

https://doi.org/10.26637/MJM0803/0066

Common fixed point theorems in *rsb***-distance with property** *C* **and weakly commuting maps in probabilistic** *sb***-metric space**

A. Kalpana^{1*} and M. Saraswathi²

Abstract

We establish the conception of *rsb*-distance with property *C* on a Menger Probabilistic *sb*-metric space. Moreover, we have proved a few fixed point theorems in a Complete Menger Probabilistic *sb*-metric space. Also we display the Weakly Commuting maps in same space.

Keywords

Menger Probabilistic *sb*-metric space, *rsb*-distance, *rsb*-distance with property *C*, Weakly Commuting maps.

AMS Subject Classification

47H10, 54E35, 54E40, 54H25.

1,2*Department of Mathematics, Kandasami Kandar's College, Velur-638182,Tamil Nadu, India.* ***Corresponding author**: ¹ kalpanaappachi@gmail.com; ²msmathsnkl@gmail.com **Article History**: Received **15** March **2020**; Accepted **19** June **2020** ©2020 MJM.

Contents

1. Introduction

In this work, there are more conjunctions about the approach of metric spaces (*MS*). Fixed point (fd-pt.) concept in *S*-metric spaces $(S - MS)$ and *b*-metric spaces $(b - MS)$ has been published in more papers like [4],[5],[8], etc. In our work, we scrutinize a new approach of *S* − *MS* called probabilistic $s_b - MS$, which is an expansion of the $S - MS$ using the concept of self to be different from zero. Rouse by crafted by Bakhtin in [4], we initially present the $Ps_b - MS$ as a generalization of the *b*− *MS*. Recently, R.Saadati,[9] introduced the idea of *r*-distance on a Menger $Ps_b - MS$. Through an idea of *r*-distance, we have defined *rsb*-distance and have proved a few fixed pt. theorems in the same space.

2. Preliminaries

Definition 2.1. *A probabilistic metric space [9] (PMS) be a triple* (M, \mathscr{F}, τ) *, here M is a nonempty set,* \mathscr{F} *is a function from* $M^2 \to \Delta^+$, τ *is a triple function and the coming properties were convinced* \forall *s*, *u*, *w in M*;

- *(a)* $\mathscr{F}_{ss} = \varepsilon_0$
- *(b)* $\mathscr{F}_{su} \neq \varepsilon_0$ *if* $p \neq q$
- $f(c)$ $\mathscr{F}_{su} = F_{us}$
- *(d)* $\mathscr{F}_{sw} \geq \tau(F_{sw}, F_{uw})$

If $\tau = \tau_T$ *any t-norm* $T \Rightarrow (M, \mathcal{F}, \tau_T)$ *termed as Menger space(MS).*

Definition 2.2. *A probabilistic b-metric space [1] (briefly PbMS) be a quadruple* (*M*,*F*, τ,*s*)*, here M is a non empty set,* \mathscr{F} *is a function from* $M^2 \to \Delta^+$, τ *is a triangle function s* ≥ 1 *is a real number and the following conditions are fulfilled;* ∀ $s, u, w \in M$ and $r > 0$,

- (a) $\mathscr{F}_{ss} = \mathscr{H}$ *(b)* $\mathscr{F}_{su} = \mathscr{H} \Rightarrow s = u$ *(c)* $\mathscr{F}_{su} = \mathscr{F}_{us}$
- (*d*) $\mathscr{F}_{su}(dr) \geq \tau(F_{sw},)F_{wu}(r)$.

If $\tau = \tau_T$ *any t-norm* $T \Rightarrow (M, F, \tau_T, s)$ *be termed as b-MS.*

Definition 2.3. *Take* \mathcal{X} *is a non-empty set and* $b \ge 1$ *be a* given number Suppose that a mapping $b \geq 1$ be a given *number. Let us take a mapping* $s_b: X^3 \rightarrow R^+$ *be a function fulfilled the Coming properties:*

$$
(i) s_b(m, o, p) = 0 \Longleftrightarrow m = o = p \text{ and}
$$

(ii) $s_b(m, o, p) \le b[s_b(m, m, a) + s_b(o, o, a) + s_b(p, p, a)]$ ∀ $m, o, p, a \in \mathcal{X}$.

∴ *the function s^b be termed as sb-metric on X [8] and the pair* (\mathscr{X}, s_b) *is a s_bMS*.

Definition 2.4. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a Menger PMS. Then the function* $h: \mathcal{X}^2 \times [0, \infty] \to [0,1]$ *be termed as r-distance* [8] *on* X *if the comings are fulfilled:*

- *(R1)* $h_{m,p}(e+h)$ ≥ $\mathcal{F}(h_{m,o}(e),h_{o,p}(h))$ *,* $\forall m,o,p \in \mathcal{X}$ e,h ≥ 0*;*
- *(R2) Any* $m \in \mathcal{X}$ *and* $e \ge 0$ *,* h_{m} . : $\mathcal{X} \times [0, \infty] \rightarrow [0, 1]$ *be continuous;*
- *(R3) Any* $\varepsilon > 0$, $\exists \rho > 0$ $\ni h_{p,m}(t) \geq 1 \rho$ *and* $h_{p,o}(f) \geq$ $1 - \rho$ *imply* $\mathcal{F}_{m,o}(e+f) \geq 1 - \varepsilon$.

Example 2.5. *Take* $(\mathcal{X}, F, \mathcal{T})$ *is a Menger PMS. Then* $h =$ F *is an r-distance on X.*

Proof. Properties (*R*1) and (*R*2) are accessible. Take $\varepsilon > 0$ and elect $\rho > 0 \ni \mathcal{T} (1-\rho, 1-\rho) \geq 1-\varepsilon$. Then $h_{p,m}(e) \geq$ 1−ρ and $h_{p,o}(f)$ ρ1−ρ, we've,

$$
\mathscr{F}_{m,o}(e+f) \geq \mathscr{T}(\mathscr{F}_{p,m}(e), \mathscr{F}_{p,o}(f)) \geq \mathscr{T}(1-\delta, 1-\delta) \geq 1-\epsilon.
$$

Definition 2.6. *Take* $\mathcal X$ *as a MS and* $\mathcal T$ *is a mapped, a point* $u \in \mathcal{X}$ *is termed as*

- *(i)* Fd -pt[6] of $\mathcal T$ *if it is arrangement of the functional Equation* $\mathscr{T}(q) = q$.
- *(ii)* ε *-Fd-pt*[6] of $\mathscr T$ *if d*($u, \mathscr T(u)$) $< \varepsilon \ \forall \ \varepsilon > 0$ *.*

3. Common Fixed Point Theorems with *rsb***- distance**

Definition 3.1. A mapping $s : [0,1]^2 \rightarrow [0,1]$ is continuous *s-norm if s fulfills the coming properties:*

- *(i) s is associative and commutative.*
- *(ii) s is continuous.*
- *(iii)* $s(g, 0) = a \ \forall \ g \in [0, 1].$
- *(iv)* $s(g, i)$ ≤ $s(k, l)$ *whenever* g ≤ *k and* i ≤ l ∀ g, i, k, l ∈ $[0,1]$

the classical ex: of continuous t-norms were

$$
s(g, i) = \min(g + i - 1) \text{ and } s(g, i) = \max(g, i)
$$

Definition 3.2. *A Menger probabilistic s^b normed space (briefly Menger* $Ps_b - NS$ *) is a triple* $(\mathcal{X}, \eta, \mathcal{T})$ *here X is a vector space, T is a continuous t-norm and* η *is a mapping from* \mathcal{X} *into* $D^+ \ni$ *the coming properties hold,* $\forall m, o, p$ *in* \mathscr{X} *:*

$$
(i) \ \eta_m(e) = \varepsilon_0(e) \ \forall \ e > 0 \ \text{iff} \ m = 0.
$$

$$
(ii) \ \mu_{\alpha x}(t) = \eta_x(\tfrac{t}{|\alpha|}) \ \text{for} \ \alpha \neq 0.
$$

(iii) $\eta_{m+o+p}(e_1+e_2+e_3) \geq \mathcal{F}(\eta_m(e_1), \eta_o(e_2), \eta_p(e_3))$ ∀ *m*,*n*, $o \in \mathcal{X}$ *and* $e_1, e_2, e_3 > 0$.

Remark 3.3. *Assume for all* $\eta \in [0,1] \exists a \sigma \in]0,1[$ *which* $\emph{doesn't rely upon}\emph{ n, with }\mathscr{T}^{n-1}(1-\sigma,...,1-\sigma) > 1-\eta\emph{ for }$ *each* $n \in \{1, 2, 3, ...\}$.

Definition 3.4. *Take* (*X*,*F*,*T*) *is a Menger PsbMS. Then the function* $h: \mathscr{X}^3 \times [0, \infty] \to [0,1]$ *is termed as rs_b - distance on* X *if the coming were fulfilled.*

- (f) $h_{m,o,p}(e_1 + e_2 + e_3) \geq \mathcal{F}(h_{mov}(e_1), h_{mvp}(e_2), h_{vop}(e_3))$ $\forall m, o, p \in \mathcal{X}$ and $e_1, e_2, e_3 > 0$;
- *(ii) any* $m \in \mathcal{X}$ *and* $e \geq 0$ *,* $h_m : \mathcal{X} \times [0, \infty) \to [0, 1]$ *is continuous;*
- *(iii)* $any \varepsilon > 0 \exists \rho > 0 \exists h_{\nu op}(e_1) \ge 1 \rho, h_{\nu op}(e_2) \ge 1 \rho$ $\mathcal{L}_{\text{mov}}(e_3) \geq 1 - \rho \text{ imply } \mathcal{F}_{\text{mop}}(e_1 + e_2 + e_3) \geq 1 - \varepsilon.$

Example 3.5. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a Menger* $Ps_b - MS$. *Then* $h = \mathscr{F}$ *is an rs_b - distance on* \mathscr{X} *.*

Proof. By definition (3.1), properties (i) and (ii) are obvious. For property (iii), Give $\varepsilon > 0$ and elect $\rho > 0 \ni \mathscr{T}(1-\rho, 1-\rho)$ $\rho, 1-\rho) \geq 1-\varepsilon.$

$$
\Rightarrow \mathscr{F}_{m,o,\nu}(e_1) \ge 1 - \rho, \mathscr{F}_{m,\nu,p}(e_2) \ge 1 - \rho \text{ and } \mathscr{F}_{\nu,o,p}(e_3) \ge 1 - \rho, \text{ we've}
$$

\n
$$
\mathscr{F}_{m,o,p}(e) \ge \mathscr{T}(\mathscr{F}_{m,o,\nu}(e_1), \mathscr{F}_{m,\nu,p}(e_2), \mathscr{F}_{\nu,o,p}(e_3)) \ge \mathscr{T}(1 - \rho, 1 - \rho, 1 - \rho) \ge 1 - \varepsilon
$$

\n
$$
\Rightarrow h = \mathscr{F} \text{ is an } rs_b \text{- distance on } X. \square
$$

Example 3.6. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a Menger* $Ps_b - S$ *and let* A *is a continuous mapping from* X *into* X *. Then the function* $h: \mathscr{X}^3 \to [0, \infty) \to [0, 1]$ *characterized by* $h_{m, o, p}(e) =$ $\min(\mathscr{F}_{\mathscr{A}{m},o,\nu}(e_1),\mathscr{F}_{\mathscr{A}{m},o,\mathscr{A}{o}}(e_2),\mathscr{F}_{\mathscr{A}\nu,\mathscr{F}_{o},\mathscr{F}_{p}}(e_3))$, $\forall m,o,p \in$ \mathscr{X} and $e_1, e_2, e_3 > 0$ *is an rs_b - distance on* \mathscr{X} *.*

Proof. Take $m, o, p, v \in \mathcal{X}$ and $e_1, e_2, e_3 > 0$ is an rs_b - distance on X. If $\mathscr{F}_{\mathscr{A}m, o, p}(e) \leq \mathscr{F}_{\mathscr{A}m, \mathscr{A}o, \mathscr{A}p}(e)$ then we've $h_{m,o,p}(e_1 + e_2 + e_3) = \mathscr{F}_{\mathscr{A}m,o,p}(e_1 + e_2 + e_3)$ $\geq \mathscr{T}(\mathscr{F}_{\mathscr{A}_{m,o,v}}(e_1),\mathscr{F}_{\mathscr{A}_{m,v,\mathscr{A}}p}(e_2),\mathscr{F}_{v,\mathscr{A}_{o},\mathscr{F}_{p}}(e_3))$ $\geq \mathscr{T}(\min(\mathscr{F}_{\mathscr{A}_{m,o,p}}(e_1),\mathscr{F}_{\mathscr{A}_{m,\mathscr{A}_{o,v}}}(e_1))\min(\mathscr{F}_{\mathscr{A}_{m,o,p}}(e_2),$ $\mathscr{F}_{\mathscr{A}m,o,\mathscr{A}p}(e_2))$ $min(\mathscr{F}_{v,d_0,d_0}(e_3),\mathscr{F}_{v,d_0,d_0}(e_3)))$ $= \mathscr{T}(h_{m,o,p}(e_1), h_{m,o,p}(e_2), h_{v,o,p}(e_3))$ with this inequality, we've

 \Box

$$
h_{m,o,p}(e_1 + e_2 + e_3) = \mathcal{F}_{\mathcal{A},m,\mathcal{A},o,\mathcal{F},p}(e_1 + e_2 + e_3)
$$

\n
$$
\geq \mathcal{T}(\mathcal{F}_{\mathcal{A},m,\mathcal{A},o,\mathcal{A},p}(e_1), \mathcal{F}_{\mathcal{A},m,\mathcal{A},o,\mathcal{A},p}(e_2), \mathcal{A}_{\mathcal{A},v,\mathcal{A},o,\mathcal{A},p}(e_3))
$$

\n
$$
h_{m,o,p}(e_1 + e_2 + e_3) = \mathcal{F}_{\mathcal{A},m,\mathcal{A},o,\mathcal{A},p}(e_1 + e_2 + e_3)
$$

\n
$$
\geq \mathcal{T}(\mathcal{F}_{\mathcal{A},m,\mathcal{A},o,v}(e_1), \mathcal{F}_{\mathcal{A},m,v,\mathcal{A},p}(e_2), \mathcal{F}_{v,\mathcal{A},o,\mathcal{A},p}(e_3))
$$

\n
$$
\geq \mathcal{T}(\min \mathcal{F}_{\mathcal{A},m,o,p}(e_1), \mathcal{F}_{\mathcal{A},m,\mathcal{A},o,v}(e_1)), min(\mathcal{F}_{\mathcal{A},m,o,p}(e_2), \mathcal{F}_{\mathcal{A},m,v,\mathcal{A},p}(e_2)),
$$

\n
$$
min(\mathcal{F}_{(v,\mathcal{A},v,\mathcal{A},z)}(t_3), F_{(u,\mathcal{A},v,\mathcal{A},z)}(t_3)))
$$

\n
$$
= T(f_{x,y,u}(t_1), f_{x,u,z}(t_2), f_{(u,y,z)}(t_3))
$$

Hence (i) holds. As A is continuous then (ii) is clear. To prove (ii)

take $\varepsilon > 0$ be given and elect $\rho > 0 \ni \mathscr{T} (1-\rho, 1-\rho, 1-\rho)$ ρ) ≥ 1 – ε.

Then from $h_{m,o,v}(e_1) \geq 1 - \rho$, $h_{m,v,p}(e_2) \geq 1 - \rho$ and $h_{v,o,p}$ $(e_3) \geq 1 - \rho$ we've $\mathscr{F}_{\mathscr{A}_{m,o,v}}(e_1) \geq 1 - \rho, \mathscr{F}_{\mathscr{A}_{m,v,\mathscr{A},p}}(e_2) \geq 1$ $1-\rho$ and $\mathscr{F}_{\mathscr{A}m,\mathscr{A}_{\mathscr{O},\mathscr{V}}}(e_3) \geq 1-\rho$. Therefore $\mathscr{F}_{m,o,p}(e_1+e_2+e_3) \geq \mathscr{T}(\mathscr{F}_{\mathscr{A}_{m,o,v}}(e_1),$ $\mathscr{F}_{\mathscr{A}m,v,\mathscr{A}o}(e_2),\mathscr{F}_{\mathscr{A}m,\mathscr{A}o,v}(e_3))$ $\geq \mathcal{F}(1-\rho, 1-\rho, 1-\rho)$ $\geq 1-\varepsilon$. Thence *h* is an rs_b - distance on $\mathscr X$. \Box

Example 3.7. *Take* $(\mathcal{X}, \beta, \mathcal{T})$ *is a Menger Ps_b* − *S. Then the function* $h: \mathscr{X}^3 \times [0, \infty] \to [0,1]$ *characterized by* $h_{m,o,p}(e) =$ $\beta_m(e) \forall m, o, p \in \mathcal{X}$ and $t > 0$ *rs*_{*b*}- distance on \mathcal{X} , here $\beta = \eta$.

Proof. Take $m, o, p \in \mathcal{X}$ and $e_1, e_2, e_3 > 0$. Then we've $h_{m,o,p}(e_1 + e_2 + e_3) = \beta_v(e_1 + e_2 + e_3)$ $\geq \mathscr{T}(\beta_{m,o,v}(e_1), \beta_{m,v,p}(e_2), \beta_{v,o,p}(e_3))$ $= \mathcal{F}(e_{m,o,v}(e_1), h_{m,v,p}(e_2), h_{v,o,p}(e_3))$ Hence (i) holds. Also (ii) is clear. To prove (iii), give $\varepsilon > 0$ and elect $\rho > 0 \ni \mathscr{T} (1-\rho, 1-\rho, 1-\rho) \ge 1-\varepsilon$ \Rightarrow *h*_{*m*,*o*,*v*}(*e*₁) ≥ 1 − *ρ*, *h*_{*m*,*v*,*p*}(*e*₂) ≥ 1 − *ρ* and *h*_{*v*,*o*,*p*(*e*₃) ≥} $1-\rho$ we've $\mathscr{F}_{m,o,p}(e_1+e_2+e_3)=\beta_{m-o-p}(e_1+e_2+e_3)$ $\geq \mathcal{F}(\beta_m(e_1), \beta_o(e_2), \beta_p(e_3))$ $= \mathscr{T}(h_{m,o,v}(e_1), h_{m,v,p}(e_2), h_{v,o,p}(e_3))$ $\geq \mathcal{F}(1-\rho,1-\rho,1-\rho)$ $> 1-\varepsilon$ Hence *h* is an rs_b - distance on \mathscr{X} . \Box

Lemma 3.8. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a Menger* Ps_bMS *and h is a* rs_b – distance. Take $\{m_n\}$, $\{o_n\}$ and $\{p_n\}$ be sequence in *X*. And take $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be a sequences in [0,∞) *converging to zero and* $m, o, p \in \mathcal{X}$ *and* $e_1, e_2, e_3 > 0$ *. Then the coming hold:*

(i) if
$$
h_{m_n, o_n, v}(e_1) \ge 1 - \alpha_n, h_{m_n, v, o_n}(e_2) \ge 1 - \beta_n, h_{v, o_n, p_n}(e_3)
$$

\n $\ge 1 - \gamma_n$ for any $n \in N$ then $\mathscr{F}_{m_n, o_n, p_n}(e_1 + e_2 + e_3) \to 1$

- (ii) if $h_{m_n, o_n, v}(e_1 \geq 1 \alpha_n, h_{m_n, v, o_n}(e_2) \geq 1 \beta_n$ and h_{v, o_n, p_n} (e_3) ≥ 1 − γ_n *some* $n \in N$ ⇒ $m = o = p$.
- (iii) *if* $h_{x_n,x_m,x_k}(e) \geq 1-\alpha_n$ *any* $n,m,k \in N$ *with* $k > m > n$ *formerly* $\{x_n\}$ *be a CS.*
- *Proof.* (i) Take $\varepsilon > 0$. From the definition of rs_b distance, $\exists \rho > 0 \ni h_{m,o,\nu}(e_1) \geq 1 - \rho, h_{m,\nu,\rho}(e_2) \geq 1 - \rho$ and $e_{v,o,p}(e_3) \geq 1 - \rho$ implies $e_{m,o,p}(e_1 + e_2 + e_3) \geq 1 - \varepsilon$. Elect $n_0 \in N \ni \{\alpha_n\} \le \rho$, $\{\beta_n\} \le \rho$ and $\{\gamma_n\} \le \rho \ \forall$ $n \geq n_0$. Then we've, any $n \geq n_0$, $h_{m,o,\nu}(e_1) \geq 1-\alpha_n \geq$ 1−ρ, $h_{v, o, p}(e_2)$ ≥ 1−β_{*n*} ≥ 1−ρ and $h_{v, m, o}(e_3)$ ≥ 1− $\gamma_n \geq 1 - \rho$ and hence $h_{m,o,p}(e_1 + e_2 + e_3) \geq 1 - \varepsilon$. This implies that $\mathscr{F}_{m_n,o_n,p_n}(e_1+e_2+e_3) \rightarrow 1$. Thence we've that $\{m_n\}$ converges to *x*. It follows from (i) that (ii) hold.
- (iii) Take $\varepsilon > 0$. By (i), Elect $\rho > 0$ and $n_0 \in N$. For $\max_{n,m,k} n, m, k \geq n_0 + 1, h_{m_n,o_n,p_{n_0}}(e_1) \geq 1 - \alpha_{n_0} \geq 1 \rho$ *,* $h_{m_n,m_{n_0},o_n}(e_2) \geq 1-\alpha_{n_0} \geq 1-\rho$ and $h_{m_n,o_n,m_{n_0}}(e_3) \geq 1$ $1 - \alpha_{n_0} \geq 1 - \rho$ and thence $\mathscr{F}_{x_n, x_m, x_k}(e_1 + e_2 + e_3) \geq$ $1 - \varepsilon$. \Rightarrow { m_n } is a *CS*. \Box

Theorem 3.9. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a complete Menger Ps_bMS*, *h* is a rs_b – distance and a mapping from $\mathscr X$ into itself. As*sume that* $\exists k \in]0,1[\exists h_{\mathscr{A}m,\mathscr{A}^2m,\mathscr{A}^3m}(e) \geq h_{m,\mathscr{A}m,\mathscr{A}^2m}(\frac{e}{k}), \forall$ $m \in \mathcal{X}, e > 0 \ni sup\{\mathcal{I}(h_{m,o,p}(e), h_{m,\mathcal{A}_m}(e)) : m \in \mathcal{X}\} < 1$ $∀ p, o ∈ X$ *with* $o ≠ ∅ o, p ≠ ∅ p$. Then we've

- *(i) If t*-norm holds and ∃ *a* $v \in \mathcal{X}$ with $\mathcal{E}_h(v, \mathcal{A}v, \mathcal{B}v) =$ $\sup\{(\mathscr{E}_{\gamma},h)(v,\mathscr{A}v,\mathscr{B}v): \gamma \in]0,1[<\infty\}$ then $\exists p \in \mathscr{X}$ $\ni p = \mathscr{A} p.$
- *(ii) If s*-norm holds then ∃ $p \in \mathcal{X}$ ∋ $p = \mathcal{A}$ p *. Furthermore if* $r = \mathcal{A}r$, $q = \mathcal{B}q$ and $h \in D^+$ then $h_{r,r,r} = 0$
- *Proof.* (i) Take $v \in \mathcal{X}$ is $\exists \mathcal{E}_h(v, \mathcal{A}v) < \infty$. Characterize $v_n = \mathscr{A}^n$ *u* any $n \in N$. Then we've, for some $n \in N$, $h_{v_n,v_{n+1},v_{n+2}}(e) \geq h_{v_{n-1},v_n,v_{n+1}}(\frac{e}{k^n})$

$$
\geq h_{v,v_1,v_2}(\frac{e}{k^n})
$$
\n
$$
\therefore \mathcal{E}_{\sigma,h}(v_n, v_{n+1}, v_{n+2}) = \inf\{t > 0 : h_{v_n, v_{n+1}, v_{n+2}}(e) > 1 - \sigma\}
$$
\n
$$
\leq \inf\{e > 0 : h_{v,v_1,v_2}(\frac{e}{k^n}) > 1 - \sigma\}
$$
\n
$$
= k^n \mathcal{E}_{\sigma,h}(v, v_1, v_2)
$$
\nhence $m > n$ and $\sigma \in [0, 1] \exists \gamma \in [0, 1] \ni \mathcal{E}_{\sigma,h}(v_n, v_m, v_k) \leq \mathcal{E}_{\gamma,h}(v_n, v_{n+1}) + \dots + \mathcal{E}_{h(v_{m-1}, v_m)} + \dots + \mathcal{E}_{h(v_{k+1}, v_{k+1})}$ \n
$$
\leq \frac{k^n}{1 - k} \mathcal{E}_{\gamma,h}(v, v_1, v_2)
$$

Then $\exists n_0 \in N \ni \forall n > n_0$ we've $\mathcal{E}_{\sigma,h}(\nu_n,\nu_{m},\nu_k \to 0$ and hence $\{v_n\}$ is a *CS*.

Also for any sequence $\{m_n\}$ is a *CS* w.r.to *h* iff it is a *CS* with $\mathscr{E}_{\sigma,h}$.

∴ $\{\rho_n\}$ → 0 ∋ for *n* ≥ *max* $\{n_0, n_1\}$, *n*₁ ∈ *N*, we've $h_{v_n,v_m,v_k}(e) \geq 1 - \rho_n$.

By the reason of $\mathscr X$ is complete, then $\{v_n\} \to$ some point $p \in \mathscr{X}$.

Thence by definition of Menger probabilistic *sb*-normed space, we've $h_{v_n,v_{m,p}} = \lim_{\mathcal{F}} (k \to \infty) h_{v_n,v_m,v_k} \geq 1 - \rho_n$ and $h_{\nu_n,\nu_{n+1},\nu_{n+2}} \geq 1 - \rho_n$. Assume that $p \neq \mathscr{A}_p$. By statement, we've

 $1 \geq \sup\{\mathcal{P}(h_{m,o,v}(e), h_{m,v,p}(e), h_{v,o,p}(e)) : m \in \mathcal{X}\}\$ \geq sup{ $\mathscr{T}(h_{m,o,v}(e), h_{\mathscr{A}_m,v,\mathscr{A}_p}(e), h_{v,\mathscr{A}_o,\mathscr{A}_p}(e))$: *m* ∈ $\mathscr{M}\}$ \geq sup{ $\mathscr{T}(h_{\mathscr{A}_m,\mathscr{A}_o,\nu}(e),h_{\mathscr{A}_m,\nu,\mathscr{A}_p}(e),h_{\nu,\mathscr{A}_o,\mathscr{A}_p}(e))$: $m \in \mathscr{X}$ \geq sup{ $\mathscr{T}(h_{v_n,\mathscr{A}_o,v}(e),h_{v_n,v,v_{n+2}}(e),h_{v,v_{n+1},v_{n+2}}(e))$: *n* ∈ *N*} \geq *sup*{ $\mathcal{T} (1 - \rho_n, 1 - \rho_n, 1 - \rho_n : n \in N)$ } = 1, Which is inconsistency. ∴ we've $p = \mathcal{A} p$.

(ii) The proof is same as (i) but σ does not depend on *k*.

Presently if $v = \mathcal{A}v$ and $h \in D^+$ then we've $h_{r,r,r}(e) = h_{\mathscr{A}r,\mathscr{A}^2r,\mathscr{A}^3r}(e)$ $\geq h_{r, \mathscr{A}r, \mathscr{A}^2r}(\frac{e}{k})$ $= h_{r,r,r}(\frac{e}{k})$ Enduring this process, we've $h_{r,r,r}(e) = h_{r,r,r}(\frac{e}{k^n})$. Also we've $e_{r,r,r} = \varepsilon_0$.

Theorem 3.10. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a complete Menger Psb*</sub> *MS* and $\mathscr A$ *is a mapping from* $\mathscr X$ *into itself. Assume* $\exists \beta \in \mathscr A$ $]0,1[\ni]$

 $\mathscr{F}_{\mathscr{A} m, \mathscr{M} o, \mathscr{A} p}(e) \geq \mathscr{S}(\mathscr{F}_{m, \mathscr{A} m, \mathscr{A}^2 m}(\frac{e}{\beta}))$ $\frac{e}{\beta}$), $\mathscr{F}_{o, \mathscr{A}o, \mathscr{A}^2 o}$ ($\frac{e}{\beta}$ $\frac{e}{\beta}),$ $\mathscr{F}_{p,\mathscr{A}p,\mathscr{A}^2p}(\frac{e}{\beta})$ $\left(\frac{e}{\beta}\right)$) \forall *m*, *o*, *p* \in *X and e* $>$ 0*.*

- *(i) If t-norm holds and* $\exists a u \in X$ *with* $\mathscr{E}(v, \mathscr{A}v, \mathscr{A}^2v) < ∞$ *then* $\mathscr A$ *has a unique fd-pt..*
- *(ii)* If s-norm holds then $\mathscr A$ has a unique fd-pt.

Proof. (i) Take $m \in \mathcal{X}$. From the difference (I), we've $\mathscr{F}_{\mathscr{A} m, \mathscr{A}^2 m, \mathscr{A}^3 x}(e) \geq \mathscr{S}(\mathscr{F}_{m, \mathscr{A} m, \mathscr{A}^2 m})$ $\left(\frac{e}{B}\right)$ $\left(\frac{e}{\beta}\right)$), $\mathscr{F}_{\mathscr{A}m,\mathscr{A}^2m,\mathscr{A}^3m}$ ($\frac{e}{\beta}$ $\left(\frac{e}{\beta}\right), \mathscr{F}_{\mathscr{A}^2 m, \mathscr{A}^3 m, \mathscr{A}^4 m}(\frac{e}{\beta})$ $\frac{e}{\beta}$) and hence $\hat{\mathscr{F}}_{\mathscr{A} m, \mathscr{A}^2 m, \mathscr{A}^3 m}(e) \geq \hat{\mathscr{F}}_{m, \mathscr{A} m, \mathscr{A}^2 m}(\frac{t}{\beta})$ $\frac{t}{\beta}$) By the reason of the probabilistic metric $\mathscr F$ is an r_{s_b} -distance, assume that $\exists o \in \mathcal{X}$ with $o \neq \mathcal{A} o$ and $sup\{\mathcal{F}_{m,o,p}(e):$ $\mathscr{F}_{m,\mathscr{A}m,\mathscr{A}^2m}(e):m\in\mathscr{X}\}=1.$

> By the reason $\mathscr{F}_{m_n,o,\mathscr{A}o}(e) \to 1$ and $\mathscr{F}_{m_n,\mathscr{A}m_n,\mathscr{A}^2_{m_n}}(e) \to$ 1, then by lemma (3.9), we've $\{\mathscr{A}m_n\} \to o$.

another way, by the reason of $\mathscr A$ fulfills the condition (I) then we've, $\mathscr{F}_{\mathscr{A}m_n,\mathscr{A}^2m_n,\mathscr{A}_o}(e) \geq \mathscr{S}(\mathscr{F}_{m_n,\mathscr{A}m_n,\mathscr{A}^2m_n}(\frac{e}{\beta}))$ $\frac{e}{\beta}$), $\mathscr{F}_{o,\mathscr{A}o,\mathscr{A}^2 o}(\frac{e}{\beta})$ $\left(\frac{e}{\beta}\right)$ \rightarrow 1 as $n \rightarrow \infty$ i.e $o = \mathcal{A}o$. inconsistency. Thence if $o \neq \mathcal{A}$ *o* then $sup\{\mathcal{A}_{m,o,p}(e): \mathcal{A}_{m,\mathcal{A}m,\mathcal{A}^2m}\}$ $(e): m \in \mathcal{X} \}$ < 1.

Then by theorem (3.10), $\exists p \in \mathcal{X} \ni p = \mathcal{A} p$. By the reason of $\mathscr{F} \in D^+$ then the uniqueness is trivial.

(ii) The proof is same as (i).

4. *rs*_{*b*}-distance with Property $\mathscr C$ and **Weakly Commuting maps in** *PsbM***-Space**

Definition 4.1. *State* rs_b *- distance h has property* (\mathcal{C}') *if it fulfills the coming condition:* $h_{m,o,p}(e) = \mathscr{C}' \ \forall \ t > 0 \Rightarrow$ $\mathscr{C}'=1.$

Theorem 4.2. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a complete Menger* Ps_bM *space, h is r*-distance on it and $\mathscr{A}, \mathscr{B}, \mathscr{C} : \mathscr{X} \to X$ be maps *that fulfill the coming properties:*

- (i) $\mathscr{C}(\mathscr{X}) \subseteq \mathscr{B}(\mathscr{X}) \subseteq \mathscr{A}(\mathscr{X})$.
- *(ii)* A ,B *and* C *are continuous*
- (iii) $h_{\mathscr{C}(m),\mathscr{C}(o)}(e) \geq h_{\mathscr{F}(m),\mathscr{B}(o)}(e) \geq h_{\mathscr{A}(m),\mathscr{A}(o)}(\frac{e}{k}) \forall m,o \in$ $\mathcal{X}, t > 0, 0 < k < 1.$

Suppose $m \in \mathcal{X}$

 \Box

 $\mathscr{E}_h(\mathscr{A}(m),\mathscr{B}(m),\mathscr{C}(m)) + \mathscr{E}_h(\mathscr{A}(m),\mathscr{B}(m),p) + \mathscr{E}_h(\mathscr{B}(m),\mathscr{C})$ $(m), p) + \mathscr{E}_h(\mathscr{B}(m), \mathscr{B}(\mathscr{B}(m)), p) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{C}(\mathscr{C}(m)), p) +$ $\mathscr{E}_h(\mathscr{C}(m),\mathscr{B}(m),\mathscr{A}(m))<\infty, \forall p\in \mathscr{X}$ with $\mathscr{B}(\mathscr{Z})\neq \mathscr{B}(\mathscr{B}(p))$)) *and* $\mathscr{C}(p) \neq \mathscr{C}(\mathscr{C}(p))$ *here* $\mathscr{E}_h(z, y, x) = \sup{\mathscr{E}_{\gamma,h}(z, y, x)}$: $\gamma \in (0,1)$.

Also suppose if $\{m_n\}$ *is a sequence in* $\mathscr X$ *with* $\lim_{\mathscr T}$ (*n* \rightarrow ∞) $\mathscr{A}(m_n) = o \in \mathscr{X}$, then $\forall \eta \in (0,1)$, we have $\mathscr{E}_{\eta,h}(\mathscr{A}(m_n), \mathscr{A})$ $(m_s), o) \leq \lim_{s,u \to \infty} \mathscr{E} \eta, h(\mathscr{A}(m_n), \mathscr{A}(m_p), \mathscr{A}(m_u)).$ *In addition,*

- *(i) If t-norm holds and* $∃ a m₀ with$ $\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{B}(m_0),\mathscr{C}(m_0)) = \sup\{\mathscr{E}_{\gamma,h}(\mathscr{A}(m_0),\mathscr{B}(m_0),\mathscr{B}(m_0)\}$ $\mathscr{C}(m_0)) : \gamma \in (0,1) \} \langle \infty \text{ and } \mathscr{E}_h(\mathscr{B}(m_0), \mathscr{B}(\mathscr{B}(m_0)), \mathscr{C}(\mathscr{B}(m_0)) \rangle$ $(\mathscr{C}(m_0))) = \sup{\mathscr{E}_{\gamma,h}(\mathscr{B}(m_0),\mathscr{B}(\mathscr{B}(m_0)),\mathscr{C}(\mathscr{C}(m_0))) :}$ $\gamma \in (0,1)$ } $< \infty$ *then* $\mathscr A$, $\mathscr B$ *and* $\mathscr C$ *have a Common fixed point given that* \mathcal{A}, \mathcal{B} *and* C *commute each other.*
- *(ii) If s-norm holds then A*,*B*,*C have a common fixed point given that* A ,B *and* C *commute one another. In addition if h has the property* C 0 *, h*(.) *is non decreasing and* $\mathscr{B}(r) = \mathscr{B}(\mathscr{B}(r))$, $\forall r \in \mathscr{X}$ then $h_{\mathscr{B}(r),\mathscr{B}(r)}(r) = 1$ $\mathscr{C}(w) = \mathscr{C}(\mathscr{C}(w)) \ \forall \ w \in X \ and \ h_{\mathscr{C}(w),\mathscr{C}(w)}(e) = 1.$
- *Proof.* (i) First $\forall m \in \mathcal{X}$, inf $\{\mathscr{E}_h(\mathscr{A}(m),\mathscr{B}(m),\mathscr{C}(m)) +$ $\mathscr{E}_h(\mathscr{A}(m),\mathscr{B}(m),p)+\mathscr{E}_h(\mathscr{B}(m),\mathscr{C}(m),p)+\mathscr{E}_h(\mathscr{B}(m),p)$ $\mathscr{B}(\mathscr{B}(m)), p) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{C}(\mathscr{C}(m)), p) + \mathscr{E}_h(\mathscr{C}(m)),$ $\mathscr{B}(m), \mathscr{A}(m))$ } > 0, $\forall p \in \mathscr{X}$ with $\mathscr{B}(p) \neq \mathscr{B}(\mathscr{B}(p))$ and $\mathscr{C}(p) \neq \mathscr{C}(\mathscr{C}(p)).$

Assume this is true. For that, let $m_0 \in \mathcal{X}$ with $\mathcal{E}_h(\mathcal{A}(m_0))$, $\mathscr{B}(m_0), \mathscr{C}(m_0))$ $< \infty$, $\mathscr{E}_h(\mathscr{B}(m_0),\mathscr{B}(\mathscr{B}(m_0)),p) < \infty$ and $\mathscr{E}_h(\mathscr{C}(m_0),\mathscr{C})$ $(\mathscr{C}(m_0)), p) < \infty$.

But (i), we find $m_1, m_2 \ni \mathcal{A}(m_1) = \mathcal{B}(m_0) = \mathcal{C}(m_2)$. By acceptance we can characterize a sequence ${m_n}_n$ $\Rightarrow \mathcal{A}(m_n) = \mathcal{B}(m_{n-1}) = \mathcal{C}(m_{n+1}).$ By acceptance again,

 $h_{\mathscr{A}(m_n),\mathscr{B}(m_{n+1}),\mathscr{C}(m_{n+2})}(e) = h_{\mathscr{B}(m_{n-1}),\mathscr{B}(m_n),\mathscr{B}(m_{n+1})}(e) \ge$ $h_{\mathscr{A}(m_{n-1}),\mathscr{A}(m_n),\mathscr{A}(m_{n+1})}(\frac{e}{k})) \geq ... \geq h_{\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2)}$ $\left(\frac{e}{k^n}\right)$ and therefore,

 \Box

 $\mathscr{E}_{\gamma,h}(\mathscr{A}(m_n),\mathscr{A}(m_{n+1}),\mathscr{A}(m_{n+2})) \leq k^n \mathscr{E}_{\gamma,h}(\mathscr{A}(m_0),\mathscr{A}(m_0))$ $(m_1), \mathscr{A}(m_2)$, for $n = 1, 2, ... \Rightarrow s > n$ and for $\eta \in]0,1[$ $\exists \sigma \in]0,1[\exists \mathcal{E}_{n,h}(\mathcal{A}(m_n),\mathcal{A}(m_s),\mathcal{A}(m_u)) \leq \mathcal{E}_{\sigma,h}(\mathcal{A})$ $(m_{s-1}),\mathcal{A}(m_s),\mathcal{A}(m_{s+1}))+\mathcal{E}_{\gamma,h}(\mathcal{A}(m_{s-2}),\mathcal{A}(m_{s-1}),$ $\mathscr{A}(m_s))+...+\mathscr{E}_{\sigma,h}(\mathscr{A}(m_n),\mathscr{A}(m_{n+1}),\mathscr{A}(m_{n+2}))\leq \mathscr{E}_h$ $(\mathscr{A}(m_0), \mathscr{A}(m_1), \mathscr{A}(m_2))\sum_{j=n}^{s-1}k^j \leq (\frac{k^n}{1-r})$ $rac{k^n}{1-k}$ $\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2)).$

Thence $\{\mathscr{A}(m_n)\}\$ is a *CS*. By the reason of $\mathscr X$ is complete then $\exists o \in \mathcal{X} \ni \lim_{n \to \infty} (n \rightarrow \infty) \mathcal{A}(m_n) = o$ If $\mathscr{B}(m_{n-1}) = \mathscr{A}(m_n) \to o$ then $\{\mathscr{B}(\mathscr{A}(m_n))\}_n \to$ B(*o*).

Be that as it may $\mathcal{B}(\mathcal{A}(m_n)) = \mathcal{A}(\mathcal{B}(m_n)), \mathcal{C}(\mathcal{B}(m_n))$ $= \mathcal{B}(\mathcal{C}(m_n))$ and $\mathcal{A}(\mathcal{C}(m_n)) = \mathcal{C}(\mathcal{A}(m_n))$, by the commutative condition and so $\mathscr{A}(\vert(m_n)\vert,\mathscr{B}(\mathscr{C}(m_n)))$ and $\mathcal{C}(\mathcal{A}(m_n)) \to \mathcal{A}(o)$. By the reason the limits are unique, $\mathscr{A}(o) = \mathscr{B}(o) = \mathscr{C}(o)$ and so $\mathscr{A}(\mathscr{A}(o)) =$ $\mathscr{A}(\mathscr{B}(o)) = \mathscr{A}(\mathscr{C}(o)).$

Differently, we've

$$
\mathcal{E}_{\eta,h}(\mathscr{A}(m_n)),\mathscr{A}(m_s,o) \leq \lim_{s,u\to\infty} \mathscr{E}_{\eta,h}(\mathscr{A}(m-n),\mathscr{A}(m_s,\mathscr{A}(m_u)))
$$
\n
$$
(\mathscr{M}_{\eta,h}(\mathscr{A}(m_n),\mathscr{A}(m_s),o) \leq \text{Since } \forall \eta \in]0,1[\text{ then we've } \mathscr{E}_h(\mathscr{A}(m_n),\mathscr{A}(m_s),o) \leq \frac{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))}{\mathscr{B}(m_n) = \mathscr{A}(m_{n+1}) = \mathscr{C}(m_{n+2}) \text{ then we've } \mathscr{E}_h(\mathscr{B}(m_n),\mathscr{B}(m_s),o) \leq \frac{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))}{\mathscr{B}(m_s),o) \leq \frac{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))}{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))} \text{ and } \mathscr{E}_h(\mathscr{C}(m_n),\mathscr{B}(m_n),\mathscr{B}(m_m),\mathscr{B}(m_m)) \leq \frac{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))}{\frac{1}{1-k}\mathscr{B}_{\eta,m_1}(\mathscr{B}(m_n))} \leq \frac{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))}{\mathscr{B}(m_{n-1}),\mathscr{B}(m_{n-1}))} \leq \frac{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{B}(m_m))}{\mathscr{B}(m_{n-1}),\mathscr{B}(m_{n-1}))} \leq \frac{\frac{1}{1-k}\mathscr{E}_h(\mathscr{A}(m_n))}{\frac{1}{1-k}\math
$$

Presently $\mathcal{B}(o) = \mathcal{B}(\mathcal{B}(o))$ and $\mathcal{C}(o) = \mathcal{C}(\mathcal{C}(o))$. Suppose $\mathcal{B}(o) \neq \mathcal{B}(\mathcal{B}(o))$. By above, we've $0 < \inf{\mathcal{E}_h(\mathcal{A})}$ $(m),\mathscr{B}(m),\mathscr{C}(m)) + \mathscr{E}_h(\mathscr{A}(m),\mathscr{B}(m),o) + \mathscr{E}_h(\mathscr{B}(m),o)$ $\mathscr{C}(m), o) + \mathscr{E}_h(\mathscr{B}(m), \mathscr{B}(\mathscr{B}(m)), o) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{C}(\mathscr{C}))$ $(m), o) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{B}(m), \mathscr{A}(m)) : m \in \mathscr{X} \leq \inf \{\mathscr{E}_h\}$ $(\mathscr{A}(m_n),\mathscr{B}(m_n),\mathscr{C}(m_n))+\mathscr{E}_h(\mathscr{A}(m_n))$ $\mathscr{B}(m_n), o) + \mathscr{E}_h(\mathscr{B}(m_n), \mathscr{C}(m_n), o) + \mathscr{E}_h(\mathscr{B}(m_n), \mathscr{B}(\mathscr{B}(m_n))$ $(m_n), o) + \mathscr{E}_h(\mathscr{C}(m_n), \mathscr{C}(\mathscr{C}(m_n)), o) + \mathscr{E}_h(\mathscr{C}(m_n), \mathscr{B}(m_n))$ $(\emptyset, \mathscr{A}(m_n)) : n \in N$ = inf $\{\mathscr{E}_h(\mathscr{A}(m_n), \mathscr{A}(m_{n+1}), o) + \mathscr{A}(m_n)\}$ $\mathscr{E}_h(\mathscr{A}(m_n),\mathscr{A}(m_s),\mathscr{A}(m_u)) + \mathscr{E}_h(\mathscr{B}(m_n),\mathscr{B}(m_s),o) +$ $\mathscr{E}_h(\mathscr{B}(m_1),\mathscr{B}(\mathscr{B}(m_1)),o)+\mathscr{E}_h(\mathscr{C}(m_n),\mathscr{C}(m_s),\mathscr{C}(m_s))$ $+\mathscr{E}_h(\mathscr{C}(m_s),\mathscr{B}(m_u),\mathscr{A}(m_n))$ } = inf{ $\mathscr{E}_h(\mathscr{A}(m_n),\mathscr{A}(m_u))$ $(m_{n+1}), o) + \mathscr{E}_h(\mathscr{A}(m_n), \mathscr{A}(m_s), \mathscr{A}(m_u)) + \mathscr{E}_h(\mathscr{A}(m_n))$ $\mathscr{B}(m_n),\mathscr{B}(m_s),o)+\mathscr{E}_h(\mathscr{B}(m_1),\mathscr{B}(\mathscr{B}(m_1)),o)+\mathscr{E}_h(\mathscr{C})$ $(m_n), \mathcal{C}(m_s), \mathcal{C}(m_u)) + \mathcal{E}_h(\mathcal{C}(m_u), \mathcal{B}(m_u), \mathcal{A}(m_u))$ $\leq \inf \{ k^n \mathcal{E}_h(\mathcal{A}(m_0), \mathcal{A}(m_1), o) + (\frac{k^n}{1-n} \}$ 1−*k*)E*h*(A (*m*0),A $(m_1),\mathscr{A}(m_2)$ + $(\frac{k^{n+1}}{1-k})$ $\frac{e^{n+1}}{1-k}$ $\frac{\partial \mathscr{E}_h(\mathscr{A}(m_0),\mathscr{A}(m_1),\mathscr{A}(m_2))}{\partial \mathscr{E}_h(\mathscr{A}(m_1))}$ $k^n \mathscr{E}_h(\mathscr{B}(m_1),\mathscr{B}(\mathscr{B}(m_1)),o) + (\frac{k^n}{1-n})$ $\frac{k^n}{1-k}$) $\mathscr{E}_h(\mathscr{C}(m_0),\mathscr{C}(m_1),$

$$
\mathscr{C}(m_2))+(\tfrac{k^{n+1}}{1-k})\mathscr{E}_f(\mathscr{C}(m_0),\mathscr{C}(m_1),\mathscr{C}(m_2)):n\in N\}=0
$$

This is a conflict. Thus $\mathscr{B}(o) = \mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) =$ $\mathscr{C}(\mathscr{C}(o))$. Thus $\mathscr{B}(o) = \mathscr{B}(\mathscr{B}(o) = \mathscr{A})(\mathscr{B}(o))$ and accordingly $\mathscr{B}(o)$ is a common fixed point of \mathscr{A}, \mathscr{B} and \mathscr{C} . Moreover if $\mathscr{B}(o)$ is a common fixed point of \mathscr{A}, \mathscr{B} and $\mathscr{C}, \mathscr{B}(v) = \mathscr{B}(\mathscr{B}(v))$ $\forall v \in X$, then we have $h_{(\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(e) = h_{\mathscr{B}(\mathscr{B}(o)),\mathscr{B}(\mathscr{B}(o)),\mathscr{B}(\mathscr{B}(o))}(e) \geq 0$ $h_{\mathscr{A}(\mathscr{B}(\mathscr{C}(o))),\mathscr{A}(\mathscr{B}(\mathscr{C}(o))),\mathscr{A}(\mathscr{B}(\mathscr{C}(o)))}(\frac{e}{k}) \geq$ $h_{\mathscr{A}(B(0)),\mathscr{A}(B(0)),\mathscr{A}(B(0))}(\frac{e}{k}) = h_{\mathscr{B}(0),\mathscr{B}(0),\mathscr{B}(0)}(\frac{e}{k}),$ Since $\mathscr{A}(\mathscr{B}(\mathscr{C}(o))) = \mathscr{C}(\mathscr{A}(\mathscr{B}(o))) \Rightarrow (\mathscr{B}(o)) = \mathscr{C}(\mathscr{C}(o))$ $\mathscr{B}(o) \Rightarrow \mathscr{B}(o) = \mathscr{B}(o)$ and $\mathscr{B}(\mathscr{C}(o)) = \mathscr{B}(o)$ and $\mathscr{B}(\mathscr{C}(o)) = \mathscr{B}(o)$. Differently, known *h* is decreasing, then we've $h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(e) \leq h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(\frac{e}{k})$ Thus we've $h_{\mathscr{B}(o),\mathscr{B}(o)}(\mathscr{E}) = h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(\mathscr{E}) \Rightarrow$ $h_{\mathscr{B}(0),\mathscr{B}(0),\mathscr{B}(0)}(e) = \mathscr{C}' \ \forall \ e > 0$. Hence by property (\mathscr{C}') we've $h_{\mathscr{B}(o),\mathscr{B}(o),\mathscr{B}(o)}(e) = 1.$ To prove the assert, consider that $\exists o \in \mathcal{X}$ with $\mathcal{B}(o) \neq \emptyset$ $\mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) \neq \mathscr{C}(\mathscr{C}(o))$ and inf{ $\mathscr{E}_h(\mathscr{A}(m),\mathscr{B})$ $(m), \mathcal{C}(m)) + \mathcal{E}_h(\mathcal{A}(m), \mathcal{B}(m), o) + \mathcal{E}_h(\mathcal{B}(m), \mathcal{C}(m), o)$ $)+\mathscr{E}_h(\mathscr{B}(m),\mathscr{B}(\mathscr{B}(m)),o)+\mathscr{E}_h(\mathscr{C}(m),\mathscr{C}(\mathscr{C}(m)),o)+\mathscr{E}_h(\mathscr{B}(m))$ $\mathscr{E}_h(\mathscr{C}(m),\mathscr{B}(m),\mathscr{A}(m))$: $m \in \mathscr{X}$ } = 0. $\text{Then } \exists \{m_n\} \ni \lim_{n \to \infty} \{\mathscr{E}_h(\mathscr{A}(m_n), \mathscr{B}(m_n), \mathscr{C}(m_n)) + \epsilon\}$ $\mathscr{E}_h(\mathscr{A}(m_n),\mathscr{B}(m_n),o)+\mathscr{E}_h(\mathscr{B}(m_n),\mathscr{C}(m_n),o)+\mathscr{E}_h(\mathscr{B})$ $(m_n),\mathscr{B}(\mathscr{B}(m_n)),o)+\mathscr{E}_h(\mathscr{C}(m_n),\mathscr{C}(\mathscr{C}(m_n)),o)+\mathscr{E}_h(\mathscr{C}(m_n))$ $\mathscr{C}(m_n),\mathscr{B}(m_n),\mathscr{A}(m_n))\}=0.$ We know that, $h_{\mathscr{A}(m_n),\mathscr{B}(m_n),\mathscr{C}(m_n)}(e) \to 1$ and $h_{\mathscr{A}(m_n),\mathscr{B}(m_n),o}(e) \to 1$ and by lemma (3.9) we've $\lim_{\mathscr{B}\to\infty}\mathscr{B}(m_n) = o$ and $\lim_{n\to\infty} \mathscr{C}(m_n) = 0.$ $\mathrm{Also}\ h_{\mathscr{B}(m_n),\mathscr{C}(m_n),o}(e) \to 1, h_{\mathscr{A}(m_n),\mathscr{B}(m_n),\mathscr{B}(\mathscr{B}(m_n))}(e)$ \rightarrow 1 and $h_{\mathscr{A}(m_n),\mathscr{B}(m_n),\mathscr{C}(\mathscr{C}(m_n))}(\mathscr{C})\rightarrow 1$ ∴ by lemma (3.9), we've $\lim_{n\to\infty}\mathcal{B}(\mathcal{B}(m_n))=\mathcal{Y}$ and $\lim_{n\to\infty}\mathcal{C}(\mathcal{C}(m_n))=0.$ Therefore $\mathscr{B}(o) = \mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) = \mathscr{C}(\mathscr{C}(o)),$ which is a contradiction. Hence if $\mathscr{B}(o) \neq \mathscr{B}(\mathscr{B}(o))$ and $\mathscr{C}(o) \neq \mathscr{C}(\mathscr{C}(o))$ then inf{ $\mathscr{E}_h(\mathscr{A}(m),\mathscr{B}(m),\mathscr{C}(m))$ $+\mathscr{E}_h(\mathscr{A}(m),\mathscr{B}(m),o)+\mathscr{E}_h(\mathscr{B}(m),\mathscr{C}(m),o)+\mathscr{E}_h(\mathscr{B}(m),o)$ $\mathscr{B}(\mathscr{B}(m)), o) + \mathscr{E}_h(\mathscr{C}(m)\mathscr{C}(\mathscr{C}(m)), o) + \mathscr{E}_h(\mathscr{C}(m), \mathscr{B})$ $(m), \mathscr{A}(m)) : m \in \mathscr{X} \} > 0.$ \Box

Definition 4.3. *Take h and k be maps from a Menger* Ps_bM *space* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *. The maps h and k are termed as be Weakly Commuting if* $\mathscr{F}_{hkm,khm}(e) \geq \mathscr{F}_{hm,km}(e)$ *for each m in* \mathscr{X} *and* $e > 0$.

Remark 4.4. *Consider* ϕ *denote the set of all onto and strictly non-decreasing function* φ *from* $[0, \infty) \to [0, \infty)$ *which gratify lim*_{n→∞} $\varphi^{n}(e) = 0$ *for* $e > 0$ *. Here* $\varphi^{n}(e)$ *stands for nth iterative function of* $\varphi(e)$ *.*

If $\varphi \in \varphi$ *then* $\varphi(e) < t$ *for* $e > 0$ *. suppose that* $\exists e_o > 0$ *with* $e_0 \leq \varphi(e_0)$ *. Then since* φ *is non decreasing we have* $e_0 \leq \varphi^n(e_0)$ $\varphi \ \forall \ n \in \{1, 2, \ldots\}$ *which is inconsistency. Also* $\varphi(0) = 0.$

Lemma 4.5. Assume a Menger $P_{\text{Sh}}M$ -space $(\mathscr{X}, \mathscr{F}, \mathscr{T})$ ful*fills the coming condition:* $\mathcal{F}_{m,o,p}(e) = \mathcal{C} \ \forall \ e > 0$ *then we've*

 $\mathscr{C} = \varepsilon_0(e)$ *and* $m = o$.

Theorem 4.6. *Take* $(\mathcal{X}, \mathcal{F}, \mathcal{T})$ *is a complete Menger* Ps_b *space and h*, *k and l be weakly commuting self mappings of X fulfilling the coming properties:*

$$
(i) \ \ h(\mathcal{X}) \subseteq k(\mathcal{X}) \subseteq l(\mathcal{X})
$$

- *(ii) h and k or l is continuous.*
- $(fiii)$ $\mathscr{F}_{hm,ho,hp}(\varphi(e))$ ≥ $\mathscr{F}_{km,ko,kp}(e)$ ≥ $\mathscr{F}_{lm,lo,lp}(e)$ *, here* $\varphi \in$ φ*.*
- *(a) If t*-norm holds and ∃ $m_0 \in X$ with $\mathcal{E}_{\mathcal{F}}(lm_0, km_0, hm_0) =$ $sup{\{\mathscr{E}_{\gamma,\mathscr{F}(lm_0,km_0,hm_0)}:\gamma\in(0,1)\}}<\infty$, thus *h* and *k have exclusive common fixed point.*
- *(b) If s-norm holds then h and k have a unique common fixed point.*

Proof. Elect $m_0 \in \mathcal{X}$ with $\mathcal{E}_{\mathcal{F}}(lm_0, km_0, hm_0) < \infty$. Take *m*₁ ∈ *X* with $hm_0 = km_1 = lm_2$. In general, pick $m_{n+1}, m_{n+2} \ni$ $hm_n = km_{n+1} = lm_{n+2}$. Presently $\mathscr{F}_{hm_n, hm_{n+1}, hm_{n+2}}(\varphi^{n+1}(e))$ $\geq \mathscr{F}_{hm_{n-1},hm_n,hm_{n+1}}(\bm{\varphi}^n(e))\geq \mathscr{F}_{km_0,km_1,km_2}(e)\geq \mathscr{\widehat{E}}_{lm_0,lm_1,lm_2}$ (e) . every $\sigma \in (0,1)$, $\mathscr{F}_{\sigma,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2}) = \inf\{\varphi^{n+1}\}$ $P(e) > 0$: $\mathscr{F}_{hm_n, hm_{n+1}, hm_{n+2}}(\varphi^{n+1}(e)) > 1-\sigma\}$ $\leq inf{\phi^{n+1}(e) > 0} : \mathscr{F}_{lm_0,km_0,hm_0}(e) > 1-\sigma\}$ $\leq \varphi^{n+1}(\inf\{e>0:\mathscr{F}_{lm_0,km_0,hm_0}(e)>1-\sigma\})$ $= \varphi^{n+1}(\mathscr{E}_{\sigma, \mathscr{F}}(lm_0, km_0, hm_0))$ $\leq \varphi^{n+1}(\mathscr{E}_{\mathscr{F}}(lm_0,km_0,hm_0))$ Hence $\mathscr{F}_{\sigma, \mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2}) \leq \varphi^{n+1}(\mathscr{E}_{\mathscr{F}}(lm_0, km_0, hm_0))$)) Take $\varepsilon > 0$ and $n \in \{1, 2, 3, ...\}$ so $\mathscr{F}_{\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2})$ $\epsilon < \varepsilon - 2\varphi(\varepsilon)$. For $\sigma \in (0,1)$, $\exists \eta \in (0,1)$ with $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n,h)$ $m_{n+1}, hm_{n+3}) \leq \mathcal{E}_{\eta,\mathcal{F}}(hm_n,hm_{n+1},hm_{n+1}) + \mathcal{E}_{\eta,\mathcal{F}}(hm_{n+1},h)$ $m_{n+2}, hm_{n+2}) + \mathcal{E}_{n,\mathcal{F}}(hm_{n+2}, hm_{n+3}, hm_{n+3})$ $\leq \mathscr{E}_n \mathscr{F}(\mathit{hm}_n, \mathit{hm}_{n+1}, \mathit{hm}_{n+1})$ $+\varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_n,hm_{n+1},hm_{n+1})) + \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_{n+1},hm_{n+1},h))$ (m_{n+2})) \leq $\mathcal{E}_{\mathcal{F}}(hm_n, hm_{n+1}, hm_{n+1}) + \varphi(\mathcal{E}_{\mathcal{F}}(hm_n, hm_{n+1},h))$ m_{n+1}) + φ ($\mathscr{E}_{\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+2})$) $\leq [\varepsilon - 2\varphi(\varepsilon)] + \varphi(\varepsilon) + \varphi(\varepsilon)$ $\leq \varepsilon$ Then $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n, hm_{n+1}, hm_{n+3}) \leq \varepsilon$. For $\sigma \in (0,1), \exists \eta \in$ $(0,1)$ with $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n,hm_{n+2},hm_{n+4}) \leq \mathscr{E}_{\eta,\mathscr{F}}(hm_n,hm_{n+1},h)$ m_{n+2}) + \mathscr{E}_{n} , $\mathscr{F}(hm_{n+1}, hm_{n+2}, hm_{n+3}) + \mathscr{E}_{n}$, $\mathscr{F}(hm_{n+2}, hm_{n+3},$ $hm_{n+4}) \leq \mathcal{E}_{\eta,\mathcal{F}}(hm_n,hm_{n+1},hm_{n+2}) + \varphi(\mathcal{E}_{\eta,\mathcal{F}}(hm_n,hm_{n+1},h))$

 $h_{m_{n+2}})$) + $\mathscr{E}_{n, \mathscr{F}}(hm_{n+2}, hm_{n+3}, hm_{n+4}) \leq (\varepsilon - 2\varphi(\varepsilon)) + \varphi(\varepsilon)$ $-\varphi(\varepsilon)) + \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_{n+1},hm_{n+2},hm_{n+3}))$ $\leq (\varepsilon - 2\varphi(\varepsilon)) + \varphi(\varepsilon - \varphi(\varepsilon)) + \varphi(\varepsilon - \varphi(\varepsilon))$ $\leq \varepsilon$.

Similarly for each $\sigma \in (0,1)$, we've $\mathscr{E}_{\sigma,\mathscr{F}}(hm_n, hm_{n+2}, hm_{n+4})$ $\leq \varepsilon$.

Note that $\mathscr{F}_l h m_{n+1}, h m_{n+2}, h m_{n+3}$ $\varepsilon(e) \leq \mathscr{F}_{k m_{n+1}, k m_{n+2}, k m_{n+3}}$ $(e) = \mathscr{F}_{hm_n, hm_{n+2}, hm_{n+4}}$

 \Rightarrow $\mathscr{E}_{\sigma,\mathscr{E}}(hm_{n+1},hm_{n+2},hm_{n+3}) \leq \varphi(\mathscr{E}_{\eta,\mathscr{F}}(hm_n,hm_{n+2},hm_{n+4})$)). Therefore, $\mathcal{E}_{\mathcal{F}}(hm_n, hm_{n+2}, hm_{n+4}) \leq \varepsilon$.

By induction, $\mathcal{E}_{\mathcal{F}}(hm_n, hm_{n+k}, hm_{n+k+2}) \leq \varepsilon$ for $k \in \{1,2,3,..\}$ Therefore $\{hm_n\}$ is a *CS* and by the reason $\mathscr X$ is complete,

 ${hm_n}$ converges to *r* in $\mathscr X$. Also ${km_n}$ and ${lm_n}$ converges to *p*. let us now presume that the mapping *h* is continuous. Then $\lim_{n} h m_n = h p$, $\lim_{n} k m_n = f z$ and $\lim_{n} h l m_n = h p$. Since *h*, *k* and *l* are weakly commuting each other, we've,

 $\mathscr{F}_{hkm_n,klmn}(e) \geq \mathscr{F}_{hm_n,km_n}(e), \mathscr{F}_{hlm_n,lhm_n}(e) \geq \mathscr{F}_{hm_n,lm_n}(e)$ and $\mathscr{F}_{klm_n,lkm_n}(e) \geq \mathscr{F}_{km_n,lm_n}(e)$.

Take $n \to \infty$ in the above disparity and $\lim_{n \to \infty} k h m_n = h p$ and lim_{*n*→∞} $klm_n = hp$ continuity of *h*.

Presently prove $p = hp$. Consider $p \neq hp$. By (iii) some $e >$ $0, \text{ we've } \mathscr{F}_{hm_n,hhm_n,hp_n}(\varphi^{k+1}(e)) \geq \mathscr{F}_{km_n,khm_n,kp_n}(\varphi^{k}(e)) \geq$ $\mathscr{F}_{lm_n, lhm_n, l p_n}(e)$ \Rightarrow $\widetilde{\mathscr{F}}_{p,hp,p}(\bm{\varphi}^{k+1}(e)) \geq \mathscr{F}_{p,kp,p}(\bm{\varphi}^{k}(e)) \geq \mathscr{F}_{p,hp,p}(e)$ Also we've $\mathscr{F}_{p,hp,p}(\varphi^{k}(e)) \geq \mathscr{F}_{p,hp,p}(\varphi^{k-1}(e))$ and $\mathscr{F}_{p,hp,p}$ $(\varphi(e)) \geq \mathscr{F}_{p,hp,p}(e)$ Thus we've $\mathscr{F}_{p,hp,p}(\varphi^{k+1}(e)) \geq \mathscr{F}_{p,hp,p}(e)$ Differently, $\mathscr{F}_{p,hp,p}(\varphi^{k+1}(e)) \leq \mathscr{F}_{p,hp,p}(t)$. Then $\mathcal{F}_{p,hp,p}(e) = \mathcal{C}$ and by lemma (2.3.5) $p = hp$. Since

 $h(\mathcal{X}) \subseteq k(\mathcal{X}) \subseteq l(\mathcal{X})$ Thus the locate $p_1, p_2 \in \mathcal{X} \ni p =$ $hp = hp_1 = hp_2 = kp_1 = lp_2.$

Presently $\mathscr{F}_{hhm_n,hp_1,hp_2}(e) \geq \mathscr{F}_{khm_n,kp_1,lp_2}(varphi^{-1}(e)).$ Taking limit as $n \to \infty$, we've, $\mathscr{F}_{hp_1,hp_1,hp_2}(e) \geq \mathscr{F}_{p,kp_1,lp_2}(\varphi^{-1}(e)) \Rightarrow \mathscr{F}_{hp,p,p}(e) \geq \mathscr{F}_{p,hp,p}$

 $(\varphi^{-1}(e)) = \varepsilon_0(e), \Rightarrow hp = hp_1.$

That is $p = hp = hp_1 = kp_1 = lp_2 = lp_1$. Also $e > 0$, known h, k and l are weakly commuting each other,

 $\mathscr{F}_{hp,kp,lp}(e) = \mathscr{F}_{hk p_1,kl p_1,hl p_1}(e) \geq \mathscr{F}_{hp_1,k p_1,lp p_1}(e) =$ $\varepsilon_0(e)$

Thence $hp = kp = lp$. Thus *p* is a common fixed point of *h*, *k* and *l*. To prove the uniqueness, suppose $p_1 \neq p_2 \neq p$ is another common fixed point of h, k and l . Then some $e > 0$ and $n \in N$ we've

$$
\mathcal{F}_{z,z_1,z_2}(\varphi^{n+1}(t)) = F_{f z, f z_1, f z_2}(\varphi^{n+1}(t)) \geq F_{gz, g z_1, g z_2}(\varphi^n(t)) = F_{h z, h z_1, h z_2}(\varphi^n(t)) \n= F_{z, z_1, z_2}(\varphi^n(t)) \text{ Also we have } \mathcal{F}_{p, p_1, p_2}(\varphi^n(e)) \geq \mathcal{F}_{p, p_1, p_2}(e) \n\varphi^{n-1}(e) \text{ and } \mathcal{F}_{p, p_1, p_2}(\varphi^n(e)) \geq \mathcal{F}_{p, p_1, p_2}(e).
$$
\nTherefore we've $\mathcal{F}_{p, p_1, p_2}(\varphi^{n+1}(e)) \geq \mathcal{F}_{p, p_1, p_2}(e).$

\nDifferently, we've $\mathcal{F}_{p, p_1, p_2}(e) \leq \mathcal{F}_{p, p_1, p_2}(\varphi^{n+1}(e))$

\nThen $\mathcal{F}_{p, p_1, p_2}(e) = \mathcal{C}$ and by lemma (4.5) $p = p_1 = p_2$ which is a conflict.

Thus *p* is the unique common fixed point of *h*, *k* and *l*.

 \Box

5. Conclusion

Main consequence of this work is,

- (i) *r*-distance in Menger *PMS* can be extended to rs_b distance in Menger probabilistic *sb*-metric spaces.
- (ii) A few fixed point theorems were proved in complete Menger *PsbMS*.
- (iii) Also some statements were proved in both rs_b -distance with property $\mathscr C$ and weakly commuting maps.

References

- [1] M. Abderrahim and O. Rachid, Probabilistic *b*-metric spaces and non linear contractions, *Fixed Point Theory Applications*, (2017) 2017:29.
- [2] C. Alsina, B. Schweizer and A. Sklar, On the definition of a probabilistic normed space, *Aequationes Math.,* 46(1993), 91–98.
- [3] I.A. Bakhtin, The contraction principle in quasimetric spaces, *Functional Analysis. A., Ulianwsk, Gos. Ped. Ins.,* 30(1989), 26–37.
- [4] A. Bharucha-Reid, Fixed point theorems in probabilistic analysis, *Bull. Amer. Math. Soc.,* 82(1976), 641–657.
- [5] S. Czerwik, Contraction mappings in b-metric spaces, *Acta Mathematicaet Informatica Universitatis Ostraviersis*, 1(1993), 5–11.
- [6] B. Ismat and A. Mujahid, Fixed points and Best approximation in Menger convex Metric spaces, *Archivum Mathematicum (BRNO) Tomus*, 41(2005), 389–397.
- [7] M.A. Khamsi and V.Y. Kreinovich, Fixed point theorems for dissipative mappings in complete probabilistic metric spaces, *Math. Jab.,* 44(1996), 513–520.
- ^[8] S. Nizar and M. Nabil, A fixed point theorem in S_b -metric spaces, *J. Math. Computer Science*, 16(2016), 131–139.
- [9] R. Saadati, D.O'Regan, S.M. Vaezpour and J.K. Kim, Generalized distance and common fixed point theorems in Menger probabilistic metric spaces, *Bulletin of the Iranian Mathematical Society*, 35(2)(2009), 97–117.

 $***$ ******* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$