap g(H) = \emptyset$ . Suppose otherwise, and take  $q \in W \cap g(H)$ . Let  $p \in H \ni g(p) = q$ . Note that  $p \in V$ . By reason of D is dense in  $\mathcal{P}$ , D is also dense in the open set V. Thus  $p \in V \cap D$ . Presently since W is open in  $\mathcal{Q}$ and g is continuous,  $g^{-1}(W)$  is an open set in  $\mathcal{P}$ ; it also includes p. Thus we can choose  $d \in g^{-1}(W) \cap V \cap D$ . Next  $p(d) \in W \cap g(V \cap D) \subseteq W \cap g(D \cup \{p\}) = g(U \cap (D \cup \{p\})).$ So  $g(d) \in g(u) \cap g(V)$ . Hence  $W \cap g(H) = \emptyset$ . Note that  $q \in W$ . As  $q \in \mathcal{Q}/g(H)$  was arbitrary, g(H) is closed. So g is a homeomorphism and  $\mathcal{P}$  is an angelic paracompact. Since  $\mathscr{P}$  is also  $T_2$ ,  $\mathscr{P}$  is normal. Note that  $\mathscr{P}$  is also an angelic Lindelöf being separable and an angelic paracompact.

**Theorem 3.6.** Every  $\mathscr{AL}$ -paracompactness ( $\mathscr{AL}_2$ -paracompactness) has a topological property.

*Proof.* Suppose  $\mathscr{P}$  is an  $\mathscr{AL}$ -paracompact space and  $\mathscr{P}\cong Z$ . Since  $\mathscr{Q}$  be an angelic paracompact space and  $g:\mathscr{P}\to\mathscr{Q}$  be a bijection  $\ni g|_{\mathscr{A}}:\mathscr{A}\to g(\mathscr{A})$  is homeomorphism for every angelic Lindelöf subspace  $\mathscr{A}$  of  $\mathscr{P}$ . Take  $h:\mathscr{P}\to Z$  is homeomorphism. Then  $g\circ h:Z\to\mathscr{P}$  fulfills topological property.

**Theorem 3.7.** Every  $\mathscr{AL}$ -paracompactness ( $\mathscr{AL}_2$ -paracompactness) has an additive property.

*Proof.* Since  $\mathscr{P}_{\alpha}$  be an  $\mathscr{AL}$ -paracompact space for every  $\alpha \in \Lambda$ . Consider their sum  $\oplus_{alpha \in \Lambda} \mathscr{P}_{\alpha}$  is an  $\mathscr{AL}$ -paracompact. For every  $\alpha \in \Lambda$ , take an angelic paracompact space  $\mathscr{P}_{\alpha}$  and a bijective function  $p_{\alpha}: \mathscr{P}_{\alpha} \to \mathscr{Q}_{\alpha} \ni g_{\alpha/C_{\alpha}}: C_{\alpha} \to g_{\alpha}(C_{\alpha})$  is homeomorphism for every angelic Lindelöf subspace  $C_{(\alpha)}$  of  $\mathscr{P}_{\alpha}$ . Suppose  $\mathscr{Q}_{\alpha}$  is an angelic paracompact for every  $\alpha \in \Lambda$ , afterwords the sum  $\bigoplus_{\alpha \in \Lambda} \mathscr{Q}_{\alpha}$  is an angelic paracompact. . Consider the function sum,  $\bigoplus_{\alpha \in \Lambda} p_{\alpha}: \bigoplus_{\alpha \in \Lambda} \mathscr{P}_{\alpha} \to \bigoplus_{\alpha \in \Lambda} \mathscr{Q}_{\alpha}$  defined by  $\bigoplus_{\alpha \in \Lambda} p_{\alpha}(m) = p(m)$  if  $m \in M_{\beta}$ ,  $\beta \in \Lambda$ . Presently, a subspace  $C \subseteq \bigoplus_{\alpha \in \Lambda} \mathscr{P}_{\alpha}$  is an angelic Lindelöf iff the  $\Lambda_0 = \{\alpha \in \Lambda: S \cap \mathscr{P}_{\alpha} \notin \emptyset\}$  is finite and  $C \cap \mathscr{P}_{\alpha}$  is an angelic compact in  $\mathscr{P}_{\alpha}$  for each  $\alpha \in \Lambda_0$ . If  $S \subseteq \bigoplus_{alpaha \in \Lambda} \mathscr{P}_{\alpha}$  is an angelic compact, hence  $(\bigoplus_{\alpha \in \Lambda} \mathscr{P}_{\alpha})|_C$  is homeomorphism as  $p_{\alpha/C \cap \mathscr{P}_{\alpha}}$  is homeomorphism for every  $\alpha \in \Lambda_0$ .

**Theorem 3.8.** Let  $\mathscr{P}$  be the second countable  $\mathscr{AL}_2$ -paracompact space. Then  $\mathscr{P}$  is metrizable.

*Proof.* Since  $\mathscr{P}$  is a second countable space, then  $\mathscr{P}$  is an angelic Lindelöf. If  $\mathscr{P}$  is also  $\mathscr{AL}_2$ -paracompact, then  $\mathscr{P}$  will be homeomorphic to a  $T_2$  angelic paracompact space  $\mathscr{Q}$ 



and, in particular,  $\mathcal{Q}$  is  $T_4$ . Thus  $\mathcal{P}$  is second countable and regular, hence metrizable.

**Corollary 3.9.** Let  $\mathcal{P}$   $T_2$  second countable  $\mathcal{AL}$ -paracompact space. Then  $\mathcal{P}$  is metrizable.

**Example 3.10.** An  $\mathscr{AL}_2$ -paracompact space whose a discrete extension of it is Tychonoff but not  $\mathscr{AL}$ -paracompact.

*Proof.* Since  $\mathbb{R}$  with the rational sequence topology is a first countable Tychonoff locally angelic compact separable space which is neither normal nor angelic paracompact. Thus  $\mathbb R$ with the rational sequence topology has a one-point compactification. Let  $\mathscr{P} = \mathbb{R} \cup \{p\}$ , where  $p \notin \mathbb{R}$ , be a one-point compactification of  $\mathbb{R}$ . Since  $\mathscr{P}$  is  $T_2$  angelic compact, then it is an  $\mathscr{AL}_2$ -paracompact. We prove that the discrete extension  $\mathscr{P}_{\mathbb{R}}$ is not  $\mathscr{AL}_2$ -paracompact. Observe that in  $\mathscr{P}_{\mathbb{R}} = \mathbb{R} \cup \{p\}$ , the singleton  $\{p\}$  is closed-and-open.  $\mathscr{P}_{\mathbb{R}}$  is first countable and  $T_3$  because R with the rational sequence topology is, thus  $\mathscr{P}_{\mathbb{R}}$  is of countable tightness.  $\mathscr{P}_{\mathbb{R}}$  is also separable because  $Q \cup \{p\}$  is a countable dense subset of  $\mathscr{P}_{\mathbb{R}}$ . Presently,  $\mathbb{R}$  with the rational sequence topology is not normal. Pick any two closed disjoint subsets  $\mathscr{A}$  and  $\mathscr{B}$  of  $\mathbb{R}$  cannot be separated by disjoint open sets in  $\mathbb{R}$ . Then  $\mathscr{A}$  and  $\mathscr{B}$  will be also closed and disjoint in  $\mathscr{P}_{\mathbb{R}}$  cannot be separated by disjoint open sets in  $\mathscr{P}_{\mathbb{R}}$ . We conclude that  $\mathscr{P}_{\mathbb{R}}$  is not normal. By Theorem 3.2, Hence  $\mathscr{P}_{\mathbb{R}}$  cannot be an  $\mathscr{AL}$ -paracompact.

## 4. $\mathscr{AL}$ -normal and its Properties

**Definition 4.1.** A TS  $\mathscr{P}$  is termed as an  $\mathscr{AL}$ -Normal if  $\exists$  a normal space  $\mathscr{Q}$  and a bijective function  $g: \mathscr{P} \to \mathscr{Q}$ ,  $\mathscr{Q}$  is an angelic paracompact space and the restriction  $g|_{\mathscr{A}}: \mathscr{A} \to g(\mathscr{A})$  for each angelic Lindelöf subspace  $\mathscr{A} \subseteq \mathscr{P}$ .

**Example 4.2.**  $\mathscr{AL}$ -normal does not imply  $\mathscr{AL}$ -paracompactness

*Proof.* Consider  $\mathscr{P} = [0, \infty)$ . Define  $\tau = \{\emptyset, \mathscr{P}\} \cup \{[0, p) : p \in \mathbb{R}, 0 < p\}$ . declare that  $(\mathscr{P}, \tau)$  is normal because there are no two non-empty closed disjoint subsets. Thus  $(\mathscr{P}, \tau)$  is an  $\mathscr{A}\mathcal{L}$ -normal. Declare that  $(\mathscr{P}, \tau)$  is second countable, thus hereditary angelic Lindelöf.  $(\mathscr{P}, \tau)$  cannot be an angelic paracompact because  $\tau$  is coarser than the particular point topology on  $\mathscr{P}$ , here the particular point is 0. That is because any non-empty open set includes 0. Therefore,  $\mathscr{P}$  is an  $\mathscr{A}\mathscr{L}$ -normal but not an  $\mathscr{A}\mathscr{L}$ -paracompact.

**Theorem 4.3.** Every  $T_3$  separable  $\mathscr{AL}$ -normal and of countable tightness is normal.

*Proof.* If  $\mathscr Q$  is a normal space and  $g:\mathscr P\to\mathscr Q$  be a mapping witness to  $\mathscr A\mathscr L$ -normality of  $\mathscr P$ . Then g is continuous because  $\mathscr P$  is of countable tightness. Consider D is a countable dense subset of  $\mathscr P$ . We produce g is closed. Assume H is a non-empty closed proper subset of  $\mathscr P$ . Suppose  $g(p)=q\in Q/g(H)$ ; then  $p\notin H$ . Using regularity, consider U and V be disjoint open subsets of  $\mathscr P$  including p

and H, respectively. Then  $U \cap (D \cup \{p\})$  is open in Lindelöf subspace  $D \cup \{p\}$  including p, so  $g(U \cap (D \cup \{p\}))$  is open in the subspace  $g((D \cap \{p\}))$  of  $\mathscr Q$  including q. Thus,  $g(U \cap (D \cup \{p\})) = g(U) \cap g(D \cap \{p\}) = W \cap g(D \cap \{p\})$  for some open subset W in  $\mathscr Q$  with  $q \in W$ .

We claim that  $W \cap f(H) = \emptyset$ . Suppose otherwise, and take  $q \in W \cap g(H)$ . Let  $p \in H \ni g(p) = q$ . Note that  $p \in V$ . As D is dense in  $\mathscr{P}$ , D is also dense in the open set V. Thus, ap  $p \in V \cap D$ . Presently since W is open in  $\mathscr{Q}$  and g is continuous,  $g^{-1}(W)$  is an open set in  $\mathscr{P}$ ; it also includes p. Thus, we can choose  $d \in g^{-1}(W) \cap V \cap D$ . Next  $g(d) \in W \cap g(V \cap D) \subseteq W \cap g(D \cup \{p\}) = g(U \cap (D \cup \{p\}))$ . So  $g(d) \in g(U) \cap g(V)$  is contradiction. Hence,  $W \cap g(H) = \emptyset$ . Note that  $q \in W$ . As  $q \in \mathscr{Q}/g(H)$  was arbitrary, g(H) is closed. Thus g is a homeomorphism and  $\mathscr{P}$  is normal.

**Theorem 4.4.** Let  $\mathcal{P}$  be an  $\mathcal{AC}$ -normal space  $\ni$  each angelic Lindelöf subspace is included in an angelic compact subspace. Then  $\mathcal{P}$  is an  $\mathcal{AL}$ -normal.

*Proof.* Since 𝒫 is a 𝔐𝓔-Normal space ∋ if 𝒜 is a angelic Lindelöf subspace of 𝒫, ∃ an angelic compact subspace 𝔞 ∋ 𝒜 ⊆ 𝔞. Consider 𝒜 is a normal space and g: 𝒫 → 𝒜 be a bijective mapping ∋  $g|_{𝓔}: 𝓔 → g(𝓔)$  is homeomorphism for every angelic compact subspace 𝓔 of 𝒫. Presently, consider 𝒜 be any angelic Lindelöf subspace of 𝒫. Take an angelic compact subspace 𝔞 of 𝒫 ∋ 𝒜 ⊆ 𝔞;  $g|_{𝔞}: 𝔞 → g(𝔞)$  is homeomorphism; thus,  $g|_{𝒜}: 𝒜 → g(𝒜)$  is a homeomorphism as  $(g|_{𝔞})|_{𝒜} = g|_{𝔞}$ .

**Theorem 4.5.** If  $\mathscr{P}$  is an  $\mathscr{AL}$ -Normal, then its Alexandroff duplicate  $A(\mathscr{P})$  is also an  $\mathscr{AL}$ -normal.

*Proof.* Since  $\mathscr{P}$  is an  $\mathscr{AL}$ -Normal space. Consider a normal space  $\mathcal{Q}$  and a bijective mapping  $g: \mathcal{P} \to \mathcal{Q} \ni g|_{\mathscr{C}}: \mathscr{C} \to \mathscr{C}$  $g(\mathscr{C})$  is homeomorphism for every angelic Lindelöf subspace  $C \subseteq \mathscr{P}$ . Choose the Alexandroff duplicate spaces  $A(\mathscr{P})$  and  $A(\mathcal{Q})$  of  $\mathcal{P}$  and  $\mathcal{Q}$ , respectively. By reason of the Alexandroff duplicate of a normal space is normal. Hence,  $A(\mathcal{P})$  is normal. Construct  $g: A(\mathcal{P}) \to A(\mathcal{P})$  by h(a) = g(a) if  $a \in \mathcal{P}$  and bis the unique element in  $\mathscr{P} \ni b' = a$ , also construct h(a) =(g(b))'. Thus g is a bijective mapping. Presently, a subspace  $C \subseteq A(\mathscr{P})$  is an angelic Lindelöf iff  $C \cap \mathscr{P}$  is an angelic Lindelöf in  $\mathscr{P}$ , and for every open set U in  $\mathscr{P}$  with  $C \cap \mathscr{P} \subseteq$  $\mathscr{A}$ , we state that  $(C \cap \mathscr{P}')/U'$  is countable. Choose  $C \subseteq A(\mathscr{P})$ is an angelic Lindelöf subspace. We produce  $h|_C: C \to h(C)$ is a homeomorphism. Let  $a \in C$  be arbitrary. Take  $a \in C \cap \mathscr{P}'$ and  $b \in \mathcal{P}$  are the unique element  $\ni b' = a$ . The smallest basic open neighborhood  $\{g(b)\}'$  of h(a) here  $\{a\}$  is open in C and  $h(\{a\}) \subseteq \{(g(b))'\}$ . If  $a \in C \cap \mathcal{P}$ . Consider W is an open set in  $\mathcal{Q} \ni h(a) = g(a) \in W$  and  $H = (W \cup (W'\{g(a)'\})) \cap$ h(C) is a basic open neighborhood of g(a) in g(C). Because  $g|_{C\cap\mathscr{P}}: C\cap\mathscr{P} \to g(C\cap\mathscr{P})$  is homeomorphism, next  $\exists$  an open set  $U \in \mathscr{P}$ ,  $a \in U$  and  $h|_{C \cap \mathscr{P}(U \cap C)} \subseteq W \cap h(C \cap \mathscr{P})$ . Presently,  $(U \cup (U'/\{a'\})) \cap q(C)$  is open in  $C \ni a \in G$  and  $h_{c(G)} \subseteq H$ . Thus,  $h|_C$  is continuous. Presently, produce the  $h|_C$  is open. Consider  $K \cup (K'/\{k'\})$ , here  $k \in K$  and K is



open in  $\mathscr{P}$ , is a basic open set in  $A(\mathscr{P})$ , afterwords  $(K \cap C) \cup ((K' \cap C)/\{k'\})$  is a basic open set in C. As  $\mathscr{P} \cap C$  is Lindelöf in  $\mathscr{P}$ , so  $h|_{C(K \cap (\mathscr{P} \cap C))} = h|_{\mathscr{P} \cap C(K \cap (\mathscr{P} \cap C)))}$  is open in  $Q \cap h(C \cap \mathscr{P})$  as  $g|_{\mathscr{P} \cap C)}$  is homeomorphism. hence,  $K \cap C$  is open in  $Q \cap g(\mathscr{P} \cap C)$ . In addition,  $h(K' \cap C)/\{k'\}$  is open in  $\mathscr{Q}' \cap g(C)$  being a set of isolated points. Then,  $h|_C$  is an open mapping. Hence,  $h|_C$  is homeomorphism.

### 5. Conclusion

Our main results includes the two new concepts of an  $\mathscr{AL}$ -Paracompact spaces and an  $\mathscr{AL}_2$ -Paracompact spaces. Also proved that, every  $\mathscr{AL}$ -Paracompactness and an  $\mathscr{AL}_2$ -Parac- ompactness has a topological property. We also investigated the  $\mathscr{AL}$ -normal and its properties.

#### References

- [1] S. AlZahrani and L. Kalantan, *C*-normal topological property, *Filomat*, 31 (2017), 407–411.
- J. Bourgain, D.H. Fermlin and M. Talagrand, Pointwise compact sets of Baire-measurable functions, *Amer. J. Math.*, 100(1978), 845–886.
- [3] R. Engelking, On the double circumference of Alexandroff, Bull Acad Pol Sci Ser Astron Math Phys., 16(8)(1968), 629–634.
- [4] R. Engelking, *General Topology*, Heldermann, Berlin, 1989.
- [5] Eric K. van Douwen, *The integers and topology in Hand-book of Set-Theoretic Topology*, Ed. Kenneth Kunen and Jerry E. Vaughan. Amsterdam: NorthHolland, (1984), 111–167.
- [6] I. Juhasz, K. Kunen and M.E. Rudin, Two More Hereditarily Separable non-Lindelöf spaces, Cand. J. Math., 28(1976), 998–1005.
- <sup>[7]</sup> L. Kalantan, Results about *k*-normality, *Topo. Appl.*, 125(2002), 47–62.
- <sup>[8]</sup> L. Kalantan and M. Saeed, *L*-Normality, *Topology Proceedings*, 50 (2017), 141–149.
- [9] L. Kalantan and P. Szeptycki, *k*-normality and products of ordinals, *Topo. Appl.*, 123(2002), 537–545.
- [10] Lufti N. Kalantan and A. Fateh, On almost normality, *Demon Stratio Math.*, 41(4)(2008), 961–968.
- [11] Lufti N. Kalantan, *L*-paracompactness and *L*<sub>2</sub>-paracompactness, *Hacet. J.Math. Stat.*, 48(3)(2019), 779–784.
- [12] Munkers. R. James, *Topology*, Second Edition, Pearson Education Pte. Ltd., Singapore.
- [13] M.E. Rudin, A Separable Dowker space, Symposia Mathematica, Instituto Nazionale di Alta Mathematica, 1973.
- [14] M.M. Saeed, Countable Normality, *J. Math. Anal.*, 9(1)(2018), 116–123.
- [15] M.M. Saeed, L. Kalantan and J. Alzumi, C Paracompactness and C<sub>2</sub>- Paracompactness, *Turk. J. Math.*, 43(2019), 9–20.

- [16] E.V. Shchepin, *Real valued functions and spaces close to normal, Sib. J. Math.*, 13(1972), 1182–1196.
- [17] M. Singal and A.R. Singal, Mildly normal spaces, *Kyung-pook Math J*, 13 (1973), 29–31.
- [19] M.K. Singal, Singal and Shashi Prabha Arya, Almost normal and almost completely regular spaces, *Glasnik Mat. Ser. III*, 25(5)(1970), 141–152.
- [20] L. Steen and J.A. Seebach, Counterexamples in Topology, Mineola, NY, USA: USA; Dover Publications, 1995.
- [21] E.K. Van Douwen, *The Integers and Topology. In: KunenK, editor. Handbook of Set-Theoretic Topology*, Amsterdam, the Netherlands: North-Holland, (1984), 111-167.
- <sup>[22]</sup> W. Weiss, Small Dowker Spaces, *Pacific J. Math.*, (1981), 485–492.
- <sup>[23]</sup> V. Zaicev, Some classes of *TS*s and their bicompact extensions (Russian), *Dokl. Akad. Nauk SSSR*, 178(1968), 778–779.

\*\*\*\*\*\*\*\*
ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666

\*\*\*\*\*

