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1. Introduction

The documentation of intuitionistic set was introduced by
Coker[5] in 1996. It has membership and non-membership
degrees, so this notion gives us more flexible approaches to
representing vagueness in mathematical objects and also in
some of the engineering fields with classical set logic. In
1996 Csaszar [4] introduced generalized topological space.
Thereafter in 2007 P. Sivagami and D. Sivaraj [11] developed
generalized topological space and reveled many more results
of it.

Now, G. Hari Siva Annam and G. Mathan Kumar [8] in-
troduced a new concept of generalized topological space by

using intuitionistic sets. This is called as generalized intu-
itionistic topological spaces (GITS). They discussed intuition-
istic closed sets and intuitionistic open sets in generalized
intuitionistic topological space. In this article, we establish
intuitionistic generalised closed sets in GITS and discussed
their properties. We also demonstrate the correlation between
intuitionistic closed sets and intuitionistic generalised closed
sets in GITS. Moreover, we explore closure and interior of
intuitionistic generalised closed sets.

2. Preliminaries

In this segment, we list some definition and fundamental
results which are to be used further.

Definition 2.1. [5] Let X be a non-empty set. An intuitionis-
tic set A is an object having the form A=(X A1,A,), where A,
and Aj are subsets of X satisfying Ay N Ay = ¢. The set Ay is
called the set of member of A while A, is called the set of non
member of A.

Definition 2.2. [5] Let X be a non-empty set and let A, B be an
intuitionistic sets in the form A=(X Ay,A,) and B=(X,B1,B>)
respectively. Then

1)A C Bifand only if A1 C By and B, C A,.

2)A=B ifand only if A C B and B C A.
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3)A = (X,Ay,Ay), (In intuitionistic, A = A°)

4)AUB = (X,A1UB1,A;NB,).
5)ANB = <X7A1 NB1,A; UBz>.
6)A-B=ANB.

7)¢ =

~

<Xv¢7X>;)S = <X7X7¢>'

Definition 2.3. [6] An intuitionistic topology on a non-empty
set X is a family T of intuitionistic sets in X containing ¢ ,X

and closed under finite union and intersection. The pair
(X,7) is called an intuitionistic topological space. Any in-
tuitionistic set in T is known as an intuitionistic open set
(10S) in X and the complement of 10S is called an intuitionis-
tic closed set (ICS).

Definition 2.4. [4] Let X be a non-empty set and [L be a collec-
tion of subsets of X. Then (X, ) is called a generalized topol-
ogy if ¢ € U and arbitrary union of elements of [ is in L. The
elements of W is called U - open set and the complement of U -
open set is called |l - closed set.

Definition 2.5. [8] Let X be a non-empty set and |i; be the col-
lection of intuitionistic subset of X. Then Ly is called the gener-
alized intuitionistic topology on X if ¢ € Uy and L is closed un-
der arbitrary unions. The elements of i are called [-open
sets and their complements are called L - closed sets.

Definition 2.6. [8] The y; - closure of A is the intersec-
tion of all ;- closed superset of A, and the U - interior of A
(its denoted by iy (A)) is the union of all y;- open sets con-
tained in A.

Definition 2.7. /8]
1) IfA C B then cyi(A) C cur(B).
2) cur(AUB) D cpui(A)Ucur(B).
3) car(A) Newr (B) 2 cur (AN B).
4)1f A C Btheniy(A) Cin(B).
5) int(AUB) 2 iys(A) Uips(B).
6) int(ANB) Ciyr(A) iy (B).
7) IfA is Wy — closed then cyi(A) = A.
8) curlcur(A)] = cur(A).
9) Cul( 0) # 9.

]0) lul( )#X
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1HA=A

]2)?: <X7¢7X>;)S: <X7X’¢>'

3. Intuitionistic generalized closed sets
in generalized intuitionistic topological
space

Definition 3.1. In (X, ), an intuitionistic set A of X is said to
be an intuitionistic generalised closed sets in generalized in-
tuitionistic topological space (GITS) if cu(A) C U whenever
A CUand U is Y—open and it is denoted by Hyg—closed.

Theorem 3.2. Every L — closed set is [;g —closed set but the
converse is not true.

Proof. Let Abe iy —closed set. Then ¢y 7(A) = A (using 2.7,[7]).
Suppose A C U. Then cy(A)=A C U. Hence Ais [ g—
closed. But the converse is not true. We can see in the suc-
ceeding illustration, Let X = { a,b,c}. Then

w={ (X,0.X), (X, {c} {a}) XAbc} {a})
(X, {b} {a,c})},w—closed={ (X,X,9), (X, {a} {c}),
X, { a} . { b,c} ), (X, { a,c} ,{ b} )} and p; g—closed
= { (X,X,0).(X,6,0), (X,0.{b} ), (X.0,{ c} ). (X.{ a} ,0).
TN S AN )
(X,{cat {b}),(X,{c,a},0),(X,{b} {c}) (X, {b},0)
(X0 { bt ), XA} { b)) X {a,b} . 9)
(X, {a,b} {c}) X, {bc},0)}.
Here (X, { ¢} .{ b} ), (X.{ b} .{ c} ), (X, { b,c} .0) are g
— closed sets. But these are not
Uy — closed sets. O

Remark 3.3. Union of two ;g — closed sets need not be ;g —
closed. Now we can see the successive illustration.
Let X = { a,b,c}. In the topological space (X, liy). Then
ur={ (X,9,X), (X, {b},9), (X,{a,b},0),(X,{a} {b})
o —closed = { (X,X,¢), (X,0,{ b} ),(X,¢,{ a,b} ),
(X, { b} { a} )} and p; g—closed= { (X,X,9),(X,9,X),
(X,0.{a}),(X,9,{a,b}),(X,{b} {a}),(X,{b} {a,c}),
(X {ch.0), (X {c} {a}), (X {c} {b}),(X,{c} {ab}),
XA b} ,0), (XA by { a} ), (XA ca} ,9),
(X.{ca},{b}), (X,0,{b}), (X,0,{D, C}> <X ¢.{c,a})
}'NOWA=<X7¢7{a}>aB:<X’¢v{b} <Xa¢7¢>
Here A and B are g — closed. But AUB is not [.L1g — closed.

Remark 3.4. Intersection of any two U g — closed sets need
not be U g — closed set. Now we can see in the following
example. Let X = { a,b,c} in (X, 1), we found that,

U= { <X,¢,X>, <X7¢7{ b} >7<X7{ a} 7¢>7<X7{ a7b} 7¢>7

<X7{ a} ’{ C} > }’ Ky — closed = { <X’X7¢>’ <X7{ b} 7¢>7
(X,¢0.{a}).(X,0.{a,b}),(X.{c} {a})}. Then
Hig—closed = { <X7 9 > <X 9, { a} > <X7¢a{ avb} >7
(X, {b}, 0), (X {b} . {a}), (X, {b},{c}), (X, {b} {a,}),
X {c},0),(X.{c}

( {a
Exv{ bcy ), (X{

< ]l;> (X { e {b}), (X, {ct,{ab}),
X {ea},{b})}.

b o ar ), (XA ca) 9,
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Suppose A = (X, ¢, { a} );B=(X,{ b} ,{c}),thenANB =
(X,0,{ a,c} ). Here A and B are W g—closed sets. But AN
B is not a pyg—closed sets.

4. Closure of GITS

Definition 4.1. The L g — closure of A, denoted by cj;(A), is
the intersection of all U;g — closed superset of A.

Note 4.2.

(i) C,*u(‘l:) #¢;

(ii) c:l,()N() =X
Proof. The result is obvious. O

Theorem 4.3. Let (X, ;) be a GITS. A and B are the subset
of X

(i) ¢}, is enhancing: A C ¢y (A),
(ii) If A C B then ¢}, (A) C ¢ (B).

(iii) ¢ is idempotent : ¢y [c; (A)] = ¢y (A).
Proof. 1) Since ¢} (A) is the intersection of all tg- closed su-
perset of A, then A C C;: 1(A).

ii) Let A C B, Suppose x & ¢;,;(B) . Then x ¢ NF, F is g
—closed setand B C F. Which 1mp11es x ¢ F , for some u;g-
closed supersetof B C F.SinceA C B, A g F.Hence x ¢
F, for some pg-closed superset of A. So x ¢ cj,;(A). There-
fore we get a result.

iii) From (i), A C ¢j,;(A). Then ¢}, (A) C cﬂlcm( ). Take B
=cj;(A). Letx ¢ c;;(B). Thenx ¢ NF, Fis W g — closed
and B C F, which implies x ¢ F, for some y; g —closed set F

such that B C F. This gives x ¢ B = c(A),
we get ¢j;¢jy (A) € ¢y (A). Therefore ¢}y [cy(A)] = ¢ (A).
O

Theorem 4.4. ¢;,(A)Uc;,;(B) C ¢}, (AUB).

Proof. We know that A CAUB and B C AUB. Then by the-
orem 4.3(ii)

cud) < (A U B) and CZI(B) - C;I(A U B).
Therefore cj, (A) Uc 1(B) C cjy(AUB). O

Example 4.5. The inclusion may be strict or equal, we can
see in the succeeding illustration. Let X = { a,b,c} in the
topological space (X, L) then,

w={(X,9,X),(X,{a} {c}),(X.{c} {a}) (X ,{ac},9)
<X7a7¢>} W — closed = { <X7X’ > <X7{ C} v{ a} >a
(X, {a} {c}).X,0,{aq, C}> (X,0,{a})}
tg—closed = { (X,¢,X),(X,X,¢).(X,¢,{a}),(X,9,{c}),
(X.0.{ a,b} ), (X.0.{ b.e} ), (X.9.{ c.a} ),
XA a} A b} ) XA c} { g} ) (XA ab}e),
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e ), (X { e} {ab}) (X, {a,b},{c})
:0), (XA bep { a} ), (X { a} { ) ),
e} ), (X, {b} {a})}.

Let A = (X,{c},{ab})B

(XA b,c}t,9)
):<X,{C} 7{a’b}>;czl(B):<X,{b,C} ,¢>;c:‘”
(X,{ b,c} ,¢). Hence c

(X, {b} {a
(X,{ b,c}
(X, {b} A
= (X,{b,c} ,0),AUB =
(AU

cur(A) U

(A
(B) = <X7{ b,C} 7¢>

(AUB) = 1(AUB) =
(B

Theorem 4.6. c;,(ANB) C ¢}, (A) N ey (B).

Proof. We know that ANB C A and ANB C B. Then ¢} ;(AN
B) C c};(A) and ¢y, (ANB) C ¢}, (B). Therefore ¢, (ANB) C
cur(A)Neyy(B).

Example 4.7. The inclusion may be strict or equal, we can
see in the ensuing illustration. Let X ={ a,b,c},

w={ (X,¢.X), (X, {b},0), (X,{a,b},¢),(X,{a} {b})
} ot — closed = { (X,X,¢), (X,9,{ b} ),(X,9,{ a,b} ),
(X,{ b} { a} )} and p; g—closed= { (X,X,9),(X,9,X),

(X.0,{a} ), (X,0,{a,b}), (X, {b} {a}),(X.{b} {arc}),
(X {c},0), (X {c} {a}), (X, {c}, {b}) (X, {c} {ab}),
XA bet ,0), (XA b { a} ), (X, { ca} ,9),

§X7{C,a}7{b}>,<X,¢,{b}>y<X,¢7{b,C (X,9.{c,a})

X,
1)

Take A = X,¢,{ a} )
C:LI(A):<X7¢ﬂ{a}>7cZI(B)Z<X7
C;AA)QC#I(B)_<X7¢,{a}>,AﬁB:<X7¢,{a’
B) = (X,9,{a,c}). Hence cj;(ANB) Cc,

Take A =
H [(ANB) = (X ¢ {a}; ;
ul

(X,0.{ a}),c;;,(A)Ney,
B) = ciy(A) Ny (B).

Theorem 4.8. A C ¢;,(A) C cu(A).

Proof. Assume x ¢ cu7(A) which implies x ¢ NF, where F
is a py - closed superset of A. It gives x ¢ NF, Fis a g -
closed superset of A (By theroem 3.2) then x ¢ F for some
W g - closed superset of A. Therefore x ¢ A and hence we
have A C ¢, (A) C cur(A). O

Example 4.9. Consider the topological space X = { a,b,c}.
Let uy ={ (X, X,¢), (X, {a},0),(X,0.{b}),(X,{c}.0),
<Xv{ a,c} a¢>><Xa{ av} 7{ b,C} >7<Xa{ a} 7{ b} > } Hr —
Closed:{ <X X ¢>’ (X,¢7{a} >7<X7{ b} ¢>,<X 9, {C} >>
(X,0.{ac} ), X {bc} {a}),(XAb} {a})}g-
closed ={ (X, X,9) (X, ¢, {a}),(X,0,{c}),(X,0.{c,a}),

nn
S0
3.&« %73

K
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(X, {b},{a}), (X, {b}
X { ab} { c} ), (XA bieh ,0), X A{ b} { a} ),
X Ao} {ch)}

Let A= (X,{ b} ,9),c,,(A) = (X,{ b} ,0).cur(A) =
<X7{b}7¢>~Th€nA—CZI( ) = cur(A)

Let A= (X,{a},9),c;;(A) = (X,{ab},$),culA)=
(X,X,0). ThenACC 1(A) Ceur(A).

)

Theorem 4.10. If a subset A of X is L;g — closed set and A C
B C cpui(A) then B ispyg — closed sets in X.

Proof. Let A be a ;g — closed set and A C B C cyj(A).
Let U be a uj—closed set of XsuchthatB C U. Since A is
pg—closedset, then we have cyj(A) C U. Now cyr(A) C
cur(B) C curleur(A)] = cur(A) C U. Then cy(B) C U,
U is pyy—closed set and B C U. Therefore we get B islig
— closed set in X. O

Remark 4.11. The converse of the theorem need not be true
as seen from the following example. Consider the topo-
logical space (X, ) where X = { a,b,c} w={ (X,9,X),
<X’{ a,c} 7{ b} >7<X’{ c} 7¢>a<X7{ avc} >¢>} Uy — closed
={ (X X,0). (X, {b}{a,c}) (X.0,{c}),(X,0,{a,c})}
g — closed = { (X,X,¢), (X,9,{ ¢} ),(X,9,{ a,c} ),
X, { b} { a} )X b} o)X b} { ac} ),
XA bt A o} ), (XA ab} 0), (XA ab} { ¢} ),
(X, {b,c} {a}),(X,{b,c},0)}
LetA= (X {b} {a,c}),cu(A)=(X {b} {ac})B=
(X,9.{c}).HereBispg — closed set but AL B Z cyi(A).
Let A = (X,9,{ a,} >,C”1(A) = X,9,{ ac} ),
= (X,{ b} ,{ a} ).Here B is g — closed set but A C

B & cui(A)

Let A = (X,0.{ ¢} )}iB = (X,0,{ ac} ),
cur(A) = (X,9,{ ¢} ). Here B is ju; g — closed set but A
¢ B C cu(A).

Theorem 4.12. Let (X, ;) be a GITS. If U and V are Ly
g-closed set and UNV = ¢ then (c;,U) NV = ¢ and U N

(CZIV) =9.

Proof. Given U and V are y; g-closed sets and unv =
¢ThenU§ZVandV§ZU Hence U & ¢jy(V) and V ¢
ul(U). Therefore (c;,,U)NV =¢ and UN(c;,;V)=¢. O

5. Interior of GITS

Definition 5.1. The complement of Ujg-closed set is L;g-
open.

Definition 5.2. For any A C X, the space union of all L;g-
open set contained in A is said to be ;g- interior of A and its
denoted by i}, (A).

,?>,<X’{a»b},¢>><X7{b}’{avc}>7

Note 5.3. (i) ij,,(X) #X
(i) i (9) = 9.
Proof. The result is obvious. ]

Theorem 5.4. IfA C B, then iZ,(A) C i:‘l,(B).

Proof. Suppose A C B,let x ¢ iy;(B), thenx ¢ UG, Gis
g— open set contained in B. Hence

x ¢ G, for all y; g— open set G contained in B. Therfore x ¢
UG, G is uy g— open set contained in A.

Therefore x ¢ i,,(A). Then we have i;,,(A) C iy, (B). O
Theorem 5.5. i}, (A) Uiy, (B) C iy, (AUB).

Proof. We know that A CAUB and B C AUB. Then i’LI(A) -
iy(AUB) and

iy (B) C i},;(AUB) which implies iy, (A) Ui}, (B) C iy, (AU
B). O

Example 5.6. The inclusion may be strict or equal we can see
in the following example. Let X = { a,b,c} in the topological
space (X,up), wr={ (X,9,X),(X,{a} ,{ b} ), (X, {b} ,{c}),
<X7{ a’b} ’¢> } U= closed= { <X>X’¢> ’<X7{ b} 7{ a} >7
X, {ct {b}),(X.0,{ab}) } g - closed = { (X,X,9)
(X, 0.{a}),(X,0,{ab}), (X, {b} {a}),(X,{c},9),
XA b A at ), (XA bieh ,0), (XA ¢} { ab} )
XA cf A b} ), (XA b} A a} ), (XA ac} ,¢),
<X7{a7c}a{b}>}«

Let A = (X,¢.{ ¢} ),ip(A) = (X,0.{ ¢} ),
< (P{ ab} >7 ,ul( ) = <X7¢ax>7ir11(A) UiZI(B)
(X ¢.{c})AUB=(X,0,0),i;,(AUB) = (X,¢,{ c}).
Hencei, (AUB)flu,(A)Uz /(B).
Let A = (X0 a} 1B = (X.{ ab { ¢} ),
AUB = <X {a} ¢>,'“](AUB):<X,{G},¢)>
i/ﬁ (A) = (X,9,{ a,c}),i /.LI(B) =X {a} . {c} >, /,LI(A)U
iy (B) = (X,{a} ,{c}).Henceiy (A) Uiy (B) Ciy(AUB).

Theorem 5.7. i,,(ANB) Ci;,;(A) iy, (B).

Proof. We know that ANB C A and ANB C B. Then i}, (AN
B) Ciy,(A) and i};,(ANB) C iy, (B) which implies i},,(A N
B) C iy, (A)Niy(B). O

Example 5.8. In (X,u; ), Let X = { a,b,c}
,LL[={<X,¢,X>, <Xv{b}a¢>’ <X7{aab}a¢><
p — closed = { (X,X,9), (X,9,{ b} ), <X7
A b} ,{a} )} and yy g—closed= { (X,
0.{a}),(X,0.{a,b}),(X,{b},{a}), < Ab} {ac}),
At 9), (X {c} {a}), X, {c} {b}), (X, {c},{ab}),
A bt L), (X { bt A a} )X { ca} ,9),
Aeat {b}), (X,0.{b}), X,0,{b,c}). (X,0.{c,a})

Now A =
AﬂB X,¢,{ab
i(B) = (X,¢.{ b,c

A ar,{b})
¢.{ a,b}),
X,9).(X,9,X),

TRERERT

1145
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NowA=(X,{b,c},9),B=(X,{a,c} {b});iyA)=
(XA b,c},0),i5,(B) = (X, { a,c} { b} )i}, (A)Niy(B) =
X {ct {b}t) AnB=(X{ c} {0} >viZI(Am )

=(X,¢,{b,c}). Hence i ZI(A )Ci;fl,(A)ﬂiZl,(B

N
Theorem 5.9. i, (A) C iy, (A) C A.

Proof. Suppose x € iy;(A). Then x € UG, where G is a
- open set contained in A. Since every L - open set is Lg -
open set, x € UG, where G is a ;g - open set contained in
A. Thus we have x € ij;;(A). Since i};;(A), is the union of
all open sets contained in A, i},;(A) C A. Therefore iy/(A) C
iu(A) CA. O

Example 5.10. In (X, 1), Let X = { a,b,c}, we have

,Ll]:{ <X,¢,X> ’<Xa{ C} 7{ avb} >7<X7{ b} 7{ C} >a
(X, {b,c},0),(X.{c},0), (X, 0. {c}), (X {b},{a}),
(X, {b}.0), (X, {bc} {a})}

py —closed = { (X, X,¢) (X, {a,b} {c}), (X, {c} {D}),
(X, 0,{b,c} ). (X,0.{c} )X {c}.0),

(X {a} {b}),(X,0,{b}) (X, {a} {bc})}.

pr g —closed={ (X,9,X), (X,9,¢),(X,0,{b}),(X,9,{c}),
(X,0,{b,c}),(X,{a} {bc}) (X,{a},0),

(X, {a,b},0), (X, {a} {b}), (X, {a} {c}), (X.,{c} {b}),
;X’{C} :9), (X {ab} {c}), (X, {c.a},0),(X,{c,a},{b})

LetA=(X,0,{b} ),iur(A) = 9,i},(A) = (X,0,{ a,b}).
Therefore iy (A) C iy (A) C A.

LetA=(X,{b}, {a}> inr(A) =

<X>{b}7{a}>7i;I(A>:
(X,{ b} ,{a}). Thereforeiy(A)=

i;,(A) =A.
Axiom 5.11. Let If (X, l;) be a GITS and A is a subset of X.

Afterwards the subsequent statements are hold
i) ¢y (A) = iy (A)

ii) ¢y (A) = iy, (A)

iii) ¢, (A) =

N

)

l;:l(A).

i (

i) (A) =

Proof. i) Letx € cﬂI(A). Thenx € NF,Fis g — closed

set and A C F, which implies x € F, for all

t; g — closed set F such that A C F. Therefore x ¢ X —

F, for some y; g-open set X-F such that

X—F C A.Thenx ¢ iy,(A) and hence x € ij,;(A). Whichim-
plies ¢}, (A) C iy (A). Suppose

x¢ Cul( )s thenx ¢ NF,Fisu g—closed setand (A) CF,
which implies x ¢ F, for some

trg — closed set contains A. Therefore x € X — F, for some gy

g-open set X-F such that

X —F CAand hence x € iy;(A) which implies x ¢ i

ur(A)
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. Then i}, (A) C ¢}, ;(A) and we get a result.
ii) Proof is similar to i).
iii) Following by taking complements in 1)

iv) Replacing A by A in i). O

6. Some operators in intuitionistic
topological space

Theorem 6.1. The operators U and N satisfies associativ-
ity and De Morgan’s laws

i) (AUB)UC=AU(BUC)
ii) (ANB)NC=AN(BNC)
iii) ANB=AUB

vy AUB=ANB.

Proof. LetA = <X,A1,A2>,B: <X,B],Bz>,C: <X,C1,C2>
1) Now,
(AUB)UCZ <X,A1 UBj,A2NByyUC

= <X,(A1 UBl)UCh(Az ﬂBz) ﬂCz)
=(X,A1U(B1UC),A2N(B,NC))
=AU(BUC)

ii) Proof is similar to i).

iii) Now

A B=(X,AyNBy,A; UBy)
= (X,A1UB1,A2NBy)

=AUB.
iv) Proof is similar to iii). O

Based on this property, some more properties on closure
and interior operators will be implemented in future papers.

7. Conclusion

We conclude that the collection of intuitionistic gener-
alized closed sets in GITS does not form the generalized
intuitionistic topology and intuitionistic topology. The charac-
terization of some more properties are in future process.
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