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Planarity of a unit graph: Part-I local case
Jaydeep Parejiya1*, Patat Sarman 2 and Pravin Vadhel3

Abstract
The rings considered in this article are commutative with identity 1 6= 0. Recall that the unit graph of a ring R is a
simple undirected graph whose vertex set is the set of all elements of the ring R and two distinct vertices x,y are
adjacent in this graph if and only if x+ y ∈U(R) where U(R) is the set of unit elements of ring R. We denote this
graph by UG(R). In this article we classified local ring R such that UG(R) is planar.
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1. Introduction
We first recall the following definitions and results from

graph theory. A graph G=(V,E) is said to be complete if every
pair of distinct vertices of G are adjacent in G. A complete
graph on n vertices is denoted by Kn [4, Definition 1.1.11]. A
graph G=(V,E) is said to be bipartite if the vertex set can be
partitioned into two nonempty subsets X and Y such that each
edge of G has one end in X and other in Y. The pair (X,Y)
is called a bipartition of G. A bipartite graph G with biparti-
tion (X,Y) is denoted by G(X,Y). A bipartite graph G(X,Y)
is said to be complete if each vertex of X is adjacent to all
the vertices of Y. If G(X,Y) is a complete bipartite graph with
|X |= m and |Y |= n, then it is denoted by Km,n [4, Definition
1.1.12]. Let G=(V,E) be a graph.By a clique of G, we mean
a complete subgraph of G [4, Definition 1.2.2]. We say that
the clique number of G equals n if n is the largest positive
integer such that Kn is a subgraph of G [4, p.185]. The clique
number of a graph G is denoted by the notation ω(G). If G
contains Kn as a subgraph for all n≥ 1, then we set ω(G) = ∞.

A graph G is said to be planar if it can be drawn in a plane
in such a way that no two edges of G intersect in a point other
than a vertex of G [4, Definition 8.1.1]. Two adjacent edges of
a graph G are said to be in series if their common vertex is of
degree two [5, p.9]. Two graphs are said to be homeomorphic
if one graph can be obtained from the other graph by the
creation of edges in series (i.e by insertion of vertices of
degree two) or by the merger of edges in series[5, p.100].
Recall from [5, p.93] that K5 is referred to as Kuratowski’s first
graph and K3,3 is referred to as Kuratowski’s second graph. A
celebrated theorem of Kuratowski says that a necessary and
sufficient condition for a graph G to be planar is that G does
not contain either of Kuratowski’s two graphs or any graph
homeomorphic to either of them [5, Theorem 5.9].

In view of Kuratowski’s Theorem, [5, Theorem 5.9] we in-
troduce the following definitions. We say that a graph G=(V,E)
satisfies Ku1 if G does not contain K5 as a subgraph and we
say that graph G=(V,E) satisfies Ku2 if G does not contain K3,3
as a subgraph. We say that a graph G = (V,E) satisfies Ku∗1 if G
satisfies Ku1 and moreover, G does not contain any subgraph
homeomorphic to K5. We say that a graph G = (V,E) satisfies
Ku∗2 if G satisfies Ku2 and moreover, G does not contain any
subgraph homeomorphic to K3,3.

If a graph G is planar, then it follows from Kuratowski’s
theorem [5, Theorem 5.9] that G satisfies both Ku∗1 and Ku∗2
. Hence G satisfies both Ku1 and Ku2. It is interesting to
note that a graph G may be nonplanar even if it satisfies both
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Ku1 and Ku2. For example of this type refer [5, Figure 5.9(a),
p.101] and the graph G in this example does not satisfies Ku∗2.
We do not know an example of a graph G such that G satisfies
Ku1 but G does not satisfy Ku∗1.

Let R be a ring. With the hypothesis that R is a finite ring,
a classification of finite rings R such that UG(R) is planar
was given in [2, Theorem 5.14]. In section 2, we assume
that R is local and we show that if UG(R) is planar, then R
is necessarily finite. Indeed, we show in Theorem 2.5 that if
UG(R) satisfies (Ku2) if and only if it is planar if and only
if R is isomorphic to one of the rings from the collection
B = {Z2,F4,Z3,Z5,Z4,

Z2[X ]
X2Z2[X ]

}.

The rings considered in this article are commutative
with identity and are nonzero. A ring R which has a unique
maximal ideal is referred to as a quasilocal ring. A ring R
which has only a finite number of maximal ideals is referred to
as a semiquasilocal ring. A Noetherian quasilocal (respctively,
semiquasilocal) ring is referred to as a local (respectively,
semilocal) ring. We denote the set of all maximal ideals of a
ring R by Max(R). We used J(R) to denote Jacobson radical
of ring R.

2. Planarity of UG(R), where R is
quasilocal ring

Lemma 2.1. Let (R,m) be a quasilocal ring. If UG(R) satis-
fies (Ku2), then |m| ≤ 2.

Proof. First, we verify that if a ring T is such that UG(T )
satisfies (Ku2), then |J(T )| ≤ 2. This fact was already ver-
ified in [2, See Definitions and Remarks 5.13]. For the
sake of convenience, we include a proof of it here. As-
sume that UG(T ) satisfies (Ku2). We assert that |J(T )| ≤ 2.
Suppose that |J(T )| ≥ 3. Let {0,x1,x2} ⊆ J(T ). Observe
that {1,1+ x1,1+ x2} ⊆U(T ). Let V1 = {0,x1,x2} and let
V2 = {1,1+ x1,1+ x2}. It is clear that V1∪V2 ⊆V (UG(T ))
and V1 ∩V2 = /0. Note that for any a ∈ J(T ) and for any
b ∈U(T ), a+ b ∈U(T ) and hence, a and b are adjacent in
UG(T ). Therefore, we obtain that the subgraph of UG(T )
induced on V1 ∪V2 contains K3,3 as a subgraph. This is in
contradiction to the assumption that UG(T ) satisfies (Ku2).
Therefore, |J(T )| ≤ 2.

Note that if (R,m) is a quasilocal ring, then J(R) = m.
Thus if UG(R) satisfies (Ku2), then |m| ≤ 2.

If (R,m) is a quasilocal ring with |m|= 1, then R is neces-
sarily a field. Let F be a field. We next proceed to characterize
fields F such that UG(F) is planar.

Lemma 2.2. Let F be a field with char(F) = 2. Then the
following statements are equivalent:

(i) UG(F) is planar.
(ii) UG(F) satisfies both (Ku∗1) and (Ku∗2).
(iii) UG(F) satisfies (Ku2).
(iv) |F | ∈ {2,4}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [5,
Theorem 5.9].
(ii)⇒ (iii) This is clear.
(iii)⇒ (iv) As char(F) = 2 by assumption, we obtain from
[2, Theorem 3.4] that UG(F) is complete. It is clear that if
ω(UG(F)) ≥ 6, then UG(F) does not satisfy (Ku2). Thus
if UG(F) satisfies (Ku2), then |F | ≤ 5. Since char(F) = 2,
we obtain that |F |= 2n for some n≥ 1 and so, it follows that
|F | ∈ {2,4}.
(iv)⇒ (i) If |F | ∈ {2,4}, then |V (UG(F))| ∈ {2,4}. Since
any simple graph on at most four vertices is planar, we obtain
that UG(F) is planar.

Lemma 2.3. Let F be a field with char(F) 6= 2. Then the
following statements are equivalent:

(i) UG(F) is planar.
(ii) UG(F) satisfies both (Ku∗1) and (Ku∗2).
(iii) UG(F) satisfies (Ku2).
(iv) |F | ∈ {3,5}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [5,
Theorem 5.9].
(ii(⇒ (iii) This is clear.
(iii)⇒ (iv) We claim that |F∗| ≤ 4. Suppose that |F∗| ≥ 5.
Let α1 ∈ F∗. As we are assuming that char(F) 6= 2, we get
that α1 6= −α1. Since we are assuming that |F∗| ≥ 5, it is
possible to find distinct α2,α3,α4 ∈ F∗\{α1,−α1}. Let V1 =
{0,α1,−α1} and let V2 = {α2,α3,α4}. Note that V1 ∪V2 ⊆
V (UG(F)) and V1 ∩V2 = /0. It is clear from the choice of
the elements αi, where i ∈ {1,2,3,4} that for any a ∈V1 and
for any b ∈ V2, a+ b ∈ F∗, and so, a and b are adjacent in
UG(F). Hence, the subgraph of UG(F) induced on V1∪V2
contains K3,3 as a subgraph. This is in contradiction to the
assumption that UG(F) satisfies (Ku2). Therefore, |F∗| ≤ 4.
As char(F) 6= 2, it follows that |F | ∈ {3,5}.
(iv)⇒ (i) Suppose that |F | = 3. Then F ∼= Z3 as fields and
UG(F) is a simple graph on three vertices and so, UG(F) is
planar. Suppose that |F |= 5. Then F ∼= Z5 as fields. We can
assume without loss of generality that F = Z5 = {0,1,2,3,4}.
Note that UG(Z5) is the union of the cycle Γ of length 5 given
by Γ : 0−1−2−4−3−0 and the edges e1 : 0−2,e2 : 0−4,
and e3 : 1−3. Observe that e1,e2, and e3 are chords of Γ. It
is clear that Γ can be represented by means of a pentagon and
the edges e1,e2 can be drawn inside the pentagon representing
Γ and e3 can be drawn outside the pentagon representing Γ in
such a way that there are no crossing over of the edges. This
proves that UG(Z5) is planar. The graph UG(Z5) is shown in
Figure 1.
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Figure 1. UG(Z5)

Lemma 2.4. Let (R,m) be a quasilocal ring which is not a
field. The following statements are equivalent:

(i) UG(R) is planar.
(ii) UG(R) satisfies both (Ku∗1) and (Ku∗2).
(iii) UG(R) satisfies (Ku2).
(iv) R is isomorphic to one of the following rings from the

collection A = {Z4,
Z2[X ]

X2Z2[X ]
}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [5,
Theorem 5.9].
(ii)⇒ (iii) This is clear.
(iii)⇒ (iv) We know from Lemma 2.1 that |m| ≤ 2. We
are assuming that R is not a field. Therefore, we obtain that
|m|= 2. We know from [11, Lemma 6]that | R

m |= 2. Hence,
|R| = |m|| R

m | = 4. If char(R) = 4, then R ∼= Z4 as rings and
if char(R) = 2, then R ∼= Z2[X ]

X2Z2[X ]
as rings. This proves that

R is isomorphic to one of the rings from the collection A =

{Z4,
Z2[X ]

X2Z2[X ]
}.

(iv)⇒ (i) For any ring T ∈ A , |T | = 4 and since R is iso-
morphic one of the rings from the collection A , we get that
|R|= 4. Hence, |V (UG(R))|= 4. Since any simple graph on
four vertices is planar, we obtain that UG(R) is planar.

Theorem 2.5. Let (R,m) be a quasilocal ring. The following
statements are equivalent:

(i) UG(R) is planar.
(ii) UG(R) satisfies both (Ku∗1) and (Ku∗2).
(iii) UG(R) satisfies both (Ku1) and (Ku2).
(iv) UG(R) satisfies (Ku2).
(v) R is isomorphic to one of the rings from the collection

B = {Z2,F4,Z3,Z5,Z4,
Z2[X ]

X2Z2[X ]
}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [5,
Theorem 5.9].
(ii)⇒ (iii) This is clear.
(iii)⇒ (iv) This is obvious.
(iv)⇒ (v) Assume that UG(R) satisfies (Ku2). We know
from Lemma 2.1 that |m| ≤ 2. If |m| = 1, then we get from

(iii)⇒ (iv) of Lemmas 2.1 and 2.3 that R is isomorphic to one
of the rings from the collection {Z2,F4,Z3,Z5}. If |m|= 2,
then we obtain from (iii) ⇒ (iv) of Lemma 2.4 that R is
isomorphic to one of the rings from the collection A , where
A is as in the statement (iv) of Lemma 2.4. Therefore, R is
isomorphic to one of the rings from the collection B, where
B is as in the statement (v) of this Theorem.
(v)⇒ (i) Assume that R is isomorphic to one of the rings
from the collection B. Then we obtain from (iv)⇒ (i) of
Lemmas 2.2, 2.3, and 2.4 that UG(R) is planar.
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