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1. Introduction

In this work, there are more conjunctions about the ap-
proach of metric spaces (MS). Fixed point (fd-pt.) concept
in S-metric spaces (S — MS) and b-metric spaces (b — MS)
has been published in more papers like [4],[5],[8], etc. In
our work, we scrutinize a new approach of S — MS called
probabilistic s, —MS, which is an expansion of the S —MS
using the concept of self to be different from zero. Rouse by
crafted by Bakhtin in [4], we initially present the Ps, — MS as
a generalization of the b — MS. Recently, R.Saadati,[9] intro-
duced the idea of r-distance on a Menger Ps;, — MS. Through
an idea of r-distance, we have defined rsj-distance and have
proved a few fixed pt. theorems in the same space.

2. Preliminaries

Definition 2.1. A probabilistic metric space [9] (PMS) be
a triple (M,% ,7), here M is a nonempty set, F is a func-
tion from M* — A%, 7 is a triple function and the coming
properties were convinced ¥ s,u,w in M;

(a) Fes = &
(b) Fu#eifp#4q
(c) Fou = Fus

(d) jsw > T(F:m,Fuw)

If T =17 any t-norm T = (M,.% ,tr) termed as Menger
space(MS).

Definition 2.2. A probabilistic b-metric space [1] (briefly
PbMS) be a quadruple (M, F,7,s), here M is a non empty set,
Z is a function from M> — A%, T is a triangle function s > 1
is a real number and the following conditions are fulfilled; ¥
s,u,w €M and r > 0,

(a) Fgg =
(b) Fu=H =s=u
(C) jm:yux

(d) Fsu(dr) > T(Fow, )Fod) (7).
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Ift=1r any t-norm T = (M,F,tr,s) be termed as b-MS.

Definition 2.3. Take 2" is a non-empty set and b > 1 be
a given number Suppose that a mapping b > 1 be a given
number. Let us take a mapping s, : X> — R* be a function
fulfilled the Coming properties:

(i) sp(m,0,p)=0<= m=o0=pand

(ii) sp(m,0,p) < blsp(m,m,a) +sp(0,0,a) +s5(p, p,a)] V
m,o,p,a € Z.

.. the function sy, be termed as s,-metric on X [8] and the pair
(2 ,sp) is a spMS.

Definition 2.4. Take (Z,.%,.7) is a Menger PMS. Then the
function h: 22 x [0,00] — [0, 1] be termed as r-distance [8]
on X if the comings are fulfilled:

(R1) hmp(e+h)>T (hnole),hop(h)),Vmo,pe X e,h>
0;

(R2) Anyme Z and e > 0, hy,. : Z % [0,00] = [0,1] be
continuous;

(R3) Any €>0,3p>03 hyu(t)>1—pandh,,(f) >
1—p imply Fpole+f)>1—¢.

Example 2.5. Take (2 ,F, ) is a Menger PMS. Then h =
& is an r-distance on X.

Proof. Properties (R1) and (R2) are accessible. Take € > 0
andelectp >0> 7 (1—p,1—p) > 1—¢€. Then hp,(e) >
1—pandh,,(f)pl—p, we've,

%n,o(e +f) y(jlhm (e>7ﬁ17,0(f))

>
> F(1-6,1-8)>1—¢.
O

Definition 2.6. Take 2" as a MS and 7 is a mapped, a point
uc Z is termed as

(i) Fd-pt[6] of T if it is arrangement of the functional
Equation 7 (q) = q.

(ii) e-Fd-pt[6] of T ifd(u, T (u)) < eV e>0.
3. Common Fixed Point Theorems with
rsp- distance

Definition 3.1. A mapping s : [0,1]> — [0,1] is continuous
s-norm if s fulfills the coming properties:

(i) sis associative and commutative.
(ii) s is continuous.
(iii) s(g,0)=aV g€ [0,1].

(iv) s(g,i) < s(k,l) whenever g <k and i <1V g,i,k,l €
[0,1]
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the classical ex: of continuous t-norms were
s(g,i) =min(g+i—1) and s(g,i) = max(g,i)

Definition 3.2. A Menger probabilistic sy, normed space (briefly
Menger Ps, — NS) is a triple (Z°,1,T) here X is a vector
space, T is a continuous t-norm and 1M is a mapping from X~
into D™ > the coming properties hold, ¥ m,o0,p in X :

(i) Nm(e)=go(e) Ve>0ifm=0.
(1) Hat) = (1)) for @ £

(lll) n,n+,,+p(€1 +€2+e3) Z y(nm(el)7n()(62)anp(63)) v
m,n,0 € Z and ey,e;,e3 > 0.

Remark 3.3. Assume for all n € [0,1] 3 a o €]0,1] which
doesn’t rely upon n, with 7" 1(1 - 0o,...,1 =) > 1 —n for
eachn € {1,2,3,..}.

Definition 3.4. Take (X,F,T) is a Menger PsyMS. Then the
function h: 273 x [0,00] — [0,1] is termed as rsy, - distance
on X if the coming were fulfilled.

(i) hm,(),p(el +e +€3) > 9(hmov(el)ahmvp(eZ)vhvop(ES))
Vm,o,p€ Z andey,ey,e3 > 0;

(ii) anyme Z and e >0, hy, : Z % [0,00) — [0,1] is con-
tinuous;

(iii) anye>03p>03 hypler) > 1—p, hpyp(ea) >1—p
and hyoy(€3) > 1—p imply Fpop(e1+e2+e3) > 1—¢.

Example 3.5. Tuke (2°,.%,.7) is a Menger Ps, — MS. Then
h=Z is an rsy, - distance on 2 .

Proof. By definition (3.1), properties (i) and (ii) are obvious.
For property (iii), Give € > 0 and electp > 03> (1 —p,1 —
p;1-p)>1-e

= ﬁm,a,v(el) > 1_pa§m,v,p(62) >1—pand tgzv,o,p(eE») >
1—p, we've

g\m,(),p(e) > 9(%11,0,\/(31)7ym,v,p(eZ)yﬁv,o,p(ef))) > g(l -
p,1-p,1-p)=>1-e¢

= h = .% is an rs),- distance on X. O

Example 3.6. Take (2,.%,7) is a Menger Ps, — S and let
o is a continuous mapping from 2" into Z . Then the func-
tion h: 273 — [0,0) — [0,1] characterized by hy , () =
min(ﬁdm,o,v(el )754\,9,/%0,,9/0(62), ﬁdv,fo,fp(e.?)); Vim,o,pe
Z and ey, ey,e3 > 0 is an rsy, - distance on 2.

Proof. Take m,o0,p,v € Z and ej,ez,e3 > 0 is an rsj,- dis-

tance on 2. If F 0 p(€) < Py, o007 p(€) then we've
hmop(er +ex+e3) = Foymopler +ex+e3)

> g(t%cz{mp,v(el)7gz&fm,v,tﬁp(eZ)vgzv,yfa,fp(e3))

Z y(min(gz,a/m,o,p(el )7jﬂm,,;7f0,v(el ))min(jpfm,(),p(eZL

yg/m,o,y/p(eﬂ)

min(yv,vczfo,&{p(eS)ayv,do,ﬂp(eﬁ))

= T (hmop(er),hmop(€2),hvop(e3))

with this inequality, we’ve
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=
N

mop(€1+er+e3) =L om0 7p(el+er+e3)

(ysz%m,%o,&%p(e )72@7%%0,&%1)(62))dﬂv,%o,(ﬂp(eﬁ)

m, xP(el +e +63) = tg.mfm,,(xfo,{;afp(el +ep +€3)
(g\p{m,&{o,v(el )a <g\,;7{m,1/,,£/{[)(62)a <g\v,pfo,&{p(63))
(minjpfm,o,p(el)7}12/%,9/0717(61))7min(j9im,o,p
eZ)vyVafm,v,&fp(eZ))a

min(F v, oy, Az)(13), Fu,Ay,Az)(13)))

= T(fxayau(tl)7fx,u,z(t2>7f(u»yvz)(t3))

Hence (i) holds. As A is continuous then (ii) is clear. To
prove (ii)

take € > O be givenand elect p >0> T (1—p,1—p,1 —
p)>1l—¢.

Then from Ay, (e1) > 1 —p, Iy p(e2) > 1—pand by,
(63) > 1—p we've <g\ﬁim,o,v(el) >1 _p’yﬂm,v,ﬂp(eZ) >
1—pand Fypm o00(e3) > 1—p.

Therefore Z,, 0 p(e1 +e2+e€3) > T (Foymoy(er),
yﬂm,v.%o(eZ):t?efm,ﬁio,v(eﬁ)
> y(l—p,l—[%l-p)
>1-—¢.

Thence £ is an rsj,- distance on 2. O

= v
N

\AWY
992

—

Example 3.7. Take (2, B, ) is a Menger Ps, — S. Then the
function h: 273 x [0,00] — [0, 1] characterized by hy,, p(€) =
Bu(e) ¥V myo,p € Z and t > 0 rsp- distance on 2, here

B=n.

Proof. Take m,o0,p € 2 and ey,es,e3 > 0. Then we’ve
hm,o,p(el +e +€3) = ﬁv(el +ex+ 93)
> y(ﬁm,o,v<el);ﬁm,v,p(e2),ﬁv,o,p(e3))
= y(em,o,v(eI%hm,v,p(e2);hv,o,p(e3))
Hence (i) holds. Also (ii) is clear. To prove (iii), give
e>0andelectp >03 I (1—p,1—p,1—p)>1-—=¢
= hm,o,v(el) >1 _pahm,v,p(EZ) >1—pand hv,o,p(e3) >
1—p we’ve
gm,o,p(el +e +€3) = ﬁmfafp(el +e2 +€3)
= T (Bm(er), Bole2), Bp(e3))
= y(hm,o,v(el)ahm,v,p(e'Z)th,o,p(e3))
>7(1=p,1=p,1-p)
>1—¢
Hence £ is an rsp,- distance on 2. O

Lemma 3.8. Take (2°,%,.7) is a Menger Ps,MS and h is
a rsp— distance. Take {my}, {on} and {p,} be sequence in
2. And take {0}, {Bn} and {w,} be a sequences in [0,0)
converging to zero and m,o,p € 2" and e1,ey,e3 > 0. Then
the coming hold:

(i) ifhm,,,on,v(e]) > l_amhmn,v,on (32) > l_ﬁnahv,on,pn (63)
>1—y,foranyn €N then F,,, ,, p,(e1+e2+e3) = 1

(”) lfhmn.o,,,v)(el 2 1— anahm,,,v,on(eZ) 2 1 *Bn and hv,on,pn
(e3)>1—7y, someneN=m=o0=p.

(iii) if hy, x, (€) > 1 — 0y any n,m,k € N withk >m >n
formerly {x,} be a CS.
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Proof. (i) Take € > 0. From the definition of rs;— distance,
3p>03 huoy(er) >1—p,hmyp(ez) >1—p and

evop(e3) > 1 —p implies ey, p(e1 +e2+e€3) > 1 —¢.

Elect no e N> {o,} <p, {fu} <pand {p} <pV
n > ng. Then we've, any n > ng, hy v(e1) > 1— 04, >
1 _p;th,o,p(eZ) >1-f,>1—pand hv,m70(33) >1-
Y, > 1 —p and hence h,,, , (€1 +e2+e3) > 1 —&€. This
implies that %, ,, »,(e1+e2+e3) — 1. Thence we’ve
that {m, } converges to x. It follows from (i) that (ii)
hold.

(iii) Take € > 0. By (i), Elect p > 0 and ny € N. For
any n,m,k > ng+ 1, hmn-,ompno (e1) > 1 =0y >1—
pahm,,,m,,o,a,, (e2)>1— Oy > 1—p and hm,l,o,,,m,,o (e3)>
1 —ay,, > 1—p and thence .Z,, , », (e1 +e2+e3) >
1—¢.= {m,}isaCs.

O

Theorem 3.9. Take (Z',.%,.7) is a complete Menger Ps,MS,
h is a rsp— distance and a mapping from Z into itself. As-
sume that 3 k €]0,1[ hdmy/zmﬂsm(e) > hmﬂm’ﬂzm(%), v
me Z,e>03sup{T (hmop(€),hmom(e)) me X} <1
YV p,o€ X witho # < o,p# o p. Then we’ve

(i) If t-norm holds and 3av € X with &,(v, /v, Bv) =
sup{(&y,h)(v, v, PBv) : Y €]0,1[< oo} then I p € X
>Sp=4dp.

(ii) If s-norm holds then 3 p € & > p = o/ p. Furthermore
ifr=a/r,q= %Bqand h € D" then h,.,, =

(i) Take v € 2 is 2 &,(v, o/v) < e0. Characterize
v, = @™ uany n € N. Then we’ve, for some n € N,

hvn:‘/n+l Vn+2 (e) Z hvn—l VY1 (k%)

Z h\/,l’l,vz(k%)

50,11(Vnavn+l’Vn+2) = inf{t >0: hvmvn+1~,vn+2 (e) >
1-o}
<inf{e>0:hyy 1, () >1-0}
=k"E n(v,v1,v2)
hencem >nand o €[0,1]3y€[0,1] >
(g)o,h(Vme»Vk) < gy,h(vmvn—&-l) + '-'+<gah(vm_|,vm) +ot
éah(vkna"kJr 1)
< L&)

Proof.

— 0 and

Vn:Vm:Vk

Then 3 ng € N 5V n > ng we’ve 56,;,)(
hence {v,} is a CS.

Also for any sequence {m,} is a CS w.r.to h iff it is a
CS with éac,h-

. Apn} — 0 3 for n > max{ng,n1},n; € N, we’ve
hVn~Vm~,Vk(e) Z 1 _le‘

By the reason of 2" is complete, then {v,} — some
point p € 2.

Thence by definition of Menger probabilistic s;-normed

space, we've hVn-,V;n,p = llm? (k - oo)hvn-,vnuvk 2 1— Pn
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and hy, v, .\ v,.r = 1 — Pn. Assume that p # .o7),.
By statement, we’ve

12> sup{T (hm,on(€),tmyp(€),hvople)) :me 27}
Zsup{y(hm,o v( ) hsz{mvczfp(e)a vafo%p( )) ime

A}

> Sup{g(h,;?/m,&fo,v(e)7h,{z%m,v,&fp(e)7hv-=§<{0a-97p (6)) :
me %X}

> Sup{y(h\/nyﬂo,v(e)7hvnvvﬁvn+2 (e)vhwvnﬂ»"nﬂ <e)) n
€N}

Zsup{y(l _pml _pnal _pn ‘n GN)} = 1’

Which is inconsistency. .*. we’ve p = o/ p.

(i1) The proof is same as (i) but ¢ does not depend on k.
Presently if v = /v and h € D" then we’ve
hr«”ar(e) = hﬁfr,&ﬂr,xzﬂr(e)
e
> hmz{r,wﬂr(i
= hr,r,r %
Enduring this process, we’ve

hr,r,r(e) = hr,r,r(k%)
. Also we've e, = &.
O

Theorem 3.10. Tuke (2, F,T) is a complete Menger Psy,
MS and <f is a mapping from Z into itself. Assume 3 3 €
10,15

jﬂm,//{oﬂfp(e) 2 y(gm,ﬂm,yfzm(%)’yo,&fo,,@fzo(%)ﬂ

F it p.rp(f)) Y mo,p € 2 ande>0.

(i) If t-norm holds and 3 a u € X with & (v, o/'v, o/*v) <
then </ has a unique fd-pt..

(ii) If s-norm holds then <7 has a unique fd-pt.

Proof. (i) Take m € 2. From the difference (I), we’ve
j{zfm,.fzfzm,,tzﬂ ( ) 2 y( m, o/ m,/*m
(ﬁ))’ygfm,yizm,pﬂm(ﬁ) ‘jg{zm,pﬂm,s?{“m(%) and hence
‘gz,;?fm,.ofzm,,d3m(e) Z <gl:rn,.(?fn@,ﬁ/%zm(é) By the reason of
the probabilistic metric .# is an ry,-distance, assume
that 30 € 2" with 0 # &0 and sup{.F,., p(e) :

ym,pcz%m,gzﬂm(e) ‘me '%} =1L
By the reason #,, 5 c70(€) — 1and 7, ., 2 (e) —
1, then by lemma (3.9), we’ve {&/m, } — o.

another way, by the reason of <7 fulfills the condition (I)
then WC’VG yﬂmn o/ 2my, Qfo( ) > y(‘g.mn o my, cizmn(%)’
F ot 0.2 (ﬁ)) — 1l asn— oo ie 0= 0. inconsis-

tency. Thence if 0 # o7 o then sup{ T o.p(€) : Dy o1 cr2m

(e):me X} <1.

Then by theorem (3.10), 3 p € 2" 5 p = </ p. By the
reason of .% € D then the uniqueness is trivial.

(ii) The proof is same as (i).
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4. rs,~distance with Property 4 and
Weakly Commuting maps in Ps,M-Space

Definition 4.1. State rsy,- distance h has property (¢') if
it fulfills the coming condition: hy,p(e) =€ ¥t >0 =
¢ =1.

Theorem 4.2. Take (2", %, ) is a complete Menger Ps,M-
space, h is r-distance on it and o , B, € : X — X be maps
that fulfill the coming properties:

(i) 6(2) CBX)C ()
(ii) of , P and € are continuous

(iii) h%’(m)%’o e ,
2, t>00<k<l.

Suppose m € X

En( (m), B(m), € (m)) + & (o
( ),P)+gh( ( )7
En(€ (m), B(m), < (m
) and € (p) # € (€
ye (0,1}

Also suppose if {my} is a sequence in % with limz(n —
)of (m,) =o€ 2, then¥n € (0,1), we have &, j (< (my), o/
ng)d’s? .§ limy e &N, (27 (my), o (M), o7 (My)).

n addition,

(m), B(m), p)+En(B(m), €
(B(m)), p)+ (€ (m), € (€ (m)), p) +
) <oo, ¥V pe X withB(Z)+#B(B(p
(p)) here &,(z,y,%) = sup{&yn(z,y,%)

(i) If t-norm holds and 3 a mgy with
&n( (mo), 8 (mo), € (mo)) = sup{ &y (< (mo), % (mo),
€ (mg)): 7€ (0,1)} <ooand &,(B(my), B(B(my)), €
(% (m0))) = sup{Eyn(Blmo), B(B(mo)), € (% (mo)):
yY€(0,1)} <oothen o , 2B and € have a Common fixed
point given that <7 , % and C commute each other.

(ii) If s-norm holds then A, B,C have a common fixed point
given that o/ , 8 and € commute one another. In ad-
dition if h has the property €', h(.) is non decreasing
and H(r) = B(HB(r)), ¥ r € X then hag) () (r) =1
and €' (w) =€ (¢ (w)) Y w € X and hg () () (€) = 1.

(i) FirstVme 2, inf{&,( (m), B(m),€(m)) +
&n(A (m), B(m), p)+ Ep(B(m), € (m), p)+ & (B(m),
PB(B(m)),p) + E4(C (m), € (€ (m)), p) + (€ (m),
PB(m), o (m))} >0,V pe 2 with B(p) # B(B(p))

and € (p) # ¢ (¢ (p)).

Assume this is true. For that, let mg € 2~ with &;,(« (my),
P(my), € (mo))

< o0, 6 (B(m0), B(B(my)), p) < o= and &€ (m0), 6
(¢'(mo)),p) <.

But (i), we find my,my > o7 (m;) = B(my) = € (my).
By acceptance we can characterize a sequence {m, },

Proof.

> o (my) = B(mp—1) = € (Mpt1).

By acceptance again,

Rt (my), ﬂ(mm £ (i) (€ ) =N By ), B(m) By 1) (€) >
Pt (1), () 7 (1) (;» Z P (o) 5 (my ) ()

() and therefore
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B8 (), (M), (a12)) KL o)t Gm))+ (K )EH(E (mo), 6 ), € ma)) i m € N} =
(m1), e/ (my)), forn=1,2,...= s>nand forn €]0,1] 0
0 €]0,1[ 3 &y p (A (my), o (my), o (m,)) < g p( This is a conflict. Thus #(0) = #(%(0)) and € (0) =
(ms—1), 2 (ms), < (ms11)) + Eyn( (ms—2), o (ms—1), € (€ (0)). Thus B(o) = B(H(0) = o )(%(0)) and
o (my))+ ...+ Eg p (& (my), o (my11), o (Myy2)) < & accordingly %(0) is a common fixed point of &7, %
(o (mo), o (my), o (my)) Zj.;l, K< (£5) and €. Moreover if %(0) is a common fixed point of
En( (mo), o (my), o (m3)). B and € B(v) = B(H(v)) Vv e X, then we have
Thence {%7(m,)} is a CS. By the reason of 2 is Z(@(é),ﬂ(o),%(o)( e) =hg(z(0 ))) L@(g(a(go)));@(ﬁ(o))(e) 2
complete then 3 0 € 2" 3 limgz(n — o) (m,) =0 hjgfgoz)( (( (%(f:);) ))ég)(ﬁ(ol)l);(k < ().
_ o (P (0)), PB(o k
Gy met) = ) o then (A )l = Since a7 (¢ (0))) ~ ¢ (B(0))) = (B(0)) %1
PB(0)) = B(o) = B(o) and B(€(0)) = $B(0) and

Be that as it may B(</ (my)) = o/ (B(my)), € (B (my)) PB(€(0)) = P(0). Differently, known h is decreas-
= #(¢(my)) and (€ (my)) = € (< (my)), by the ing, then we’ve hg(0) 2(0),%(0) (€) < hz(0).2(0),%(0) (F)
commutative condition and so <7 (|(m,)), B(€ (my)) Thus we'Ve hig (o) 2(0),2(0) (€) = h(0),2(0),2(0) (§) =
and € (47 (m,)) — /(o). By the reason the limits h(0),5(0),8(0)(€) = €' ¥ e > 0. Hence by property
are unique, &7 (0) = B(0) = € (0) and so o ( (0)) = (") we've hag(o) 2(0),2(0)(€) = 1.
o (PB(0)) = A (€(0)). To prove the assert, consider that 3 0 € 2" with #(0) #
Differently, we've PB(H(0)) and € (0) # € (€ (0)) and inf{&} (o (m), B
En 1 (M), 7 (my,0) <Timy o0 €1, (A (m—n), 7 (m), 6 (m))+&p (< (m), B(m),0)+ (% (m), ¢ (m), 0
(my, o (my)) < Enn( (my), . (my),0) < )+ En(B(m), B(H(m)),0)+E(F (m), € (E (m)),0)+
Since V 1 €]0, 1] then we’ve &,( (m,,), o (m;),0) < gh(%(m),%(m),d( )):me 2} =0.
K8y ( o (mo), o (m1), o/ (m3)). Also, by the reason Then 3 {my} > limyse (7 (my), B(my ), € (mn)) +
%(mn) «Q{(mrH»l) %ﬁ(mn+2) then we’ve @@h(%(mn)v gh(dg% %(mn)vo) }g;é%(mn%%émn)aO)‘thfg;@
gl o it OO Y R
(my), € (my),0) < kl kéah('d( 0), (my), < (my)) and h&{(mn)_%(mn);g(mn)(e) — 1 and h.gz((mn),,%(mn),o(e) —1
By, (B () € () (€) = My (my) (6 B(m)) € () (§) and by lemma (3.9) we’ve limg . B(my,) = 0 and
= hg(m, 1), B(Bm, )€ m,1)(F) limye € (my) = 0.
> hxzf(m,l,l)?y%(c%’(mn,l)),%)(mn,l)(f) Also hj( )€ (mn), 0( ) — 1, h&zf(m,,),%(mn),é@(ﬁ(mn))(6)
- h%(mn,z),%(%(mn,z)),@@(mn,l)(k%) — 1 and hQ/( ), B(mn), Z(%»(mn))(e) —1
= h%(mn,z),%(%(mnfﬁ),(to()(mnq)(k% ) *. by lemma (3.9), we’ve
2 o 2 hoy(my) Bt (my)), 7 (m1) () limy s B(B(my)) = y and im0 €(% (my)) = 0.
= Enn(B(mn), B(%(my)), € (mn)) > k" En n( (m1), Therefore 2(0) = %B(B(0)) and € (0) = €(€(0)),
B (m1)), € (m1)) <k"& (A (1), B( (m1)), € (m which is a contradiction. Hence if %(0) # AB(%(0)
)) and so, &, (B (my), B(AB( (mn)), € (my)) < k" &) (A and € (0) # € (€ (0)) then inf{&, (<7 (m), B(m), € (m))
(m1), B( (m1)),€ (m1)). + & (o (m), B(m), 0) +E(B(m), € (m),0)+ & (B(m),
Presently (o) = 2(%(0)) and € (0) = €(%(0)). Sup- PB(HB(m)),0) + & (€ (m)€ (€ (m)),0) + &,(¢ (m), %
pose B(0) # B(%(0)). By above, we’ve 0 < inf{ &), (o (m), o (m)) :me 2’} > 0.
(m)ﬂt%(m)fg(m))+gh(d(m)7’%( ) )+éah(33( ) M
@ (m),0) + &\(#(m), B(%(m)),0) + gh(%(m),%(% Definition 4.3. Take h and k be maps from a Menger Ps,M-
(m)),0)+&n(€ (m), B(m), o/ (m)) :me 2} <inf{&),

pace (2, %, 7). The maps h and k are termed as be Weakly
(o (1mn), % (1mn), € (1mn)) + &} (< (mn) Commuting if Fpim xhm(€) > Fumim(€) for eachm in & and
B(mn),0)+E(B(mn), C (mn), 0) +ER(B(mn), B(B( R

Mp)),0)+Ep(E (mn), € (€ (m n))a0)+é”h(<5( n); B (1 '

) o (my)) : n € N} = inf{&,( (my), o (my+1),0) + Remark 4.4. Consider ¢ denote the set of all onto and strictly
En( A (my), o (ms), o (my)) + E(B (m,,) PB(mg),0)+  non-decreasing function @ from [0,0) — [0,00) which grat-
En(B(my), B(B(m1)),0)+E(C (my),C (ms), € (mg))  ify limp—.@"(e) =0 for e > 0. Here @"(e) stands for nth
+ &,(€ (my), B(my), o (my))} = inf{ &, (o (my), o iterative function of ¢(e).
(Mpt1),0) + Ep( (my), o (mg), o (my)) + En( If € ¢ then @(e) <t for e > 0. suppose that 3 e, >0
B(my,), B(ms),0)+E(B(my), B(B(my)),0)+E(E  with eg < @(eg). Then since @ is non decreasing we have
(my), € (my), € (my)) + (€ (my), B(my,), o (my,))} eo < @"(eo) @ ¥ ne{l1,2,..} which is inconsistency. Also
< inf(K G (7 (mo),  (m1),0) + () E( 7 (mo), 7 9(0) = 0.
(m1), o (m2)) + (an )En( (m ) o (my), o/ (m2)) + Lemma 4.5. Assume a Menger Ps,M-space (% ,.% , ) ful-
k" &, (B (my), B(HB(m)),0)+ ( — )@@h((f(mo),%(ml), fills the coming condition: Fpy,, p(€) =€ ¥ e > 0 then we’ve

00%%
< 000,
3502
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% = g(e) and m = o.

Theorem 4.6. Tuke (2, %,7) is a complete Menger Psy,-
space and h,k and | be weakly commuting self mappings of X
fulfilling the coming properties:

(i) W(2) CK(2) CUZ)
(ii) h and k or | is continuous.

(iii) jhm,ho,hp((P(e)) > <g\km,ko,kp(e) > ﬁlm,lon(e): here ¢ €

9.

(a) Ift-norm holds and 3 mg € X with &z (Img, kmo, hmg) =
sup{ &y, 7 (img kmg,himg) * ¥ € (0,1)} < oo, thus h and k
have exclusive common fixed point.

(b) If s-norm holds then h and k have a unique common
fixed point.

Proof. Elect my € 2" with &gz (Img,kmo,hmg) < . Take
my € X with himg = kmy = Imy. In general, pick my,1,mp42 >
hmy, = kmy 1 = lmy, 2. Presently P, nm, 1 by ("1 (e))
> <g\hmn,l,hm,,sz,Hrl ((Pn (e)) > ykm()?kml,kmz (6) > &mo,lml,lmg
(e)' every 0 € (07 1)9 yd,ﬂ(hmnvhmnjtlahmwﬂ) = inf{(Pn-H
(e)>0: yhmn,hmnﬂ-,hmwz(q)nﬂ (e))>1-o0}
<inf{@"(e) >0 Fimg kmg,mm,(€) >1—0}

< (pn+l (inf{e>0: %m()*k’n()!hmo (e) >1—0})

= " (&5, 2 (Img,kmy, hmg))

< "N (Ex (Img, kmo, hmy))

Hence Z g g (hmy, hmy 1, hmy,2) < "V (&g (Imo, kmo, hmg
)) Take € >0andn € {1,2,3,...} so .Z.z (hmy, hmy, 1|, hmy,2)
<e—2¢(g). Foro € (0,1),3 1 € (0,1) with &5 & (hmy, h
Mp+1, hmn+3) < Cg)n,ﬂ‘ (hmmhmn+1 N ) + gn,fi (hmn+l h
muyy2, hmn+2) + ‘gn,ﬂ (hmn+27hmr1+3a hmn+3)

< gn,,? (hmm hmy, 1 ,hmn—H)

+ q’(éon,?(hmnahmn+17hmn+1)) + (P((g)n,ﬁ"(hmn+lahmn+1;h
mn+2)) <&z (hmnyhmn+l » hanrl) + (p(éaﬂ" (hmm hmy, 1 1,h
Myt1)) + Q(Ez (hmy, hinyy , himy2))

<e=20(e)| + o(e) + p(e)

<e

Then &5 # (hmy,hmyy1,hm, 3) < €. For o € (0,1),3n €
(0,1) with &, 7 (hmy, himy 2, himy g a) < Ey 7 (hmy, hmy, 1, h
mn+2) + éan,,’f (hanrl shimyo, hmn+3) + gn,f(hanrZa hmy, 3,
hmy4) < (g)n,e? (hmy, iy iy, 2) + (P(gn,e? (hmy, himy
hmy2)) + &y 7 (Ao, hmp 3, hmya) < (€—20(€)) + @(€
- (P(E)) + (P(éamﬁ (hmn+17hmn+27 hmn+3)

< (e-20(e)) + (e —9(e)) + o(e — ¢(¢))

<e.

Similarly for each o € (0, 1), we’ve &5,z (hmy,, hiny 2, himy, 1 4)
<e.

Note that ﬁ(hm,,ﬂ Jhmy o, hmy, 3)€(e) < ﬂkmnﬂ Kty ks
(e) = egfhm,,,hm,,Jrz,hm,,H

= go‘,o”(hmnﬂ » hmn+27hmn+3) < (p(éan,f(hmm himy, o, himy, 4
)). Therefore, &g (hmy,, himy o, hmy,14) < €.

By induction, &g (hmy,, hmy, i, hm, 1 12) < € forke {1,2,3,.}
Therefore {hm,} is a CS and by the reason 2" is complete,
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{hm,} converges to r in 2. Also {km,} and {Im,} con-
verges to p. let us now presume that the mapping 4 is continu-
ous. Then lim,, hm, = hp, lim, km, = fz and lim, him, = hp.
Since h, k and [ are weakly commuting each other, we’ve,

P hkmp Jehmn (€) = P rumy ki (€)s Fhimy thimy, (€) = Fhumy im, (€)
and F i, tkim, (€) > Fmy im, (€).

Take n — oo in the above disparity and lim,,_s. khm,, = hp and
lim,, e klm,, = hp continuity of A.

Presently prove p = hp. Consider p # hp. By (iii) some e >
0, we’ve jhm,,,hhmn,hp,,(q)k+l(e)) > g\km,,,khm,,,kpn(q)k(e)) >
Lg]m,,,lhrn,,,l[;,l (6)

= ypahp7p((l)k+l(e)) > yp.,kp,p((/)k(e)) > yp,hp,p(e)

Also we’ve yp7hp7p(q)k(e)) > «9‘1;,/1;7,17(901{7l (e)) and F) 1y p
((p(e)) > yp,hp,p(e)

Thus we've Z,, jy » (9K (€)) > Fp 1 p(€)

Differently, 7, , , ("1 (€)) < ) jp.p(t).

Then %, ,p p(e) = € and by lemma (2.3.5) p = hp. Since
WZ) Ck(Z) CIUZ) Thus the locate py,prp € Z > p=
hp = hpy = hpy = kp1 = Ip>.

Presently Zhim, ipy hps (€) = Fichmy kpy dp, (varphi='(e)).
Taking limit as n — oo, we’ve,
yhp,hpl,hpz (6) > <g\p,kpl,lpz((P_l(e)) = yhpm,p(e) > <g\p,hpp
(¢~'(e)) = (e), = hp = hp1.

Thatis p=hp =hp1 =kp1 =1pr =Ip;.

Also e > 0, known h, k and [ are weakly commuting each other,
we've Fipkpip(€) = Fhkpy kipyhipy (€) = Fhpy kpyipi (€) =
&(e)

Thence hp = kp = Ip. Thus p is a common fixed point of
h,k and . To prove the uniqueness, suppose p; # p2 # p is
another common fixed point of /,k and /. Then some e > 0
and n € N we’ve
yz,m 22 ((pn+1 (t)) = FfZ,fZ| Sz ((Pn+1 (t))

2 Fyz 621,622 (9" (1)) = Fhz ey iy (97 (1))
=F.;, -, (9"(t)) Also we have .7, ,, 1, (9" (€)) = Fpp,.pa(
0" (e)) and T, py (9" (€)) = Fp.py.py (e).

Thence we've Zp p, p, (9" (€)) > F) 1y py(€).

Differently, we’ve 7, p,(€) < Fp pi o (@"F1(e))

Then %, , p,(e) = € and by lemma (4.5) p = p; = p»
which is a conflict.

Thus p is the unique common fixed point of 4,k and /.

O

5. Conclusion

Main consequence of this work is,

(1) r-distance in Menger PMS can be extended to rsp- dis-
tance in Menger probabilistic s,-metric spaces.

(i) A few fixed point theorems were proved in complete
Menger Ps,MS.

(iii) Also some statements were proved in both rsj,-distance
with property € and weakly commuting maps.
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