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Abstract
In this paper discuss some properties of generalized closed sets and introduce some basic concepts in
generalized topology.
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1. Introduction
In 2002 Császár [2] Introduced the notion of generalized

topological spaces (GTS) and generalized continuity in his
paper named Generalized topology, generalized continuity.
The purpose of present paper is to discuss some basic prop-
erties of the generalized closed sets. In section 2, collect all
preliminaries and basic definitions useful for subsequent sec-
tions. In section 3 discuss some theorems relating generalized
closed sets. In section 4 introduce the concepts, generalized
neighborhoods and generalized accumulation points and gen-
eralized derived set also discuss some results relating to these
concepts.

2. Preliminaries
Recall some basic definitions and notions of most essential

concepts needed in the following.

Definition 2.1. ([2]) Let X be a set and exp(X) its power set.
According to Császár, a subset G , of exp(X) is called gener-
alized topology (GT ) on X and (X ,G ) is called a generalized
topological space (GT S) if G has the following properties.

(1) φ ∈ G

(2) Any union of elements of G belongs to G

Definition 2.2. ([2]) A GT G is called strong if X ∈ G .

Definition 2.3. ([2]) A subset A is called G -open if A ∈
mathcalG. A subset B is called G -closed if X\B is G -open.
The generalized topology is denoted by G -topology.

Definition 2.4. ([1]) The G -closure of A is denoted by CG (A),
is the intersection of all G -closed set containing A.

Theorem 2.5. ([1]) Let (X ,G ) be a GT S and A,B⊆ X. Then
the following statements are hold.

(1) x ∈CG (A) if and only if x ∈U ∈ G implies U ∩A 6= φ

(2) If U,V ∈ G and U ∩V = φ then CG (U)∩V = φ and
U ∩CG (V ) = φ

Definition 2.6. ([3]) Let (X ,G ) be a G -topological space and
B be a sub collection of G is called a base for G -topological
space, if every G -open set can be expressed as union of some
members of B.
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3. More results on generalized closed
sets

Theorem 3.1. Let C be the family of all generalized closed
sets in a GT (X ,G ). Then C has the following properties:

(i) X ∈ C

(ii) C is closed under arbitrary intersections.

Conversely, given any set X and a family C of its subsets
which satisfies these two properties, there exist a unique GT
G on X such that C coincides with the family of generalized
closed subsets of (X ,G ).

Proof. The first part follows from the definition of G -closed
sets and De Morgan’s laws. Define G = {B⊆ X : X−B∈C }.
Claim: G is a GT on X

(1) /0 ∈ G .

(2) Let collection {Vα} be an arbitrary collection of mem-
bers of G . Then for each α , (X −Vα) ∈ C . To prove
that (UαVα)

c ∈C . We have by DeMorgan’s law (UαVα)
c

= ∩αV c
α ∈ C . Thus G is closed under arbitrary union.

Hence G is a GT on X . The G -open subsets of X are
precisely the complements of C . Also G is unique.

Remark 3.2. In ordinary topological spaces finite union of
closed set is closed. But in GTS finite union of G -closed set
need not be G -closed.

Example 3.3. X = {a,b,c,d} and G = { /0,{c,d},{a,d},
{a,c,d}}. Then G is GT on X. Note that {a,b} and {b,c}
are G -closed but their union {a,b,c} is not G -closed.

Theorem 3.4. Let A, B be subsets of a GTS (X ,G ). Then the
following conditions are hold.

(i) CG (A) is G -closed in X. More over it is the smallest
G -closed subset of X containing A.

(ii) A is G -closed in X if and only if CG (A) = A.

(iii) CG (CG (A)) =CG (A).

(iv) CG (A)∪CG (B)⊆CG (A∪B)

Proof. (i) Using above theorem CG (A) is G -closed in X .
By definition of generalized closure CG (A) is the small-
est G -closed subset of X containing A.

(ii) Suppose A is G -closed. Since CG (A) is the smallest
G -closed subset of X containing A, we get CG (A) = A.
Converse is trivial.

(iii) Since CG (A) is G -closed in X , from second part
CG (CG (A)) =CG (A).

(iv) If A1 ⊆ A2 then CG (A1)⊆CG (A2). Since A⊆ A∪B⇒
CG (A) ⊆ CG (A∪ B). Similarly CG (B) ⊆ CG (A∪ B).
Hence CG (A)∪CG (A)⊆CG (A∪B).

Remark 3.5. Let A and B are subsets of a GTS then CG (A∪B)
need not be contained in CG (A)∪CG (B).

Example 3.6. X = {a,b,c,d} and G = { /0,{c,d},{a,d},
{a,c,d}}. Then G is GT on X. Let A = {a,b} and B = {b,c}.
Then CG (A) = {a,b} and CG (B) = {b,c} but CG (A∪B) = X.

Definition 3.7. Let (X ,G ) be a GTS. The generalized clo-
sure operator associated with it is defined as the function
c : P(X)→ P(X) such that c(A) =CG (A), A ∈ P(X).

Remark 3.8. The generalized closure operator has the fol-
lowing properties.

(i) The fixed points of c are precisely the G -closed subset
of X.

(ii) c is idempotent .i.e coc = c or in other words for any
A ∈ P(X), c(c(A)) = c(A).

Theorem 3.9. Let X be a set, θ : P(X)→ P(X) a function
such that

(i) For any A ∈ P(X), A⊆ θ(A).

(ii) θ is idempotent.

(iii) θ(A)∪θ(B)⊆ θ(A∪B).

Then there exist a unique generalized topology on X such that
θ coincides with the generalized closure operator associated
with . Conversely any generalized closure operator satisfies
these properties.

Proof. Let C = {A⊆ X : θ(A) = A}.
Claim: C satisfies hypothesis in Theorem 3.1.

(i) Since X ⊆ θ(X). Hence θ(X) = X . So X ∈ C .

(ii) Let {Aα be any collection of members in C . θ is
monotonic because, if A ⊆ B, then B = A∪ (B− A)
implies θ(B) = θ(A∪ (B−A))⊆ θ(A)∪θ(B−A)⇒
θ(A) ⊆ θ(B). Since ∩α αAα ⊆ Aα , for each α . Then
θ(∩α αAα)⊆ θ(Aα), for each α . That is θ(∩α αAα)⊆
Aα , for each α . So θ(∩α αAα)⊆ ∩α αAα . Using first
property of θ , we have ∩α αAα ⊆ θ(∩α αAα). Hence
θ(∩α αAα) = ∩α αAα . So ∩α Aα ∈ C . Then by Theo-
rem 3.1,there is a unique GT G on X such that C coin-
cides with the family of G -closed subsets of (X ,G ). It
remains to verified that the generalized closure operator
associated with G coincides with θ . Let A⊆X , to prove
that θ(A) =CG (A). We have CG (A) is the intersection
of all G -closed subsets of X containing A. But G -closed
subsets of X with respect to G are the members of
C . Therefore CG (A) = ∩{B ⊆ X : A ⊆ B,θ(B) = B}.
Now whenever A⊆ B, θ(A)⊆ θ(B). So if A⊆ B and
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θ(B) = B implies θ(A)⊆ B. But CG (A) is the intersec-
tion of such B’s and so CG (A)⊇ θ(A). Using condition
(ii), θ(A) ∈ C . From (i) A ⊆ θ(A). That is θ(A) is a
G -closed set containing A, but CG (A) is the smallest G -
closed set containing A. Hence CG (A)⊆ θ(A). Hence
CG (A) = θ(A).

Definition 3.10. Let A be a subset of a GTS. Then A is said
to generalized dense (or G -dense) in X if CG (A) = X.

Example 3.11. Let X = {a,b,c,d} and G = { /0,{a,b}}, and
A = {b,c} then CG (A) = X. So A is G -dense in X.

Theorem 3.12. A subset A of a GTS X is G -dense in X if and
only if A intersect every nonempty G -open subsets of X.

Proof. Suppose A is G -dense in X and B is a nonempty G -
open subset of X . If A∩B = φ ⇒ A ⊆ X −B⇒ CG (A) ⊆
X−B. But X−B is a proper nonempty subset of X . Contra-
dicting CG (A) = X .
Conversely suppose A intersect every nonempty G -open sub-
sets of X . So the only G -closed set containing A is X . So
CG (A) = X .

4. Generalized neighborhoods and
generalized accumulation points

Definition 4.1. Let (X ,G ) be a GTS, x0 ∈X and N ⊆X. Then
N is said to be a generalized neighborhood (G - neighborhood)
of x0, if there is a G -open set V such that x0 ∈V and V ⊆ N.

Example 4.2. Let X = {a,b,c,d} and G = { /0,{a,b}}. Let
N = {a,b,c}. Then N is a generalized neighborhood of both
a and b.

Remark 4.3. In ordinary topological space every element
has a neighborhood because the whole set is a neighborhood
is a neighborhood of each of its points. But in a GTS every
point need not have a G -neighborhood, in a strong GTS every
point has a G -neighborhood.

Theorem 4.4. A subset A of a GTS X is G -open if and only if
it is a G -neighborhood of each of its points.

Proof. Let X be a GTS and G⊆ X . Suppose G is G -open. By
definition of G -neighborhood, G is a G -neighborhood of each
of its points.
Conversely suppose G is a G -neighborhood of each of its
points. So for each x ∈ G there exist G -open set Vx such that
x ∈Vx ⊆ G. Hence G = ∪x∈GVx⇒ G G -open.

Definition 4.5. Let (X ,G ) be a GTS. Let Nx be the set of
all G - neighborhoods of x in X. The family Nx is called the
generalized neighborhood system at x.

Example 4.6. Let X = {a,b,c,d} and G = { /0,{a,b}}. Here
Nc = /0.

Remark 4.7. In ordinary topological spaces the neighbor-
hood system must be nonempty, but the generalized neighbor-
hood system may be empty.

Theorem 4.8. Let X be a GTS and for x ∈ X such that Nx is
nonempty. Then

(1) If U ∈Nx then x ∈U.

(2) If V ∈Nx and U ⊇V then U ∈Nx.

(3) A set G is G -open in X if and only if G ∈Nx for all
x ∈ G.

(4) If U ∈Nx then there exist V ∈Nx such that V ⊆U and
V ∈Ny for all y ∈V

Proof. (1) It is trivial.

(2) V ∈Nx⇒V is a G -neighborhood of x. So there exist
a G -open set W such that x ∈W ⊆V . Since U ⊇V ⇒
x ∈W ⊆V ⊆U ⇒U ∈Nx.

(3) It is clear from Theorem 4.4.

(4) If U ∈Nx then U is a G -neighborhood of x. So there
exist G -open set V such that x ∈V ⊆U . By Theorem
4.4 V is a G -neighborhood of each of its points, in
particular it is a G -neighborhood of x. That is V ∈Nx
such that V ⊆U and V ∈Ny for all y ∈V .

Theorem 4.9. Let X be a set and suppose for each x ∈ X, Nx
be a family of subsets of X satisfying following properties

(1) If U ∈Nx then x ∈U.

(2) If V ∈Nx and U ⊇V then U ∈Nx.

(3) If U ∈Nx then there exist V ∈Nx such that V ⊆U and
V ∈Ny for all y ∈V .

Then there exist a unique GTS G on X such that for each
x ∈ X, Nx coincides with the family of all G -neighborhoods
of x with respect to G .

Proof. Let G = {U ⊆ X : U ∈Nx, ∀x ∈U}.
Claim: G is GT on X .
Clearly φ ∈ G . Let {Aα} be an arbitrary collection of mem-
bers of G . By definition of G , each Aα is a member of Nx.
By condition (2) Uα Aα ∈Nx, ∀x ∈Uα Aα . Hence G is a GT
on X .
Claim: For any x ∈ X , the generalized neighborhood system
of x with respect to is coincides with Nx.
Let U ∈Nx, by (3) there exist V ∈Nx such that V ⊆U and
V ∈ Ny, ∀y ∈ V . So V ∈ G ⇒ U is a G -neighborhood of
x. Conversely le U is a G -neighborhood of x. So there ex-
ist V ∈ G , such that x ∈ V ⊆U . Hence V ∈Nx. From (2)
U ∈Nx.
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Definition 4.10. Let A be a subset of a GTS X and y ∈ X.
Then y is said to be a generalized accumulation point(G -
accumulation point) of A if every G -open set containing y
contains at least one point of A other than y.

Example 4.11. Let G be the GT on the set of real numbers
generated by {(a,∞),(−∞,b) : a,b ∈ R}. Then every real
number is a generalized accumulation point of the set of
natural numbers N.

Definition 4.12. Let A be a subset of a GTS X, then the
generalized derived set of A is the set of all a generalized
accumulation point of A. It is denoted by A

′G .

Theorem 4.13. Let A be a subset of a GTS X, then CG (A) =
A∪A

′G .

Proof. Claim: A∪A
′G is G -closed. It is enough to prove that

X− (A∪A
′G ) is G -open.

Let y ∈ X− (A∪A
′G ). Then y is not a G -accumulation point

of A. So there is a G -open set V containing y such that V
contains no point of A except possibly y. But y /∈ A. So
A∩V = /0. Next claim that A

′G ∩V = /0. For let z ∈ A
′G ∩V .

So z is a G -accumulation point of A and V is a G -open set
containing y. Hence A∩V 6= /0. Which is a contradiction. So
A
′G ∩V = /0 and V ⊆ X(A∪A

′G ). Hence A∪A
′G is G -closed.

There for CG (A) ⊆ A∪A
′G . For the reverse inclusion claim

that A
′G ⊆CG (A). Let y ∈ AG . If y /∈CG (A) then X−CG (A)

is a G -open set containing y. But y is G -accumulation point
of A, so A∩ (X−CG (A)) /∈ /0. Which is a contradiction since
(X−CG (A))⊆ (X−A). Hence y ∈CG (A).

5. Conclusion
In this paper we found that some results in ordinary topo-

logical space do not hold in generalized topological space
and also proved some basic results in generalized topological
spaces.
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