

https://doi.org/10.26637/MJM0803/0066

Common fixed point theorems in rs_b -distance with property *C* and weakly commuting maps in probabilistic s_b -metric space

A. Kalpana^{1*} and M. Saraswathi²

Abstract

We establish the conception of rs_b -distance with property *C* on a Menger Probabilistic s_b -metric space. Moreover, we have proved a few fixed point theorems in a Complete Menger Probabilistic s_b -metric space. Also we display the Weakly Commuting maps in same space.

Keywords

Menger Probabilistic s_b -metric space, rs_b -distance, rs_b -distance with property C, Weakly Commuting maps.

AMS Subject Classification

47H10, 54E35, 54E40, 54H25.

^{1,2} Department of Mathematics, Kandasami Kandar's College, Velur-638182, Tamil Nadu, India.
 *Corresponding author: ¹ kalpanaappachi@gmail.com; ²msmathsnkl@gmail.com
 Article History: Received 15 March 2020; Accepted 19 June 2020

©2020 MJM.

Contents

1	Introduction1119
2	Preliminaries 1119
3	Common Fixed Point Theorems with rs_b -distance1120
4	rs_b -distance with Property \mathscr{C} and Weakly Commuting maps in Ps_bM -Space
5	Conclusion1124
	References

1. Introduction

In this work, there are more conjunctions about the approach of metric spaces (MS). Fixed point (fd-pt.) concept in S-metric spaces (S - MS) and b-metric spaces (b - MS) has been published in more papers like [4],[5],[8], etc. In our work, we scrutinize a new approach of S - MS called probabilistic $s_b - MS$, which is an expansion of the S - MS using the concept of self to be different from zero. Rouse by crafted by Bakhtin in [4], we initially present the $Ps_b - MS$ as a generalization of the b - MS. Recently, R.Saadati,[9] introduced the idea of *r*-distance on a Menger $Ps_b - MS$. Through an idea of *r*-distance, we have defined rs_b -distance and have proved a few fixed pt. theorems in the same space.

2. Preliminaries

Definition 2.1. A probabilistic metric space [9] (PMS) be a triple (M, \mathscr{F}, τ) , here M is a nonempty set, \mathscr{F} is a function from $M^2 \to \Delta^+$, τ is a triple function and the coming properties were convinced $\forall s, u, w$ in M;

- (a) $\mathscr{F}_{ss} = \varepsilon_0$
- (b) $\mathscr{F}_{su} \neq \varepsilon_0$ if $p \neq q$
- (c) $\mathscr{F}_{su} = F_{us}$
- (d) $\mathscr{F}_{sw} \geq \tau(F_{su}, F_{uw})$

If $\tau = \tau_T$ any t-norm $T \Rightarrow (M, \mathscr{F}, \tau_T)$ termed as Menger space(MS).

Definition 2.2. A probabilistic b-metric space [1] (briefly *PbMS*) be a quadruple (M, F, τ, s) , here *M* is a non empty set, \mathscr{F} is a function from $M^2 \to \Delta^+$, τ is a triangle function $s \ge 1$ is a real number and the following conditions are fulfilled; $\forall s, u, w \in M$ and r > 0,

- (a) $\mathscr{F}_{ss} = \mathscr{H}$ (b) $\mathscr{F}_{su} = \mathscr{H} \Rightarrow s = u$ (c) $\mathscr{F}_{su} = \mathscr{F}_{us}$
- (d) $\mathscr{F}_{su}(dr) \geq \tau(F_{sw}, F_{wu})(r).$

If $\tau = \tau_T$ any t-norm $T \Rightarrow (M, F, \tau_T, s)$ be termed as b-MS.

Definition 2.3. Take \mathscr{X} is a non-empty set and $b \ge 1$ be a given number Suppose that a mapping $b \ge 1$ be a given number. Let us take a mapping $s_b : X^3 \to R^+$ be a function fulfilled the Coming properties:

(i)
$$s_b(m, o, p) = 0 \iff m = o = p$$
 and

(ii) $s_b(m,o,p) \leq b[s_b(m,m,a) + s_b(o,o,a) + s_b(p,p,a)] \forall m,o,p,a \in \mathscr{X}.$

: the function s_b be termed as s_b -metric on X [8] and the pair (\mathcal{X}, s_b) is a s_bMS .

Definition 2.4. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a Menger PMS. Then the function $h : \mathcal{X}^2 \times [0, \infty] \to [0, 1]$ be termed as r-distance [8] on \mathcal{X} if the comings are fulfilled:

- (R1) $h_{m,p}(e+h) \ge \mathscr{T}(h_{m,o}(e), h_{o,p}(h)), \forall m, o, p \in \mathscr{X} e, h \ge 0;$
- (R2) Any $m \in \mathscr{X}$ and $e \geq 0$, $h_{m,.} : \mathscr{X} \times [0,\infty] \to [0,1]$ be continuous;
- (R3) Any $\varepsilon > 0$, $\exists \rho > 0 \ni h_{p,m}(t) \ge 1 \rho$ and $h_{p,o}(f) \ge 1 \rho$ imply $\mathscr{F}_{m,o}(e+f) \ge 1 \varepsilon$.

Example 2.5. Take $(\mathcal{X}, F, \mathcal{T})$ is a Menger PMS. Then $h = \mathcal{F}$ is an *r*-distance on *X*.

Proof. Properties (*R*1) and (*R*2) are accessible. Take $\varepsilon > 0$ and elect $\rho > 0 \ni \mathscr{T}(1-\rho, 1-\rho) \ge 1-\varepsilon$. Then $h_{p,m}(e) \ge 1-\rho$ and $h_{p,o}(f)\rho 1-\rho$, we've,

$$\begin{aligned} \mathscr{F}_{m,o}(e+f) &\geq \mathscr{T}(\mathscr{F}_{p,m}(e),\mathscr{F}_{p,o}(f)) \\ &\geq \mathscr{T}(1-\delta,1-\delta) \geq 1-\varepsilon. \end{aligned}$$

Definition 2.6. Take \mathscr{X} as a MS and \mathscr{T} is a mapped, a point $u \in \mathscr{X}$ is termed as

- (i) Fd-pt[6] of \mathcal{T} if it is arrangement of the functional Equation $\mathcal{T}(q) = q$.
- (ii) ε -*Fd*-*pt*[6] of \mathscr{T} if $d(u, \mathscr{T}(u)) < \varepsilon \forall \varepsilon > 0$.

3. Common Fixed Point Theorems with *rs_b*- distance

Definition 3.1. A mapping $s : [0,1]^2 \rightarrow [0,1]$ is continuous *s*-norm if *s* fulfills the coming properties:

- (i) s is associative and commutative.
- (*ii*) s is continuous.
- (*iii*) $s(g,0) = a \forall g \in [0,1].$
- (iv) $s(g,i) \le s(k,l)$ whenever $g \le k$ and $i \le l \forall g, i, k, l \in [0,1]$

the classical ex: of continuous t-norms were

$$s(g,i) = \min(g+i-1)$$
 and $s(g,i) = \max(g,i)$

Definition 3.2. A Menger probabilistic s_b normed space (briefly Menger $Ps_b - NS$) is a triple $(\mathcal{X}, \eta, \mathcal{T})$ here X is a vector space, T is a continuous t-norm and η is a mapping from \mathcal{X} into $D^+ \ni$ the coming properties hold, $\forall m, o, p$ in \mathcal{X} :

(i)
$$\eta_m(e) = \varepsilon_0(e) \ \forall \ e > 0 \ iff \ m = 0.$$

(*ii*)
$$\mu_{\alpha x}(t) = \eta_x(\frac{t}{|\alpha|})$$
 for $\alpha \neq 0$.

(*iii*) $\eta_{m+o+p}(e_1+e_2+e_3) \ge \mathscr{T}(\eta_m(e_1),\eta_o(e_2),\eta_p(e_3)) \forall m,n,o \in \mathscr{X} and e_1,e_2,e_3 \ge 0.$

Remark 3.3. Assume for all $\eta \in [0,1] \exists a \sigma \in]0,1[$ which doesn't rely upon n, with $\mathscr{T}^{n-1}(1-\sigma,...,1-\sigma) > 1-\eta$ for each $n \in \{1,2,3,...\}$.

Definition 3.4. Take (X, F, T) is a Menger Ps_bMS . Then the function $h: \mathscr{X}^3 \times [0, \infty] \to [0, 1]$ is termed as rs_b - distance on \mathscr{X} if the coming were fulfilled.

- (*i*) $h_{m,o,p}(e_1 + e_2 + e_3) \ge \mathscr{T}(h_{mov}(e_1), h_{mvp}(e_2), h_{vop}(e_3))$ $\forall m, o, p \in \mathscr{X} \text{ and } e_1, e_2, e_3 \ge 0;$
- (ii) any $m \in \mathscr{X}$ and $e \ge 0$, $h_m : \mathscr{X} \times [0, \infty) \to [0, 1]$ is continuous;
- (iii) any $\varepsilon > 0 \exists \rho > 0 \exists h_{vop}(e_1) \ge 1 \rho, h_{mvp}(e_2) \ge 1 \rho$ and $h_{mov}(e_3) \ge 1 - \rho$ imply $\mathscr{F}_{mop}(e_1 + e_2 + e_3) \ge 1 - \varepsilon$.

Example 3.5. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a Menger $Ps_b - MS$. Then $h = \mathcal{F}$ is an rs_b - distance on \mathcal{X} .

Proof. By definition (3.1), properties (i) and (ii) are obvious. For property (iii), Give $\varepsilon > 0$ and elect $\rho > 0 \ni \mathscr{T}(1-\rho, 1-\rho, 1-\rho, 1-\rho) \ge 1-\varepsilon$.

$$\Rightarrow \mathscr{F}_{m,o,v}(e_1) \ge 1 - \rho, \mathscr{F}_{m,v,p}(e_2) \ge 1 - \rho \text{ and } \mathscr{F}_{v,o,p}(e_3) \ge 1 - \rho, \text{ we've}$$

$$\mathscr{F}_{m,o,p}(e) \ge \mathscr{T}(\mathscr{F}_{m,o,v}(e_1), \mathscr{F}_{m,v,p}(e_2), \mathscr{F}_{v,o,p}(e_3)) \ge \mathscr{T}(1 - \rho, 1 - \rho, 1 - \rho) \ge 1 - \varepsilon$$

$$\Rightarrow h = \mathscr{F} \text{ is an } rs_b \text{- distance on } X. \qquad \Box$$

Example 3.6. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a Menger $Ps_b - S$ and let \mathcal{A} is a continuous mapping from \mathcal{X} into \mathcal{X} . Then the function $h: \mathcal{X}^3 \to [0, \infty) \to [0, 1]$ characterized by $h_{m,o,p}(e) = \min(\mathcal{F}_{\mathcal{A}m,o,v}(e_1), \mathcal{F}_{\mathcal{A}m,o,\mathcal{A}o}(e_2), \mathcal{F}_{\mathcal{A}v,\mathcal{F}o,\mathcal{F}p}(e_3)), \forall m, o, p \in \mathcal{X}$ and $e_1, e_2, e_3 > 0$ is an rs_b - distance on \mathcal{X} .

Proof. Take $m, o, p, v \in \mathscr{X}$ and $e_1, e_2, e_3 > 0$ is an rs_b - distance on \mathscr{X} . If $\mathscr{F}_{\mathscr{A}m,o,p}(e) \leq \mathscr{F}_{\mathscr{A}m,\mathscr{A}o,\mathscr{A}p}(e)$ then we've $h_{m,o,p}(e_1 + e_2 + e_3) = \mathscr{F}_{\mathscr{A}m,o,p}(e_1 + e_2 + e_3)$ $\geq \mathscr{T}(\mathscr{F}_{\mathscr{A}m,o,v}(e_1), \mathscr{F}_{\mathscr{A}m,v,\mathscr{A}p}(e_2), \mathscr{F}_{v,\mathscr{A}o,\mathscr{F}p}(e_3))$ $\geq \mathscr{T}(\min(\mathscr{F}_{\mathscr{A}m,o,p}(e_1), \mathscr{F}_{\mathscr{A}m,\mathscr{A}o,v}(e_1))\min(\mathscr{F}_{\mathscr{A}m,o,p}(e_2), \mathscr{F}_{\mathscr{A}m,o,\mathscr{A}p}(e_2)))$ $\min(\mathscr{F}_{v,\mathscr{A}o,\mathscr{A}p}(e_3), \mathscr{F}_{v,\mathscr{A}o,\mathscr{A}p}(e_3)))$ $= \mathscr{T}(h_{m,o,p}(e_1), h_{m,o,p}(e_2), h_{v,o,p}(e_3)))$ with this inequality, we've

$$\begin{split} h_{m,o,p}(e_{1}+e_{2}+e_{3}) &= \mathscr{F}_{\mathscr{A}m,\mathscr{A}o,\mathscr{F}p}(e_{1}+e_{2}+e_{3}) \\ &\geq \mathscr{T}(\mathscr{F}_{\mathscr{A}m,\mathscr{A}o,\mathscr{A}p}(e_{1}),\mathscr{F}_{\mathscr{A}m,\mathscr{A}o,\mathscr{A}p}(e_{2}),\mathscr{A}_{\mathscr{A}v,\mathscr{A}o,\mathscr{A}p}(e_{3})) \\ h_{m,o,p}(e_{1}+e_{2}+e_{3}) &= \mathscr{F}_{\mathscr{A}m,\mathscr{A}o,\mathscr{A}p}(e_{1}+e_{2}+e_{3}) \\ &\geq \mathscr{T}(\mathscr{F}_{\mathscr{A}m,\mathscr{A}o,v}(e_{1}),\mathscr{F}_{\mathscr{A}m,v,\mathscr{A}p}(e_{2}),\mathscr{F}_{v,\mathscr{A}o,\mathscr{A}p}(e_{3}))) \\ &\geq \mathscr{T}(\min\mathscr{F}_{\mathscr{A}m,o,p}(e_{1}),\mathscr{F}_{\mathscr{A}m,\mathscr{A}o,v}(e_{1})),\min(\mathscr{F}_{\mathscr{A}m,o,p}(e_{2}),\mathscr{F}_{\mathscr{A}m,v,\mathscr{A}p}(e_{2})), \\ &(e_{2}),\mathscr{F}_{\mathscr{A}m,v,\mathscr{A}p}(e_{2})), \\ &\min(\mathscr{F}_{v}(\mathscr{A}v,Az)(t_{3}),\mathscr{F}_{v}(u,Av,Az)(t_{3}))) \\ &= T(f_{x,v,u}(t_{1}),f_{x,u,z}(t_{2}),f_{v}(u,v,z)(t_{3}))) \end{split}$$

Hence (i) holds. As A is continuous then (ii) is clear. To prove (ii)

take $\varepsilon > 0$ be given and elect $\rho > 0 \ni \mathscr{T}(1-\rho, 1-\rho, 1-\rho) \ge 1-\varepsilon$.

Then from $h_{m,o,v}(e_1) \ge 1 - \rho$, $h_{m,v,p}(e_2) \ge 1 - \rho$ and $h_{v,o,p}(e_3) \ge 1 - \rho$ we've $\mathscr{F}_{\mathscr{A}m,o,v}(e_1) \ge 1 - \rho$, $\mathscr{F}_{\mathscr{A}m,v,\mathscr{A}p}(e_2) \ge 1 - \rho$ and $\mathscr{F}_{\mathscr{A}m,\mathscr{A}o,v}(e_3) \ge 1 - \rho$. Therefore $\mathscr{F}_{m,o,p}(e_1 + e_2 + e_3) \ge \mathscr{T}(\mathscr{F}_{\mathscr{A}m,o,v}(e_1))$, $\mathscr{F}_{\mathscr{A}m,v,\mathscr{A}o}(e_2), \mathscr{F}_{\mathscr{A}m,\mathscr{A}o,v}(e_3))$ $\ge \mathscr{T}(1 - \rho, 1 - \rho, 1 - \rho)$ $\ge 1 - \varepsilon$. Thence *h* is an *rs*_b- distance on \mathscr{X} .

Example 3.7. Take $(\mathscr{X}, \beta, \mathscr{T})$ is a Menger $Ps_b - S$. Then the function $h : \mathscr{X}^3 \times [0, \infty] \to [0, 1]$ characterized by $h_{m,o,p}(e) = \beta_m(e) \forall m, o, p \in \mathscr{X}$ and t > 0 rs_b- distance on \mathscr{X} , here $\beta = \eta$.

 $\begin{array}{l} \textit{Proof. Take } m, o, p \in \mathscr{X} \text{ and } e_1, e_2, e_3 > 0. \text{ Then we've} \\ h_{m,o,p}(e_1 + e_2 + e_3) = \beta_v(e_1 + e_2 + e_3) \\ \geq \mathscr{T}(\beta_{m,o,v}(e_1), \beta_{m,v,p}(e_2), \beta_{v,o,p}(e_3)) \\ = \mathscr{T}(e_{m,o,v}(e_1), h_{m,v,p}(e_2), h_{v,o,p}(e_3)) \\ \text{Hence (i) holds. Also (ii) is clear. To prove (iii), give} \\ \varepsilon > 0 \text{ and elect } \rho > 0 \ni \mathscr{T}(1 - \rho, 1 - \rho, 1 - \rho) \ge 1 - \varepsilon \\ \Rightarrow h_{m,o,v}(e_1) \ge 1 - \rho, h_{m,v,p}(e_2) \ge 1 - \rho \text{ and } h_{v,o,p}(e_3) \ge 1 - \rho \text{ we've} \\ \mathscr{F}_{m,o,p}(e_1 + e_2 + e_3) = \beta_{m-o-p}(e_1 + e_2 + e_3) \\ \ge \mathscr{T}(\beta_m(e_1), \beta_o(e_2), \beta_p(e_3)) \\ = \mathscr{T}(h_{m,o,v}(e_1), h_{m,v,p}(e_2), h_{v,o,p}(e_3)) \\ \ge \mathscr{T}(1 - \rho, 1 - \rho, 1 - \rho) \\ \ge 1 - \varepsilon \\ \text{Hence } h \text{ is an } rs_b \text{- distance on } \mathscr{X}. \qquad \Box \end{array}$

Lemma 3.8. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a Menger Ps_bMS and h is a rs_b- distance. Take $\{m_n\}$, $\{o_n\}$ and $\{p_n\}$ be sequence in \mathcal{X} . And take $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be a sequences in $[0,\infty)$ converging to zero and $m, o, p \in \mathcal{X}$ and $e_1, e_2, e_3 > 0$. Then the coming hold:

(*i*) if
$$h_{m_n,o_n,v}(e_1) \ge 1 - \alpha_n, h_{m_n,v,o_n}(e_2) \ge 1 - \beta_n, h_{v,o_n,p_n}(e_3)$$

 $\ge 1 - \gamma_n$ for any $n \in N$ then $\mathscr{F}_{m_n,o_n,p_n}(e_1 + e_2 + e_3) \to 1$

- (ii) if $h_{m_n,o_n,v}(e_1 \ge 1 \alpha_n, h_{m_n,v,o_n}(e_2) \ge 1 \beta_n$ and $h_{v,o_n,p_n}(e_3) \ge 1 \gamma_n$ some $n \in N \Rightarrow m = o = p$.
- (iii) if $h_{x_n,x_m,x_k}(e) \ge 1 \alpha_n$ any $n,m,k \in N$ with k > m > n formerly $\{x_n\}$ be a CS.

- *Proof.* (i) Take $\varepsilon > 0$. From the definition of rs_b -distance, $\exists \ \rho > 0 \ni h_{m,o,v}(e_1) \ge 1 - \rho, h_{m,v,p}(e_2) \ge 1 - \rho$ and $e_{v,o,p}(e_3) \ge 1 - \rho$ implies $e_{m,o,p}(e_1 + e_2 + e_3) \ge 1 - \varepsilon$. Elect $n_0 \in N \ni \{\alpha_n\} \le \rho, \{\beta_n\} \le \rho$ and $\{\gamma_n\} \le \rho \forall$ $n \ge n_0$. Then we've, any $n \ge n_0, h_{m,o,v}(e_1) \ge 1 - \alpha_n \ge$ $1 - \rho, h_{v,o,p}(e_2) \ge 1 - \beta_n \ge 1 - \rho$ and $h_{v,m,o}(e_3) \ge 1 - \gamma_n \ge 1 - \rho$ and hence $h_{m,o,p}(e_1 + e_2 + e_3) \ge 1 - \varepsilon$. This implies that $\mathscr{F}_{m,o_n,p_n}(e_1 + e_2 + e_3) \to 1$. Thence we've that $\{m_n\}$ converges to x. It follows from (i) that (ii) hold.
- (iii) Take $\varepsilon > 0$. By (i), Elect $\rho > 0$ and $n_0 \in N$. For any $n, m, k \ge n_0 + 1$, $h_{m_n, o_n, p_{n_0}}(e_1) \ge 1 - \alpha_{n_0} \ge 1 - \rho$, $h_{m_n, m_{n_0}, o_n}(e_2) \ge 1 - \alpha_{n_0} \ge 1 - \rho$ and $h_{m_n, o_n, m_{n_0}}(e_3) \ge 1 - \alpha_{n_0} \ge 1 - \rho$ and thence $\mathscr{F}_{x_n, x_m, x_k}(e_1 + e_2 + e_3) \ge 1 - \varepsilon$. $\Rightarrow \{m_n\}$ is a *CS*.

Theorem 3.9. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete Menger Ps_bMS , h is a rs_b - distance and a mapping from \mathcal{X} into itself. Assume that $\exists k \in]0, 1[\ni h_{\mathcal{A}m, \mathcal{A}^2m, \mathcal{A}^3m}(e) \ge h_{m, \mathcal{A}m, \mathcal{A}^2m}(\frac{e}{k}), \forall$ $m \in \mathcal{X}, e > 0 \ni sup\{\mathcal{T}(h_{m, o, p}(e), h_{m, \mathcal{A}m}(e)) : m \in \mathcal{X}\} < 1$ $\forall p, o \in \mathcal{X}$ with $o \ne \mathcal{A}o, p \ne \mathcal{A}p$. Then we've

- (i) If t-norm holds and $\exists a v \in \mathscr{X}$ with $\mathscr{E}_h(v, \mathscr{A}v, \mathscr{B}v) = \sup\{(\mathscr{E}_{\gamma}, h)(v, \mathscr{A}v, \mathscr{B}v) : \gamma \in]0, 1[<\infty\} \text{ then } \exists p \in \mathscr{X} \\ \ni p = \mathscr{A}p.$
- (ii) If s-norm holds then $\exists p \in \mathscr{X} \ni p = \mathscr{A}p$. Furthermore if $r = \mathscr{A}r, q = \mathscr{B}q$ and $h \in D^+$ then $h_{r,r,r} =_0$
- *Proof.* (i) Take $v \in \mathscr{X}$ is $\ni \mathscr{E}_h(v, \mathscr{A}v) < \infty$. Characterize $v_n = \mathscr{A}^n u$ any $n \in N$. Then we've, for some $n \in N$, $h_{v_n, v_{n+1}, v_{n+2}}(e) \ge h_{v_{n-1}, v_n, v_{n+1}}(\frac{e}{k^n})$

$$\begin{split} & \underset{k^{n}}{\overset{\dots}{\geq}} h_{v,v_{1},v_{2}}(\frac{e}{k^{n}}) \\ & \underset{\sigma,h}{\overset{\cdots}{\geq}} \mathcal{E}_{\sigma,h}(v_{n},v_{n+1},v_{n+2}) = \inf\{t > 0:h_{v_{n},v_{n+1},v_{n+2}}(e) > \\ & 1 - \sigma\} \\ & \leq \inf\{e > 0:h_{v,v_{1},v_{2}}(\frac{e}{k^{n}}) > 1 - \sigma\} \\ & = k^{n}\mathcal{E}_{\sigma,h}(v,v_{1},v_{2}) \\ & \text{hence } m > n \text{ and } \sigma \in [0,1] \exists \gamma \in [0,1] \ni \\ & \mathcal{E}_{\sigma,h}(v_{n},v_{m},v_{k}) \leq \mathcal{E}_{\gamma,h}(v_{n},v_{n+1}) + \dots + \mathcal{E}_{h(v_{m-1},v_{m})} + \dots + \\ & \mathcal{E}_{h(v_{k},v_{k+1})} \\ & \leq \frac{k^{n}}{1-k}\mathcal{E}_{\gamma,h}(v,v_{1},v_{2}) \end{split}$$

Then $\exists n_0 \in N \ni \forall n > n_0$ we've $\mathscr{E}_{\sigma,h}(v_n,v_m,v_k) \to 0$ and hence $\{v_n\}$ is a *CS*.

Also for any sequence $\{m_n\}$ is a *CS* w.r.to *h* iff it is a *CS* with $\mathscr{E}_{\sigma,h}$.

 $\therefore \{\rho_n\} \to 0 \ni \text{ for } n \ge max\{n_0, n_1\}, n_1 \in N, \text{ we've } h_{\nu_n, \nu_n, \nu_k}(e) \ge 1 - \rho_n.$

By the reason of \mathscr{X} is complete, then $\{v_n\} \to$ some point $p \in \mathscr{X}$.

Thence by definition of Menger probabilistic s_b -normed space, we've $h_{v_n,v_{m,p}} = lim_{\mathcal{T}}(k \to \infty)h_{v_n,v_m,v_k} \ge 1 - \rho_n$

and $h_{\nu_n,\nu_{n+1},\nu_{n+2}} \ge 1 - \rho_n$. Assume that $p \neq \mathscr{A}_p$. By statement, we've

$$\begin{split} &1 \geq \sup\{\mathscr{T}(h_{m,o,v}(e),h_{m,v,p}(e),h_{v,o,p}(e)): m \in \mathscr{X}\} \\ &\geq \sup\{\mathscr{T}(h_{m,o,v}(e),h_{\mathscr{A}m,v,\mathscr{A}p}(e),h_{v,\mathscr{A}o,\mathscr{A}p}(e)): m \in \mathscr{M}\} \\ &\geq \sup\{\mathscr{T}(h_{\mathscr{A}m,\mathscr{A}o,v}(e),h_{\mathscr{A}m,v,\mathscr{A}p}(e),h_{v,\mathscr{A}o,\mathscr{A}p}(e)): m \in \mathscr{X}\} \\ &\geq \sup\{\mathscr{T}(h_{v_n,\mathscr{A}o,v}(e),h_{v_n,v,v_{n+2}}(e),h_{v,v_{n+1},v_{n+2}}(e)): n \in N\} \\ &\geq \sup\{\mathscr{T}(1-\rho_n,1-\rho_n,1-\rho_n:n\in N)\} = 1, \\ &\text{Which is inconsistency.} \therefore \text{ we've } p = \mathscr{A}p. \end{split}$$

(ii) The proof is same as (i) but σ does not depend on k.

Presently if $v = \mathscr{A}v$ and $h \in D^+$ then we've $h_{r,r,r}(e) = h_{\mathscr{A}r,\mathscr{A}^2r,\mathscr{A}^3r}(e)$ $\geq h_{r,\mathscr{A}r,\mathscr{A}^2r}(\frac{e}{k})$ $= h_{r,r,r}(\frac{e}{k})$ Enduring this process, we've $h_{r,r,r}(e) = h_{r,r,r}(\frac{e}{k^n})$. Also we've $e_{r,r,r} = \varepsilon_0$.

Theorem 3.10. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete Menger Ps_b MS and \mathscr{A} is a mapping from \mathcal{X} into itself. Assume $\exists \beta \in]0,1[\ni \mathbb{T})$

 $\begin{aligned} \mathscr{F}_{\mathscr{A}m,\mathscr{M}o,\mathscr{A}p}(e) &\geq \mathscr{S}(\mathscr{F}_{m,\mathscr{A}m,\mathscr{A}^2m}(\frac{e}{\beta}),\mathscr{F}_{o,\mathscr{A}o,\mathscr{A}^2o}(\frac{e}{\beta}),\\ \mathscr{F}_{p,\mathscr{A}p,\mathscr{A}^2p}(\frac{e}{\beta})) \;\forall\; m, o, p \in \mathscr{X} \text{ and } e > 0. \end{aligned}$

- (i) If t-norm holds and $\exists a \ u \in X$ with $\mathscr{E}(v, \mathscr{A}v, \mathscr{A}^2v) < \infty$ then \mathscr{A} has a unique fd-pt..
- (ii) If s-norm holds then \mathscr{A} has a unique fd-pt.

Proof. (i) Take $m \in \mathscr{X}$. From the difference (I), we've $\mathscr{F}_{\mathscr{A}m,\mathscr{A}^2m,\mathscr{A}^3x}(e) \geq \mathscr{S}(\mathscr{F}_{m,\mathscr{A}m,\mathscr{A}^2m})$ $(\frac{e}{\beta}), \mathscr{F}_{\mathscr{A}m,\mathscr{A}^2m,\mathscr{A}^3m}(\frac{e}{\beta}), \mathscr{F}_{\mathscr{A}^2m,\mathscr{A}^3m,\mathscr{A}^4m}(\frac{e}{\beta})$ and hence $\mathscr{F}_{\mathscr{A}m,\mathscr{A}^2m,\mathscr{A}^3m}(e) \geq \mathscr{F}_{m,\mathscr{A}m,\mathscr{A}^2m}(\frac{t}{\beta})$ By the reason of the probabilistic metric \mathscr{F} is an r_{s_b} -distance, assume that $\exists \ o \in \mathscr{X}$ with $o \neq \mathscr{A}o$ and $\sup\{\mathscr{F}_{m,o,p}(e) :$ $\mathscr{F}_{m,\mathscr{A}m,\mathscr{A}^2m}(e) : m \in \mathscr{X}\} = 1.$

By the reason $\mathscr{F}_{m_n,o,\mathscr{A}_o}(e) \to 1$ and $\mathscr{F}_{m_n,\mathscr{A}_{m_n},\mathscr{A}_{m_n}}(e) \to 1$, then by lemma (3.9), we've $\{\mathscr{A}_{m_n}\} \to o$.

another way, by the reason of \mathscr{A} fulfills the condition (I) then we've, $\mathscr{F}_{\mathscr{A}m_n,\mathscr{A}^2m_n,\mathscr{A}o}(e) \geq \mathscr{S}(\mathscr{F}_{m_n,\mathscr{A}m_n,\mathscr{A}^2m_n}(\frac{e}{\beta}),$ $\mathscr{F}_{o,\mathscr{A}o,\mathscr{A}^2o}(\frac{e}{\beta})) \to 1$ as $n \to \infty$ i.e $o = \mathscr{A}o$. inconsistency. Thence if $o \neq \mathscr{A}o$ then $sup\{\mathscr{A}_{m,o,p}(e) : \mathscr{A}_{m,\mathscr{A}m,\mathscr{A}^2m}(e) : m \in \mathscr{X}\} < 1$.

Then by theorem (3.10), $\exists p \in \mathscr{X} \ni p = \mathscr{A}p$. By the reason of $\mathscr{F} \in D^+$ then the uniqueness is trivial.

(ii) The proof is same as (i).

4. *rs*_b-distance with Property \mathscr{C} and Weakly Commuting maps in *Ps*_b*M*-Space

Definition 4.1. State r_{s_b} - distance h has property (\mathscr{C}') if it fulfills the coming condition: $h_{m,o,p}(e) = \mathscr{C}' \ \forall \ t > 0 \Rightarrow \mathscr{C}' = 1.$

Theorem 4.2. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete Menger Ps_bM space, h is r-distance on it and $\mathcal{A}, \mathcal{B}, \mathcal{C} : \mathcal{X} \to X$ be maps that fulfill the coming properties:

- (i) $\mathscr{C}(\mathscr{X}) \subseteq \mathscr{B}(\mathscr{X}) \subseteq \mathscr{A}(\mathscr{X}).$
- (ii) \mathcal{A}, \mathcal{B} and \mathcal{C} are continuous
- (iii) $h_{\mathscr{C}(m),\mathscr{C}(o)}(e) \ge h_{\mathscr{F}(m),\mathscr{B}(o)}(e) \ge h_{\mathscr{A}(m),\mathscr{A}(o)}(\frac{e}{k}) \forall m, o \in \mathscr{X}, t > 0, 0 < k < 1.$

Suppose $m \in \mathscr{X}$

$$\begin{split} & \mathcal{E}_h(\mathscr{A}(m),\mathscr{B}(m),\mathscr{C}(m)) + \mathcal{E}_h(\mathscr{A}(m),\mathscr{B}(m),p) + \mathcal{E}_h(\mathscr{B}(m),\mathscr{C}(m),p) + \mathcal{E}_h(\mathscr{B}(m),\mathscr{B}(m),p) + \mathcal{E}_h(\mathscr{C}(m),\mathscr{C}(\mathscr{C}(m)),p) + \mathcal{E}_h(\mathscr{C}(m),\mathscr{B}(m),\mathscr{A}(m)) < \infty, \forall \ p \in \mathscr{X} \ with \ \mathscr{B}(\mathscr{Z}) \neq \mathscr{B}(\mathscr{B}(p)) \\ & \text{ ond } \ \mathscr{C}(p) \neq \mathscr{C}(\mathscr{C}(p)) \ here \ \mathcal{E}_h(z,y,x) = \sup\{\mathcal{E}_{\gamma,h}(z,y,x): \ \gamma \in (0,1)\}. \end{split}$$

Also suppose if $\{m_n\}$ is a sequence in \mathscr{X} with $\lim_{\mathscr{T}} (n \to \infty) \mathscr{A}(m_n) = o \in \mathscr{X}$, then $\forall \eta \in (0,1)$, we have $\mathscr{E}_{\eta,h}(\mathscr{A}(m_n), \mathscr{A}(m_s), o) \leq \lim_{s,u\to\infty} \mathscr{E}\eta, h(\mathscr{A}(m_n), \mathscr{A}(m_p), \mathscr{A}(m_u))$. In addition,

- (i) If t-norm holds and $\exists a m_0$ with $\mathscr{E}_h(\mathscr{A}(m_0), \mathscr{B}(m_0), \mathscr{C}(m_0)) = \sup\{\mathscr{E}_{\gamma,h}(\mathscr{A}(m_0), \mathscr{B}(m_0), \mathscr{C}(m_0)): \gamma \in (0,1)\} < \infty$ and $\mathscr{E}_h(\mathscr{B}(m_0), \mathscr{B}(\mathscr{B}(m_0)), \mathscr{C}(\mathscr{C}(m_0))) = \sup\{\mathscr{E}_{\gamma,h}(\mathscr{B}(m_0), \mathscr{B}(\mathscr{B}(m_0)), \mathscr{C}(\mathscr{C}(m_0))): \gamma \in (0,1)\} < \infty$ then \mathscr{A}, \mathscr{B} and \mathscr{C} have a Common fixed point given that \mathscr{A}, \mathscr{B} and C commute each other.
- (ii) If s-norm holds then A, B, C have a common fixed point given that \mathscr{A}, \mathscr{B} and \mathscr{C} commute one another. In addition if h has the property $\mathscr{C}', h(.)$ is non decreasing and $\mathscr{B}(r) = \mathscr{B}(\mathscr{B}(r)), \forall r \in \mathscr{X}$ then $h_{\mathscr{B}(r),\mathscr{B}(r)}(r) = 1$ and $\mathscr{C}(w) = \mathscr{C}(\mathscr{C}(w)) \forall w \in X$ and $h_{\mathscr{C}(w),\mathscr{C}(w)}(e) = 1$.
- Proof. (i) First $\forall m \in \mathscr{X}$, $\inf\{\mathscr{E}_h(\mathscr{A}(m), \mathscr{B}(m), \mathscr{C}(m)) + \mathscr{E}_h(\mathscr{A}(m), \mathscr{B}(m), p) + \mathscr{E}_h(\mathscr{B}(m), \mathscr{C}(m), p) + \mathscr{E}_h(\mathscr{B}(m), \mathscr{B}(m), p) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{C}(\mathscr{C}(m)), p) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{B}(m), \mathscr{A}(m))\} > 0, \forall p \in \mathscr{X} \text{ with } \mathscr{B}(p) \neq \mathscr{B}(\mathscr{B}(p))$ and $\mathscr{C}(p) \neq \mathscr{C}(\mathscr{C}(p)).$

Assume this is true. For that, let $m_0 \in \mathscr{X}$ with $\mathscr{E}_h(\mathscr{A}(m_0), \mathscr{B}(m_0), \mathscr{C}(m_0))$ $< \infty, \mathscr{E}_h(\mathscr{B}(m_0), \mathscr{B}(\mathscr{B}(m_0)), p) < \infty$ and $\mathscr{E}_h(\mathscr{C}(m_0), \mathscr{C}(\mathscr{C}(m_0)), p) < \infty$.

But (i), we find $m_1, m_2 \ni \mathscr{A}(m_1) = \mathscr{B}(m_0) = \mathscr{C}(m_2)$. By acceptance we can characterize a sequence $\{m_n\}_n \ni \mathscr{A}(m_n) = \mathscr{B}(m_{n-1}) = \mathscr{C}(m_{n+1})$.

By acceptance again,

$$\begin{split} h_{\mathscr{A}(m_n),\mathscr{B}(m_{n+1}),\mathscr{C}(m_{n+2})}(e) &= h_{\mathscr{B}(m_{n-1}),\mathscr{B}(m_n),\mathscr{B}(m_{n+1})}(e) \geq \\ h_{\mathscr{A}(m_{n-1}),\mathscr{A}(m_n),\mathscr{A}(m_{n+1})}(\frac{e}{k})) \geq \ldots \geq h_{\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2)}(\frac{e}{k^n}) \\ (\frac{e}{k^n}) \text{ and therefore,} \end{split}$$

$$\begin{split} & \mathscr{E}_{\gamma,h}(\mathscr{A}(m_n),\mathscr{A}(m_{n+1}),\mathscr{A}(m_{n+2})) \leq k^n \mathscr{E}_{\gamma,h}(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2)), \text{ for } n = 1,2, \ldots \Rightarrow s > n \text{ and for } \eta \in]0,1[\\ & \exists \ \sigma \in]0,1[\ \ni \mathscr{E}_{\eta,h}(\mathscr{A}(m_n),\mathscr{A}(m_s),\mathscr{A}(m_u)) \leq \mathscr{E}_{\sigma,h}(\mathscr{A}(m_{s-1}),\mathscr{A}(m_s),\mathscr{A}(m_{s+1})) + \mathscr{E}_{\gamma,h}(\mathscr{A}(m_{s-2}),\mathscr{A}(m_{s-1}), \mathscr{A}(m_s)) + \ldots + \mathscr{E}_{\sigma,h}(\mathscr{A}(m_n),\mathscr{A}(m_{n+1}),\mathscr{A}(m_{n+2})) \leq \mathscr{E}_h \\ & (\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2)) \sum_{j=n}^{s-1} k^j \leq (\frac{k^n}{1-k}) \\ & \mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2)). \end{split}$$

Thence $\{\mathscr{A}(m_n)\}$ is a *CS*. By the reason of \mathscr{X} is complete then $\exists o \in \mathscr{X} \ni \lim_{\mathscr{T}} (n \to \infty) \mathscr{A}(m_n) = o$ If $\mathscr{B}(m_{n-1}) = \mathscr{A}(m_n) \to o$ then $\{\mathscr{B}(\mathscr{A}(m_n))\}_n \to \mathscr{B}(o)$.

Be that as it may $\mathscr{B}(\mathscr{A}(m_n)) = \mathscr{A}(\mathscr{B}(m_n)), \mathscr{C}(\mathscr{B}(m_n))$ = $\mathscr{B}(\mathscr{C}(m_n))$ and $\mathscr{A}(\mathscr{C}(m_n)) = \mathscr{C}(\mathscr{A}(m_n))$, by the commutative condition and so $\mathscr{A}(\lfloor (m_n)), \mathscr{B}(\mathscr{C}(m_n))$ and $\mathscr{C}(\mathscr{A}(m_n)) \to \mathscr{A}(o)$. By the reason the limits are unique, $\mathscr{A}(o) = \mathscr{B}(o) = \mathscr{C}(o)$ and so $\mathscr{A}(\mathscr{A}(o)) = \mathscr{A}(\mathscr{B}(o)) = \mathscr{A}(\mathscr{C}(o))$.

Differently, we've

 $\mathscr{E}_{\eta,h}(\mathscr{A}(m_n)), \mathscr{A}(m_s, o) \leq \lim_{s, u \to \infty} \mathscr{E}\eta, h(\mathscr{A}(m-n), \mathscr{A})$ $(m_s, \mathscr{A}(m_u)) \leq \mathscr{E}_{\eta,h}(\mathscr{A}(m_n), \mathscr{A}(m_s), o) \leq$ Since $\forall \eta \in]0,1[$ then we've $\mathscr{E}_h(\mathscr{A}(m_n),\mathscr{A}(m_s),o) \leq$ $\frac{k^n}{1-k}\mathcal{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))$. Also, by the reason $\mathscr{B}(m_n) = \mathscr{A}(m_{n+1}) = \mathscr{C}(m_{n+2})$ then we've $\mathscr{E}_h(\mathscr{B}(m_n))$, $\mathscr{B}(m_s), o) \leq \frac{k^{n+1}}{1-k} \mathscr{E}_h(\mathscr{A}(m_0), \mathscr{A}(m_1), \mathscr{A}(m_2)) \text{ and } \mathscr{E}_h(\mathscr{C})$ $(m_n), \mathscr{C}(m_s), o) \leq \frac{k^{n+2}}{1-k} \mathscr{E}_h(\mathscr{A}(m_0), \mathscr{A}(m_1), \mathscr{A}(m_2))$ and $h_{\mathscr{B}(m_n),\mathscr{B}(\mathscr{B}(m_n)),\mathscr{C}(m_n)}(e) \ge h_{\mathscr{A}(m_n),\mathscr{A}(\mathscr{E}B(m_n)),\mathscr{C}(m_n)}(\frac{e}{k})$ $=h_{\mathscr{B}(m_{n-1}),\mathscr{B}(\mathscr{B}(m_{n-1})),\mathscr{C}(m_{n-1})}(\frac{e}{k})$ $\geq h_{\mathscr{A}(m_{n-1}),\mathscr{A}(\mathscr{B}(m_{n-1})),\mathscr{C}(m_{n-1})}(\frac{e}{k^2})$ $=h_{\mathscr{B}(m_{n-2}),\mathscr{B}(\mathscr{B}(m_{n-2})),\mathscr{E}(m_{n-1})}\left(\frac{e}{k^{2}}\right)$ $=h_{\mathscr{B}(m_{n-2}),\mathscr{B}(\mathscr{B}(m_{n-2})),\mathscr{C}(m_{n-1})}\left(\frac{e}{k^{2}}\right)$ $\geq \ldots \geq h_{\mathscr{A}(m_1),\mathscr{B}(\mathscr{A}(m_1)),\mathscr{C}(m_1)}((\frac{e}{k^n}))$ $\Rightarrow \mathscr{E}_{\eta,h}(\mathscr{B}(m_n),\mathscr{B}(\mathscr{B}(m_n)),\mathscr{C}(m_n)) \geq k^n \mathscr{E}_{\eta,h}(\mathscr{A}(m_1)),$ $\mathscr{B}(\mathscr{A}(m_1)), \mathscr{C}(m_1)) \leq k^n \mathscr{E}_h(\mathscr{A}(m_1), \mathscr{B}(\mathscr{A}(m_1)), \mathscr{C}(m_1))$)) and so, $\mathscr{E}_h(\mathscr{B}(m_n), \mathscr{B}(\mathscr{B}(\mathscr{A}(m_n)), \mathscr{C}(m_n)) \leq k^n \mathscr{E}_h(\mathscr{A}(m_n)))$ $(m_1), \mathscr{B}(\mathscr{A}(m_1)), \mathscr{C}(m_1)).$

Presently $\mathscr{B}(o) = \mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) = \mathscr{C}(\mathscr{C}(o))$. Suppose $\mathscr{B}(o) \neq \mathscr{B}(\mathscr{B}(o))$. By above, we've $0 < \inf{\mathscr{E}_h(\mathscr{A})}$ $(m), \mathscr{B}(m), \mathscr{C}(m)) + \mathscr{E}_h(\mathscr{A}(m), \mathscr{B}(m), o) + \mathscr{E}_h(\mathscr{B}(m), o)$ $\mathscr{C}(m), o) + \mathscr{E}_h(\mathscr{B}(m), \mathscr{B}(\mathscr{B}(m)), o) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{C}(\mathscr{C}))$ (m), o) + $\mathcal{E}_h(\mathcal{C}(m), \mathcal{B}(m), \mathcal{A}(m)) : m \in \mathcal{X}$ } $\leq \inf{\mathcal{E}_h}$ $(\mathscr{A}(m_n), \mathscr{B}(m_n), \mathscr{C}(m_n)) + \mathscr{E}_h(\mathscr{A}(m_n))$ $\mathscr{B}(m_n), o) + \mathscr{E}_h(\mathscr{B}(m_n), \mathscr{C}(m_n), o) + \mathscr{E}_h(\mathscr{B}(m_n), \mathscr{B}(\mathscr{B}(m_n), o))$ $(m_n)(o) + \mathcal{E}_h(\mathcal{C}(m_n), \mathcal{C}(\mathcal{C}(m_n)), o) + \mathcal{E}_h(\mathcal{C}(m_n), \mathcal{B}(m_n))$ $(M(m_n)): n \in N = \inf \{ \mathscr{E}_h(\mathscr{A}(m_n), \mathscr{A}(m_{n+1}), o) + \}$ $\mathscr{E}_h(\mathscr{A}(m_n),\mathscr{A}(m_s),\mathscr{A}(m_u)) + \mathscr{E}_h(\mathscr{B}(m_n),\mathscr{B}(m_s),o) +$ $\mathscr{E}_h(\mathscr{B}(m_1),\mathscr{B}(\mathscr{B}(m_1)),o) + \mathscr{E}_h(\mathscr{C}(m_n),\mathscr{C}(m_s),\mathscr{C}(m_s)))$ $+ \mathcal{E}_{h}(\mathcal{C}(m_{s}), \mathcal{B}(m_{u}), \mathcal{A}(m_{n}))\} = \inf \{\mathcal{E}_{h}(\mathcal{A}(m_{n}), \mathcal{A})\}$ $(m_{n+1}), o) + \mathcal{E}_h(\mathscr{A}(m_n), \mathscr{A}(m_s), \mathscr{A}(m_u)) + \mathcal{E}_h(m_u)$ $\mathscr{B}(m_n), \mathscr{B}(m_s), o) + \mathscr{E}_h(\mathscr{B}(m_1), \mathscr{B}(\mathscr{B}(m_1)), o) + \mathscr{E}_h(\mathscr{C})$ $(m_n), \mathscr{C}(m_s), \mathscr{C}(m_u)) + \mathscr{E}_h(\mathscr{C}(m_u), \mathscr{B}(m_u), \mathscr{A}(m_n))\}$ $\leq \inf\{k^n \mathscr{E}_h(\mathscr{A}(m_0), \mathscr{A}(m_1), o) + (\frac{k^n}{1-k}) \mathscr{E}_h(\mathscr{A}(m_0), \mathscr{A})\}$ $(m_1), \mathscr{A}(m_2)) + (\frac{k^{n+1}}{1-k}) \mathscr{E}_h(\mathscr{A}(m_0), \mathscr{A}(m_1), \mathscr{A}(m_2)) +$ $k^n \mathscr{E}_h(\mathscr{B}(m_1), \mathscr{B}(\mathscr{B}(m_1)), o) + (\frac{k^n}{1-k}) \mathscr{E}_h(\mathscr{C}(m_0), \mathscr{C}(m_1), o)$

$$\mathscr{C}(m_2)) + \left(\frac{k^{n+1}}{1-k}\right) \mathscr{E}_f(\mathscr{C}(m_0), \mathscr{C}(m_1), \mathscr{C}(m_2)) : n \in N \} = 0$$

This is a conflict. Thus $\mathscr{B}(o) = \mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) =$ $\mathscr{C}(\mathscr{C}(o))$. Thus $\mathscr{B}(o) = \mathscr{B}(\mathscr{B}(o) = \mathscr{A})(\mathscr{B}(o))$ and accordingly $\mathscr{B}(o)$ is a common fixed point of \mathscr{A}, \mathscr{B} and \mathscr{C} . Moreover if $\mathscr{B}(o)$ is a common fixed point of $\mathscr{A}, \mathscr{B} \text{ and } \mathscr{C} \mathscr{B}(v) = \mathscr{B}(\mathscr{B}(v)) \forall v \in X$, then we have $h_{(\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(e) = h_{\mathscr{B}(\mathscr{B}(o)),\mathscr{B}(\mathscr{B}(o)),\mathscr{B}(\mathscr{B}(o))}(e) \geq$ $h_{\mathscr{A}(\mathscr{B}(\mathscr{C}(o))),\mathscr{A}(\mathscr{B}(\mathscr{C}(o))),\mathscr{A}(\mathscr{B}(\mathscr{C}(o)))}(\frac{e}{k}) \geq$ $h_{\mathscr{A}(\mathscr{B}(o)),\mathscr{A}(\mathscr{B}(o)),\mathscr{A}(\mathscr{B}(o))}(\overset{e}{\overline{k}}) = h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(\overset{e}{\overline{k}}),$ Since $\mathscr{A}(\mathscr{B}(\mathscr{C}(o))) = \mathscr{C}(\mathscr{A}(\mathscr{B}(o))) \Rightarrow (\mathscr{B}(o)) = \mathscr{C}(o)$ $\mathscr{B}(o)$ $\Rightarrow \mathscr{B}(o) = \mathscr{B}(o)$ and $\mathscr{B}(\mathscr{C}(o)) = \mathscr{B}(o)$ and $\mathscr{B}(\mathscr{C}(o)) = \mathscr{B}(o)$. Differently, known h is decreasing, then we've $h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(e) \leq h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(\frac{e}{k})$ Thus we've $h_{\mathscr{B}(o),\mathscr{B}(o)}(e) = h_{\mathscr{B}(o),\mathscr{B}(o)}(e) = h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(e) = h_{\mathscr{B}(o),\mathscr{B}(o)}(e) = k' \forall e > 0$. Hence by property (\mathscr{C}') we've $h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(e) = 1$. To prove the assert, consider that $\exists o \in \mathscr{X}$ with $\mathscr{B}(o) \neq i$ $\mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) \neq \mathscr{C}(\mathscr{C}(o))$ and $\inf{\mathscr{E}_h(\mathscr{A}(m), \mathscr{B})}$ $(m), \mathscr{C}(m)) + \mathscr{E}_h(\mathscr{A}(m), \mathscr{B}(m), o) + \mathscr{E}_h(\mathscr{B}(m), \mathscr{C}(m), o)$ $) + \mathcal{E}_{h}(\mathcal{B}(m), \mathcal{B}(\mathcal{B}(m)), o) + \mathcal{E}_{h}(\mathcal{C}(m), \mathcal{C}(\mathcal{C}(m)), o) +$ $\mathscr{E}_h(\mathscr{C}(m),\mathscr{B}(m),\mathscr{A}(m)): m \in \mathscr{X}\} = 0.$ Then $\exists \{m_n\} \ni lim_{n \to \infty} \{\mathscr{E}_h(\mathscr{A}(m_n), \mathscr{B}(m_n), \mathscr{C}(m_n)) +$ $\mathscr{E}_h(\mathscr{A}(m_n),\mathscr{B}(m_n),o) + \mathscr{E}_h(\mathscr{B}(m_n),\mathscr{C}(m_n),o) + \mathscr{E}_h(\mathscr{B}(m_n),o))$ $(m_n), \mathscr{B}(\mathscr{B}(m_n)), o) + \mathscr{E}_h(\mathscr{C}(m_n), \mathscr{C}(\mathscr{C}(m_n)), o) + \mathscr{E}_h($ $\mathscr{C}(m_n), \mathscr{B}(m_n), \mathscr{A}(m_n)) = 0$. We know that, $h_{\mathscr{A}(m_n),\mathscr{B}(m_n),\mathscr{C}(m_n)}(e) \to 1$ and $h_{\mathscr{A}(m_n),\mathscr{B}(m_n),o}(e) \to 1$ and by lemma (3.9) we've $\lim_{\mathscr{B}\to\infty}\mathscr{B}(m_n) = o$ and $\lim_{n\to\infty}\mathscr{C}(m_n)=o.$ Also $h_{\mathscr{B}(m_n),\mathscr{C}(m_n),o}(e) \to 1, h_{\mathscr{A}(m_n),\mathscr{B}(m_n),\mathscr{B}(\mathscr{B}(m_n))}(e)$ $\rightarrow 1 \text{ and } h_{\mathscr{A}(m_n),\mathscr{B}(m_n),\mathscr{C}(\mathscr{C}(m_n))}(e) \rightarrow 1$ \therefore by lemma (3.9), we've $\lim_{n\to\infty} \mathscr{B}(\mathscr{B}(m_n)) = y$ and $\lim_{n\to\infty} \mathscr{C}(\mathscr{C}(m_n)) = 0$. Therefore $\mathscr{B}(o) = \mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) = \mathscr{C}(\mathscr{C}(o))$, which is a contradiction. Hence if $\mathscr{B}(o) \neq \mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) \neq \mathscr{C}(\mathscr{C}(o))$ then $\inf \{ \mathscr{E}_h(\mathscr{A}(m), \mathscr{B}(m), \mathscr{C}(m)) \}$ $+\mathcal{E}_{h}(\mathcal{A}(m),\mathcal{B}(m),o)+\mathcal{E}_{h}(\mathcal{B}(m),\mathcal{C}(m),o)+\mathcal{E}_{h}(\mathcal{B}(m),o)$ $\mathscr{B}(\mathscr{B}(m)), o) + \mathscr{E}_h(\mathscr{C}(m)\mathscr{C}(\mathscr{C}(m)), o) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{B})$ $(m), \mathscr{A}(m)): m \in \mathscr{X} \} > 0.$

Definition 4.3. Take h and k be maps from a Menger Ps_bM -space $(\mathcal{X}, \mathcal{F}, \mathcal{T})$. The maps h and k are termed as be Weakly Commuting if $\mathcal{F}_{hkm,khm}(e) \geq \mathcal{F}_{hm,km}(e)$ for each m in \mathcal{X} and e > 0.

Remark 4.4. Consider φ denote the set of all onto and strictly non-decreasing function φ from $[0,\infty) \rightarrow [0,\infty)$ which gratify $\lim_{n\to\infty} \varphi^n(e) = 0$ for e > 0. Here $\varphi^n(e)$ stands for nth iterative function of $\varphi(e)$.

If $\varphi \in \phi$ then $\varphi(e) < t$ for e > 0. suppose that $\exists e_o > 0$ with $e_0 \leq \varphi(e_0)$. Then since φ is non decreasing we have $e_0 \leq \varphi^n(e_0) \ \varphi \ \forall n \in \{1, 2, ...\}$ which is inconsistency. Also $\varphi(0) = 0$.

Lemma 4.5. Assume a Menger Ps_bM -space $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ fulfills the coming condition: $\mathcal{F}_{m,o,p}(e) = \mathcal{C} \forall e > 0$ then we've

 $\mathscr{C} = \varepsilon_0(e)$ and m = o.

Theorem 4.6. Take $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ is a complete Menger Ps_b -space and h, k and l be weakly commuting self mappings of X fulfilling the coming properties:

(i)
$$h(\mathscr{X}) \subseteq k(\mathscr{X}) \subseteq l(\mathscr{X})$$

- (ii) h and k or l is continuous.
- (iii) $\mathscr{F}_{hm,ho,hp}(\varphi(e)) \ge \mathscr{F}_{km,ko,kp}(e) \ge \mathscr{F}_{lm,lo,lp}(e)$, here $\varphi \in \phi$.
- (a) If t-norm holds and $\exists m_0 \in X$ with $\mathscr{E}_{\mathscr{F}}(lm_0, km_0, hm_0) = \sup \{\mathscr{E}_{\gamma, \mathscr{F}}(lm_0, km_0, hm_0) : \gamma \in (0, 1)\} < \infty$, thus h and k have exclusive common fixed point.
- (b) If s-norm holds then h and k have a unique common fixed point.

Proof. Elect $m_0 \in \mathscr{X}$ with $\mathscr{E}_{\mathscr{F}}(lm_0, km_0, hm_0) < \infty$. Take $m_1 \in X$ with $hm_0 = km_1 = lm_2$. In general, pick $m_{n+1}, m_{n+2} \ni$ $hm_n = km_{n+1} = lm_{n+2}$. Presently $\mathscr{F}_{hm_n,hm_{n+1},hm_{n+2}}(\varphi^{n+1}(e))$ $\geq \mathscr{F}_{hm_{n-1},hm_n,hm_{n+1}}(\boldsymbol{\varphi}^n(e)) \geq \mathscr{F}_{km_0,km_1,km_2}(e) \geq \mathscr{E}_{lm_0,lm_1,lm_2}$ (e). every $\boldsymbol{\sigma} \in (0,1)$, $\mathscr{F}_{\boldsymbol{\sigma},\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2}) = \inf\{\boldsymbol{\varphi}^{n+1}\}$ $(e) > 0: \mathscr{F}_{hm_n, hm_{n+1}, hm_{n+2}}(\varphi^{n+1}(e)) > 1 - \sigma\}$ $\leq inf\{\varphi^{n+1}(e) > 0: \mathscr{F}_{lm_0,km_0,hm_0}(e) > 1 - \sigma\}$ $\leq \varphi^{n+1}(inf\{e > 0 : \mathscr{F}_{lm_0,km_0,hm_0}(e) > 1 - \sigma\})$ $= \boldsymbol{\varphi}^{n+1}(\mathscr{E}_{\boldsymbol{\sigma},\mathscr{F}}(lm_0,km_0,hm_0))$ $\leq \varphi^{n+1}(\mathscr{E}_{\mathscr{F}}(lm_0,km_0,hm_0))$ Hence $\mathscr{F}_{\sigma,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2}) \leq \varphi^{n+1}(\mathscr{E}_{\mathscr{F}}(lm_0, km_0, hm_0))$)) Take $\varepsilon > 0$ and $n \in \{1, 2, 3, ...\}$ so $\mathscr{F}_{\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2})$ $< \varepsilon - 2\varphi(\varepsilon)$. For $\sigma \in (0,1), \exists \eta \in (0,1)$ with $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n,h)$ $(m_{n+1}, hm_{n+3}) \leq \mathscr{E}_{\eta,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+1}) + \mathscr{E}_{\eta,\mathscr{F}}(hm_{n+1}, hm_{n+1})$ $m_{n+2}, hm_{n+2}) + \mathscr{E}_{\eta,\mathscr{F}}(hm_{n+2}, hm_{n+3}, hm_{n+3})$ $\leq \mathscr{E}_{\eta,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+1})$ $+ \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+1})) + \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_{n+1}, hm_{n+1}, hm_{n+1}))$ $(m_{n+2})) \leq \mathscr{E}_{\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+1}) + \varphi(\mathscr{E}_{\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+1}))$ $(m_{n+1})) + \varphi(\mathscr{E}_{\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2}))$ $\leq [\varepsilon - 2\varphi(\varepsilon)] + \varphi(\varepsilon) + \varphi(\varepsilon)$ $\leq \varepsilon$ Then $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+3}) \leq \varepsilon$. For $\sigma \in (0, 1), \exists \eta \in$ (0,1) with $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n, hm_{n+2}, hm_{n+4}) \leq \mathscr{E}_{\eta,\mathscr{F}}(hm_n, hm_{n+1}, h)$ $(m_{n+2}) + \mathscr{E}_{\eta,\mathscr{F}}(hm_{n+1},hm_{n+2},hm_{n+3}) + \mathscr{E}_{\eta,\mathscr{F}}(hm_{n+2},hm_{n+3},hm_{n+3})$ hm_{n+4}) $\leq \mathscr{E}_{\eta,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2}) + \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2}))$

$$\begin{split} hm_{n+2})) + \mathscr{E}_{\eta,\mathscr{F}}(hm_{n+2},hm_{n+3},hm_{n+4}) &\leq (\varepsilon - 2\varphi(\varepsilon)) + \varphi(\varepsilon \\ - \varphi(\varepsilon)) + \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_{n+1},hm_{n+2},hm_{n+3}) \\ &\leq (\varepsilon - 2\varphi(\varepsilon)) + \varphi(\varepsilon - \varphi(\varepsilon)) + \varphi(\varepsilon - \varphi(\varepsilon)) \\ &\leq \varepsilon. \end{split}$$

Similarly for each $\sigma \in (0,1)$, we've $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n, hm_{n+2}, hm_{n+4}) \leq \varepsilon$.

Note that $\mathscr{F}_{(hm_{n+1},hm_{n+2},hm_{n+3})}\varepsilon(e) \leq \mathscr{F}_{km_{n+1},km_{n+2},km_{n+3}}$ $(e) = \mathscr{F}_{hm_n,hm_{n+2},hm_{n+4}}$

 $\Rightarrow \mathscr{E}_{\sigma,\mathscr{E}}(hm_{n+1},hm_{n+2},hm_{n+3}) \leq \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_n,hm_{n+2},hm_{n+4})).$ Therefore, $\mathscr{E}_{\mathscr{F}}(hm_n,hm_{n+2},hm_{n+4}) \leq \varepsilon$.

By induction, $\mathscr{E}_{\mathscr{F}}(hm_n, hm_{n+k}, hm_{n+k+2}) \leq \varepsilon$ for $k \in \{1, 2, 3, .\}$ Therefore $\{hm_n\}$ is a *CS* and by the reason \mathscr{X} is complete, $\{hm_n\}$ converges to r in \mathscr{X} . Also $\{km_n\}$ and $\{lm_n\}$ converges to p. let us now presume that the mapping h is continuous. Then $\lim_n hm_n = hp$, $\lim_n km_n = fz$ and $\lim_n hlm_n = hp$. Since h, k and l are weakly commuting each other, we've,

 $\mathcal{F}_{hkm_n,khm_n}(e) \geq \mathcal{F}_{hm_n,km_n}(e), \mathcal{F}_{hlm_n,lhm_n}(e) \geq \mathcal{F}_{hm_n,lm_n}(e)$ and $\mathcal{F}_{klm_n,lkm_n}(e) \geq \mathcal{F}_{km_n,lm_n}(e).$

Take $n \to \infty$ in the above disparity and $\lim_{n\to\infty} khm_n = hp$ and $\lim_{n\to\infty} klm_n = hp$ continuity of *h*.

Presently prove p = hp. Consider $p \neq hp$. By (iii) some e > 0, we've $\mathscr{F}_{hm_n,hhm_n,hp_n}(\varphi^{k+1}(e)) \ge \mathscr{F}_{km_n,khm_n,kp_n}(\varphi^k(e)) \ge \mathscr{F}_{lm_n,lhm_n,lp_n}(e)$ $\Rightarrow \mathscr{F}_{p,hp,p}(\varphi^{k+1}(e)) \ge \mathscr{F}_{p,kp,p}(\varphi^k(e)) \ge \mathscr{F}_{p,hp,p}(e)$ Also we've $\mathscr{F}_{p,hp,p}(\varphi^k(e)) \ge \mathscr{F}_{p,hp,p}(\varphi^{k-1}(e))$ and $\mathscr{F}_{p,hp,p}(\varphi^{k}(e)) \ge \mathscr{F}_{p,hp,p}(\varphi^{k+1}(e)) \ge \mathscr{F}_{p,hp,p}(e)$ Thus we've $\mathscr{F}_{p,hp,p}(\varphi^{k+1}(e)) \ge \mathscr{F}_{p,hp,p}(e)$ Differently, $\mathscr{F}_{p,hp,p}(\varphi^{k+1}(e)) \le \mathscr{F}_{p,hp,p}(t)$. Then $\mathscr{F}_{p,hp,p}(e) = \mathscr{C}$ and by lemma (2.3.5) p = hp. Since $h(\mathscr{X}) \subseteq k(\mathscr{X}) \subseteq l(\mathscr{X})$ Thus the locate $p_1, p_2 \in \mathscr{X} \ni p = b$

 $h(\mathscr{X}) \subseteq k(\mathscr{X}) \subseteq l(\mathscr{X}) \text{ Thus the locate } p_1, p_2 \in \mathscr{X} \ni p = hp = hp_1 = hp_2 = kp_1 = lp_2.$ Presently $\mathscr{F}_{hhm_n,hp_1,hp_2}(e) \geq \mathscr{F}_{khm_n,kp_1,lp_2}(varphi^{-1}(e)).$

Taking limit as $n \to \infty$, we've, $\mathscr{F}_{hp,hp_1,hp_2}(e) \ge \mathscr{F}_{p,kp_1,lp_2}(\varphi^{-1}(e)) \Rightarrow \mathscr{F}_{hp,p,p}(e) \ge \mathscr{F}_{p,hp,p}(\varphi^{-1}(e)) = \varepsilon_0(e), \Rightarrow hp = hp_1.$

That is $p = hp = hp_1 = kp_1 = lp_2 = lp_1$.

Also e > 0, known h, k and l are weakly commuting each other, we've $\mathscr{F}_{hp,kp,lp}(e) = \mathscr{F}_{hkp_1,klp_1,hlp_1}(e) \ge \mathscr{F}_{hp_1,kp_1,lp_1}(e) = \varepsilon_0(e)$

Thence hp = kp = lp. Thus *p* is a common fixed point of *h*, *k* and *l*. To prove the uniqueness, suppose $p_1 \neq p_2 \neq p$ is another common fixed point of *h*, *k* and *l*. Then some e > 0 and $n \in N$ we've

 $\begin{aligned} \mathscr{F}_{z,z_1,z_2}(\varphi^{n+1}(t)) &= F_{fz,fz_1,fz_2}(\varphi^{n+1}(t)) \\ \geq F_{gz,gz_1,gz_2}(\varphi^n(t)) &= F_{hz,hz_1,hz_2}(\varphi^n(t)) \\ = F_{z,z_1,z_2}(\varphi^n(t)) \text{ Also we have } \mathscr{F}_{p,p_1,p_2}(\varphi^n(e)) \geq \mathscr{F}_{p,p_1,p_2}(\varphi^{n-1}(e)) \\ \varphi^{n-1}(e)) \text{ and } \mathscr{F}_{p,p_1,p_2}(\varphi^n(e)) \geq \mathscr{F}_{p,p_1,p_2}(e). \\ \text{ Thence we've } \mathscr{F}_{p,p_1,p_2}(\varphi^{n+1}(e)) \geq \mathscr{F}_{p,p_1,p_2}(e). \\ \text{ Differently, we've } \mathscr{F}_{p,p_1,p_2}(e) \leq \mathscr{F}_{p,p_1,p_2}(\varphi^{n+1}(e)) \\ \text{ Then } \mathscr{F}_{p,p_1,p_2}(e) = \mathscr{C} \text{ and by lemma } (4.5) \ p = p_1 = p_2 \end{aligned}$

Thus p is the unique common fixed point of h, k and l.

5. Conclusion

Main consequence of this work is,

- (i) *r*-distance in Menger *PMS* can be extended to rs_b distance in Menger probabilistic s_b -metric spaces.
- (ii) A few fixed point theorems were proved in complete Menger Ps_bMS .
- (iii) Also some statements were proved in both rs_b -distance with property \mathscr{C} and weakly commuting maps.

References

- [1] M. Abderrahim and O. Rachid, Probabilistic *b*-metric spaces and non linear contractions, *Fixed Point Theory Applications*, (2017) 2017:29.
- [2] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, *Aequationes Math.*, 46(1993), 91–98.
- [3] I.A. Bakhtin, The contraction principle in quasimetric spaces, *Functional Analysis. A., Ulianwsk, Gos. Ped. Ins.*, 30(1989), 26–37.
- [4] A. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82(1976), 641–657.
- [5] S. Czerwik, Contraction mappings in b-metric spaces, Acta Mathematicaet Informatica Universitatis Ostraviersis, 1(1993), 5–11.
- ^[6] B. Ismat and A. Mujahid, Fixed points and Best approximation in Menger convex Metric spaces, *Archivum Mathematicum (BRNO) Tomus*, 41(2005), 389–397.
- [7] M.A. Khamsi and V.Y. Kreinovich, Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, *Math. Jab.*, 44(1996), 513–520.
- [8] S. Nizar and M. Nabil, A fixed point theorem in S_b-metric spaces, J. Math. Computer Science, 16(2016), 131–139.
- [9] R. Saadati, D.O'Regan, S.M. Vaezpour and J.K. Kim, Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, *Bulletin of the Iranian Mathematical Society*, 35(2)(2009), 97–117.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******