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Stress regular graphs
Shiny Joseph 1* and V. Ajitha2

Abstract
The stress of any vertex of a graph G is defined as the number of shortest path passing through that vertex as
an internal vertex. If the stress of every vertex in a graph is equal, such graphs are called stress regular graphs.
This paper investigates the stress of different families of graphs and study the properties of stress regular graphs.
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1. Introduction
The analysis of complex networks that represent relations

between various objects involve the tasks of the identification
of objects which has a prominent role within the network. The
concept of stress is one of such parameter and is introduced
by Shimbel [9].

Let G(V (G),E(G)) be a simple connected undirected
graph with vertex set V (G) and edge set E(G), n and m de-
note the number of its vertices and edges respectively. For
every vertex v ∈V (G), the open neighbourhood of v is the set
N(v) = {u ∈ V : uv ∈ E(G)} and the closed neighbour-
hood of v is the set N[v] = N(v)∪{v}. The degree of a vertex
v ∈V (G) is deg(v) =| N(v) |. A graph is regular with valency
k if the degree of each of its vertices is k. For any two vertices
u,v ∈V (G), the distance d(u,v) between u and v is the length
of a shortest path between u and v in G. The eccentricity of
a vertex u is the number e(u) = max {d(u,v) : v ∈ V} .
The maximum eccentricity of the vertices of G is called the
diameter of G and is denoted by D. The i-neighbourhood
Ni(v) of a vertex v ∈V (G) is the set of vertices at distance i

from v [8]. Also we denote N j
i (x) is the set of all unordered

pairs of elements in Ni(x) which are at distance j. A graph
automorphism is a permutation ϕ of the vertex set V (G) with
the property that uv is an edge if and only if ϕ(u)ϕ(v) is an
edge. The automorphism group of a graph G is transitive if
there exists an automorphism ϕ to any pair u,v of vertices in
G such that ϕ(u) = v. In this case G is called vertex transitive
[1].

A simple connected graph G is called distance regular if
it is regular, and if for any two vertices x,y ∈ G at distance
i, there are constant number of neighbors ci and bi of y at
distance i−1 and i+1 from x respectively, that is there are
precisely ci neighbors of y in Ni−1(x) and bi neighbors of y in
Ni+1(x) [6].
A graph G of order n is said to be strongly regular with pa-
rameters (n,k,λ ,µ), if G is a regular graph of valency k such
that every pair of distinct vertices in the graph have λ or µ

common neighbors according as they are adjacent or not [6].
A graph G is distance transitive if, for vertices u,v,x,y

in V (G), with d(u,v) = d(x,y) there exists some g ∈ aut(G)
satisfying g(u) = x and g(v) = y [7].

If node x is used as an intermediate station for contacting
node u to node v, then in such a network node x has a cer-
tain responsibility to nodes u and v . If we count all of the
minimum paths which pass through node x, then we have a
measure of the stress which node x must undergo during the
activity of the network. A vector giving this number for each
number of the network would give us a good idea of stress
conditions throughout the system [9] .
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2. Stress of a graph
In this section we calculate the stress of vertices of certain

graph classes .

Definition 2.1. [9] : For a simple connected undirected graph
G(V,E) , the stress of a vertex x ∈V is defined as

S(x) = ∑
u6=v6=x

σuv(x)

where σuv(x) is the number of shortest paths with vertices u
and v as their end vertices and include the vertex x.

Definition 2.2. : The average stress of a graph G(V,E) of
order n is defined as

S̄(G) = 1
n ∑

x∈V
S(x)

In a complete graph Kn, the length of any shortest path is
one and therefore there is no shortest path passing through any
of the vertices as an internal vertex . Hence for a vertex v in a
complete graph Kn , the stress of v is zero. In a star graph K1,n

the stress of the central vertex is n(n−1)
2 and since the vertex

of degree one is not an internal vertex of any shortest path in
the graph, the stress of each vertex of degree one is zero .

Theorem 2.3. The stress of a vertex vi in a path graph Pn is

S(vi) = (i−1)(n− i) and the average stress S̄(Pn) =
1
n

n
∑

i=1
(i−

1)(n− i)

Proof. Consider a path graph Pn of n vertices v1,v2, ...vn.
Since v1 and vn are pendant vertices, S(v1) = S(vn) = 0. Also
for any vi ∈ V (Pn) there are (i−1) vertices on one side and
(n− i) vertices on the other side of vi. Hence there are
(i−1)(n− i) number of shortest path passing through vi.

Theorem 2.4. The stress of any vertex v in a cycle graph C2n

is S(v) = n(n−1)
2 .

Proof. Let v1,v2, ...,v2n be the vertices of C2n. Consider a
vertex v1. Then for each pair of antipodal vertices vi,vn+i,
i = 2,3, ...,n, there exists a shortest path passing through v1.
There are (n− 1) such paths. Now , let us take all paths of
length less than n containing v1. There are n− i paths joining
vi to the vertex vn+1+i passing through v1 for i = 2,3, ...,n−1.

Hence S(v1) = (n−1)+
n−1
∑

i=2
(n− i) = n(n−1)

2 .

C2n is a vertex transitive graph. Hence the stress of any vertex
v ∈V (C2n) is S(v) = n(n−1)

2 .

Theorem 2.5. The stress of any vertex v in a cycle graph
C2n+1 is S(v) = n(n−1)

2 .

Theorem 2.6. The stress of a vertex in a friendship graph
F2n+1 is given by S(v) = 2n(n−1), if v is the central vertex
and is zero for all other vertices.

Proof. Let v,v1,v2, ...,v2n be the vertices of F2n+1 having v as
the central vertex. There is no shortest path passing through
vi for i = 1,2, ...,2n. Hence S(vi) = 0 for i = 1,2, ...,2n. Now
consider the central vertex v. For each pair {vi,v j} of nonadja-
cent vertices , there is a shortest path passing through v. Since
there are n pairs of adjacent vertices {vi,v j}, the total number
of shortest path which passes through v is 2n(2n−1)

2 −n. Hence
S(v) = 2n(2n−1).

Theorem 2.7. For any graph G of diameter 2, the stress of a
vertex x ∈V (G) is given by S(x) =| N2

1 (x) |.

Proof. Consider a graph G of order n and diameter 2. take
two vertices u,v in V (G). If uv∈ E(G), then the shortest u−v
path doesnot contain the vertex x. If u,v /∈ N1(x), then the
shortest u− v path doesnot contain x , otherwise d(u,v)> 2,
a contradiction. If u ∈ N1(x) and v /∈ N1(x), then also the
shortest u− v path doesnot contain the vertex x, otherwise
d(u,v)> 2, a contradiction. If u,v ∈ N1(x) , then , since the
diameter of G is 2, the shortest path having end points u and v
must pass through the vertex x. Hence the result.

Theorem 2.8. The stress of a vertex x in a complete bipartite
graph Km,n is , S(x) = n(n−1)

2 if degree of x is n and S(x) =
m(m−1)

2 if degree of x is m.

Proof. Consider the complete bipartite graph Km,n having
vertices u1,u2, ...,um,v1,v2, ...,vn, where degree of ui is n for
i = 1,2, ...,m and degree of v j is m for j = 1,2, ...,n. N1(ui) =
{v1,v2, ...,vn}. Also d(vi,v j) = 2 for all i 6= j. Hence by
Theorem 2.7. S(ui) =| N2

1 (ui) |= n(n−1)
2 , for i = 1,2, ...,m.

Similarly we can prove that S(v j) =| N2
1 (v j) |= m(m−1)

2 , for
j = 1,2, ...,n. Hence the result.

Theorem 2.9. The stress of any vertex in K1,n∧a, the join of
a star graph and any vertex a is given by S(u) = n(n−1)

2 , if u
is the central vertex or u = a and is zero for all other vertices.

Proof. Let K1,n be the star graph with vertex set
{u,u1,u2, ...,un}. having u as the central vertex Consider
the join K1,n ∧ a where a is any vertex. Then diameter of
K1,n∧a is 2. We have
N1(u) = {u,u1,u2, ...,un} and N1(a) = {a,u1,u2, ...,un} .
Since uui,aui ∈ E(K1,n∧a) for i = 1,2, ...,n, we have
S(u) =| N2

1 (u) |=
n(n−1)

2 and S(a) =| N2
1 (a) |=

n(n−1)
2 . Also

N1(ui) = {a,u} for i = 1,2, ...,n and au ∈ E(K1,n∧a) we get
S(ui) = 0 for i = 1,2, ...,n.

3. Some properties of Stress Regular
Graphs

In this section we define stress regular graphs and investi-
gate the properties of stress regular graphs.

Definition 3.1. : Graphs with vertices having the same stress
are called stress regular graphs .
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There exists regular graphs which is not stress regular.
Complete graphs are stress regular graphs having zero stress.
Clearly every vertex transitive graphs are stress regular graphs.

Theorem 3.2. Complete bipartite graph Kn,n is stress regular.

Proof. If m = n in Theorem 2.8. we get the result.

Theorem 3.3. Cycle Cn is stress regular.

The cocktail party graph CP(n) [5] is a unique regular
graph of degree 2n−2 on 2n vertices. It is obtained from K2n
by deleting a perfect matching.

Theorem 3.4. Cocktail party graph CP(n) is stress regular.

Proof. Consider CP(n) with vertex set
{u1,u2, ...,un,v1,v2, ...,vn} having
N1(ui)= {u1,u2, ...,ui−1,ui+1, ...,un,v1,v2, ...,vi−1,vi+1, ...,vn}
and
N1(v j)= {u1,u2, ...,u j−1,u j+1, ...,un,v1,v2, ...,v j−1,v j+1, ...,vn}.
Here N2

1 (ui) = {(u j,v j) : j 6= i} and N2
1 (v j) = {(ui,vi) : i 6= j}

.
Since diameter of CP(n) is 2, by Theorem 2.7.
S(ui) =| N2

1 (ui) |= n− 1 , and S(v j) =| N2
1 (v j) |= n− 1 for

i, j = 1,2, ...,n.

Theorem 3.5. Petersen graph is stress regular.

Proof. Consider the petersen graph KG5,2 . For any vertex
v∈KG5,2 , N1(v) consists of three nonadjacent vertices. Since
diameter of KG5,2 is 2, S(v) =| N2

1 (v) |= 3. Hence KG5,2 is
stress regular.

Theorem 3.6. Every Distance regular graph is stress regular.

Proof. Let G be a distance regular graph and x be an arbitrary
vertex in V (G). Let ki =| Ni(v) |. Since G is distance regular,
ki vertices in Ni(x) are adjacent to ci vertices in Ni−1(x). Now
consider any two vertices u,v in V (G) such that d(u,v) = s.
If s = 1, then σuv = 1 = c1. If s = 2, then vertices in N2(v)
are adjacent to c2 vertices in N1(v). Hence σuv = c2. Thus
by induction on s we get σuv = ∏

s
i=1 ci. Now let u,v be any

two vertices in V (G) such that the shortest path having end
points u and v passing through the vertex x and d(u,v) = s.
If d(u,x) = t, then σuv(x) = σuxσxv = ∏

t
i=1 ci ∏

s−t
i=1 ci. That is

the number of shortest path having end points u and v doesnot
depend on the selection of the vertices u and v and depends
only on the distance between u and v. Also x is an arbitrary
vertex of G. Hence S(x) is same for every vertices of G. That
is G is stress regular.

Corollary 3.7. Every Strongly regular graph is stress regular.

Proof. Since every strongly regular graph is a distance regular
graph of diameter 2 [6], it is stress regular.

Converse need not be true. For example cycle C6 is not
strongly regular but stress regular.

Corollary 3.8. Every distance transitve graph is stress regu-
lar.

Proof. Since every distance transitive graph is distance regu-
lar , it is stress regular.

Converse need not be true. For example Shrikande graph
is stress regular but not distance transitive.

4. Conclusion
In this paper stress of various graph classes are computed

and prove that every distance regular graphs are stress regular.
It would be interesting to investigate which among the fol-
lowing class of graphs ie,distance balanced, distance degree
regular and walk regular are stress regular.
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