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Planarity of a unit graph: Part -II |Max(R)|= 2 case
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Abstract
The rings considered in this article are commutative with identity 1 6= 0. Recall that the unit graph of a ring R is a
simple undirected graph whose vertex set is the set of all elements of the ring R and two distinct vertices x,y are
adjacent in this graph if and only if x+ y ∈U(R) where U(R) is the set of all unit elements of ring R. We denote
this graph by UG(R). In this article we classified rings R with |Max(R)|= 2 such that UG(R) is planar.
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1. Introduction
We first recall the following definitions and results from

graph theory. A graph G=(V,E) is said to be complete if every
pair of distinct vertices of G are adjacent in G. A complete
graph on n vertices is denoted by Kn [4, Definition 1.1.11]. A
graph G=(V,E) is said to be bipartite if the vertex set can be
partitioned into two nonempty subsets X and Y such that each
edge of G has one end in X and other in Y. The pair (X,Y)
is called a bipartition of G. A bipartite graph G with biparti-
tion (X,Y) is denoted by G(X,Y). A bipartite graph G(X,Y)
is said to be complete if each vertex of X is adjacent to all
the vertices of Y. If G(X,Y) is a complete bipartite graph with
|X |= m and |Y |= n, then it is denoted by Km,n [4, Definition
1.1.12]. Let G=(V,E) be a graph.By a clique of G, we mean
a complete subgraph of G [4, Definition 1.2.2]. We say that
the clique number of G equals n if n is the largest positive
integer such that Kn is a subgraph of G [4, p.185]. The clique
number of a graph G is denoted by the notation ω(G). If G
contains Kn as a subgraph for all n≥ 1, then we set ω(G) = ∞.

A graph G is said to be planar if it can be drawn in a plane
in such a way that no two edges of G intersect in a point other
than a vertex of G [4, Definition 8.1.1]. Two adjacent edges of
a graph G are said to be in series if their common vertex is of
degree two [5, p.9]. Two graphs are said to be homeomorphic
if one graph can be obtained from the other graph by the
creation of edges in series (i.e by insertion of vertices of
degree two) or by the merger of edges in series[5, p.100].
Recall from [5, p.93] that K5 is referred to as Kuratowski’s first
graph and K3,3 is referred to as Kuratowski’s second graph. A
celebrated theorem of Kuratowski says that a necessary and
sufficient condition for a graph G to be planar is that G does
not contain either of Kuratowski’s two graphs or any graph
homeomorphic to either of them [5, Theorem 5.9].

In view of Kuratowski’s Theorem, [5, Theorem 5.9] we in-
troduce the following definitions. We say that a graph G=(V,E)
satisfies Ku1 if G does not contain K5 as a subgraph and we
say that graph G=(V,E) satisfies Ku2 if G does not contain K3,3
as a subgraph. We say that a graph G = (V,E) satisfies Ku∗1 if G
satisfies Ku1 and moreover, G does not contain any subgraph
homeomorphic to K5. We say that a graph G = (V,E) satisfies
Ku∗2 if G satisfies Ku2 and moreover, G does not contain any
subgraph homeomorphic to K3,3.

If a graph G is planar, then it follows from Kuratowski’s
theorem [5, Theorem 5.9] that G satisfies both Ku∗1 and Ku∗2
. Hence G satisfies both Ku1 and Ku2. It is interesting to



Planarity of a unit graph: Part -II |Max(R)|= 2 case — 1163/1170

note that a graph G may be nonplanar even if it satisfies both
Ku1 and Ku2. For example of this type refer [5, Figure 5.9(a),
p.101] and the graph G in this example does not satisfies Ku∗2.
We do not know an example of a graph G such that G satisfies
Ku1 but G does not satisfy Ku∗1.

Let R be a ring. In Section 2 of this article we proved
some important results regarding planarity of UG(R) with
the assumption that R is semiquasilocal ring. In Remark
2.4 we have proved that if R is semiquasilocal ring and if
UG(R) satisfies Ku2, then R must be finite. In Example 2.5
we gave an Example to show that Remark 2.4 can fail to hold
if the hypothesis semiquasilocal is omitted. It is natural to
know whether UG(R) satisfies (Ku1) implies that R is finite.
We showed in Corollary 2.9 that if 2 ∈U(R) and if UG(R)
satisfies (Ku1), then R is finite.

Let R be a ring. With the hypothesis that R is a finite
ring, a classification of finite rings R such that UG(R) is planar
was given in [2, Theorem 5.14]. In Section 3, we assume that
R is semiquasilocal and we show that if UG(R) is planar, then
R is necessarily finite. Indeed, In Theorem 3.25 we proved
some stronger condition that UG(R) is planar if and only if it
satisfies Ku∗2.

The rings considered in this article are commutative
with identity and are nonzero. A ring R which has a unique
maximal ideal is referred to as a quasilocal ring. A ring R
which has only a finite number of maximal ideals is referred to
as a semiquasilocal ring. A Noetherian quasilocal (respctively,
semiquasilocal) ring is referred to as a local (respectively,
semilocal) ring. We denote the set of all maximal ideals of a
ring R by Max(R). We used J(R) to denote Jacobson radical
of ring R.

2. Some preliminary results
Let R be a ring. In this section we proved some ba-

sic results regarding planarity with the assumption that R is
semiquasilocal ring.

Let R be a semiquasilocal ring such that |Max(R)| ≥ 2.
We next try to classify such rings R in order that UG(R) is
planar.

Lemma 2.1. Let R be a semiquasilocal ring with |Max(R)|=
n≥ 2. If UG(R) satisfies (Ku2), then there exist nonzero rings
R1 and R2 such that R∼= R1×R2 as rings.

Proof. Let {m1,m2, . . . ,mn} denote the set of all maximal
ideals of R. It follows from [3, Proposition 1.11(ii)] that
∏

n
i=2mi 6⊆ m1. Hence, for each i ∈ {2, . . . ,n}, there exists

xi ∈mi such that ∏
n
i=2 xi /∈m1. Therefore, m1 +R(∏n

i=2 xi) =
R. Thus for each i∈{1,2, . . . ,n}, there exists ai ∈mi such that
a1 +∏

n
i=2 ai = 1. For convenience, let us denote a1 by a and

∏
n
i=2 ai by b. Observe that for any r,s ∈ N, ar + bs /∈ mi for

any i ∈ {1,2, . . . ,n}. Hence, ar +bs ∈U(R) for any r,s ∈ N.

We claim that R admits a nontrivial idempotent. If either
ai = a j for some distinct i, j ∈ {1,2,3} or bi = b j for some
distinct i, j∈{1,2.3}, then it follows that R admits a nontrivial
idempotent. Suppose that ai 6= a j and bi 6= b j for all distinct
i, j ∈ {1,2,3}. Let V1 = {a,a2,a3} and let V2 = {b,b2,b3}.
Note that V1∪V2⊆V (UG(R)) and V1∩V2 = /0. For any x∈V1
and for any y ∈V2, x+ y ∈U(R) and so, x and y are adjacent
in UG(R). It is clear that Vi is an independent set of UG(R)
for each i ∈ {1,2} and so, the subgraph of UG(R) induced on
V1∪V2 is a K3,3. This is in contradiction to the assumption that
UG(R) satisfies (Ku2). Therefore, there exists an idempotent
element e ∈ R\{0,1}. The mapping f : R→ Re×R(1− e)
defined by f (r) = (re,r(1− e)) is an isomorphism of rings.
Let us denote the ring Re by R1 and R(1− e) by R2. It is
clear that R1 and R2 are nonzero rings and R ∼= R1×R2 as
rings.

Lemma 2.2. Let T1,T2 be nonzero rings and let T = T1×T2.
If UG(T ) satisfies (Ku2), then UG(Ti) satisfies (Ku2) for each
i ∈ {1,2}.

Proof. We first verify that UG(T1) satisfies (Ku2). Suppose
that UG(T1) does not satisfy (Ku2). Then there exist distinct
elements a1,a2,a3,b1,b2,b3 ∈ T1 such that ai + b j ∈ U(T1)
for all i, j ∈ {1,2,3}. Let V1 = {(a1,0),(a2,0),
(a3,0)} and let V2 = {(b1,1),(b2,1),(b3,1)}. Note that V1∪
V2 ⊆V (UG(T )) and V1∩V2 = /0. As ai +b j ∈U(T1) for all
i, j ∈ {1,2,3} and 0+ 1 = 1 ∈ U(T2), we get that for any
x ∈ V1 and y ∈ V2, x + y ∈ U(T ) and so, the subgraph of
UG(T ) induced on V1∪V2 contains K3,3 as a subgraph. This
contradicts the assumption that UG(T ) satisfies (Ku2). There-
fore, UG(T1) satisfies (Ku2). Similarly, it can be shown that
UG(T2) satisfies (Ku2).

Proposition 2.3. Let R be a semiquasilocal ring such that
|Max(R)|= n≥ 2. If UG(R) satisfies (Ku2), then there exists
a quasilocal ring (Ri,mi) for each i ∈ {1,2, . . . ,n} such that
R∼= R1×R2×·· ·×Rn as rings

Proof. We prove this proposition using induction on |Max(R)|=
n≥ 2. Suppose that |Max(R)|= 2. As UG(R) satisfies (Ku2),
we obtain from Lemma 2.1 that there exist nonzero rings R1
and R2 such that R ∼= R1×R2 as rings. Since |Max(R)| = 2,
it follows that Ri is a quasilocal ring for each i ∈ {1,2}. Sup-
pose that |Max(R)|= n≥ 3. We know from Lemma 2.1 that
there exist nonzero rings T1 and T2 such that R ∼= T1 × T2
as rings. It is clear that both T1 and T2 are semiquasilo-
cal rings. We know from Lemma 2.2 that UG(Ti) satis-
fies (Ku2) for each i ∈ {1,2}. Let |Max(Ti)| = ni for each
i ∈ {1,2}. Observe that 1 ≤ ni < n for each i ∈ {1,2} and
n1 + n2 = n. It follows from the induction hypothesis that
there exist quasilocal rings R11, . . . ,R1n1 ,R21, . . . ,R2n2 such
that T1 ∼= R11×·· ·×R1n1 as rings and T2 ∼= R21×·· ·×R2n2
as rings. Therefore, R∼= R11×·· ·×R1n1×R21×·· ·×R2n2 as
rings. After a change of notation, we arrive at the conclusion
that for each i ∈ {1,2, . . . ,n}, there exists a quasilocal ring
(Ri,mi) such that R∼= R1×R2×·· ·×Rn as rings.
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Remark 2.4. Let R be a semiquasilocal ring. If UG(R) satis-
fies (Ku2), then R is finite.

Proof. We consider the following cases.
Case(i) R is quasilocal

Since UG(R) satisfies (Ku2) by assumption, we ob-
tain from (iv)⇒ (v) of [9, Theorem 2.5] that R is finite. In-
deed, |R| ∈ {2,3,4,5}.
Case(ii) R is not quasilocal

Let n ≥ 2 be the number of maximal ideals of R.
Since UG(R) satisfies (Ku2) by assumption, it follows from
Proposition 2.3 that for each i ∈ {1,2, . . . ,n}, there exists a
quasilocal ring (Ri,mi) such that R ∼= R1×R2× ·· ·×Rn as
rings. We know from Lemma 2.2 that UG(Ri) satisfies (Ku2)
for each i ∈ {1,2, . . . ,n}. Therefore, we obtain from Case(i)
that |Ri| ∈ {2,3,4,5} for each i ∈ {1,2, . . . ,n}. Therefore, we
get that R is finite.

We provide an example in Example 2.5 to illustrate
that Remark 2.4 can fail to hold if the hypothesis that R is
semiquasilocal is omitted.

Example 2.5. UG(Z) satisfies (Ku2).

Proof. Let a ∈ Z. If b ∈ Z is such that a and b are adjacent
in UG(Z), then a+ b ∈U(Z) = {1,−1}. This implies that
the set of all neighbors of a in UG(Z) equals {1−a,−1−a}.
Hence, we get that UG(Z) satisfies (Ku2).

Let R be a semiquasilocal ring such that UG(R) satisfies
(Ku1). It is natural to know whether UG(R) satisfies (Ku1)
implies that R is finite. We prove in Corollary 2.9 that if
2 ∈U(R) and if UG(R) satisfies (Ku1), then R is finite. We
provide in Example 2.10 an example of an infinite local ring
(R,m) such that ω(UG(R)) = 2.

Lemma 2.6. Let F be a field. Then ω(UG(F)) < ∞ if and
only if F is finite.

Proof. Assume that ω(UG(F)) < ∞. If char(F) = 2, then
we know from [2, Theorem 3.4] that UG(F) is complete. As
ω(UG(F))<∞ and V (UG(F))=F , we obtain that F is finite.
Hence, we can assume that char(F) 6= 2. Let ω(UG(F)) = t.
Let A= {αi|i∈ {1,2, . . . , t}}⊆F be such that the subgraph of
UG(F) induced on A is a clique. We can assume without loss
of generality that α1 = 0. Let β ∈ F\A. Then the subgraph of
UG(F) induced on A∪{β} is not a clique. Hence, β +αi = 0
for some i ∈ {2, . . . , t}. Therefore, F = {α1,α2, . . . ,αt} ∪
{−αi|i ∈ {2, . . . , t}}. This proves that F is finite.

Conversely, if F is finite, then it is clear that ω(UG(F))<
∞.

Lemma 2.7. Let R1,R2 be nonzero rings and let R = R1×R2.
If 2 ∈U(R) and if ω(UG(R))< ∞, then ω(UG(Ri))< ∞ for
each i ∈ {1,2}.

Proof. As 2 ∈U(R), it follows that 2 ∈U(Ri) for each i ∈
{1,2}. Let A1 ⊆ R1 be such that the subgraph of UG(R1)
induced on A1 is a clique. Let A = {(x,1)|x ∈ A1}. Since
2 ∈U(R2), it follows that the subgraph of UG(R) induced on
A is a clique. Therefore, |A1|= |A| ≤ω(UG(R)). This proves
that ω(UG(R1))≤ ω(UG(R))< ∞. Similarly, it follows that
ω(UG(R2))≤ ω(UG(R))< ∞.

Proposition 2.8. Let R be a semiquasilocal ring such that
2 ∈U(R). If ω(UG(R))< ∞, then R is finite.

Proof. Since 2 ∈U(R), we obtain from [2, Lemma 2.7(c)]
that the subgraph of UG(R) induced on {1+ x|x ∈ J(R)} is
a clique. As we are assuming that ω(UG(R)) < ∞, it fol-
lows that J(R) is finite. We are assuming that R is semi-
quasilocal. Let |Max(R)|= n and let {mi|i ∈ {1, . . . ,n}} de-
note the set of all maximal ideals of R. First, we assert that
ω(UG( R

J(R) )) < ∞. If x,y ∈ R are such that x + J(R) and

y+ J(R) are adjacent in UG( R
J(R) ), then it is known that x

and y are adjacent in UG(R) [2, Lemma 2.7(a)]. Hence, we
obtain that ω(UG( R

J(R) ))< ∞. Suppose that n = 1. In such a

case, R
J(R) =

R
m1

is a field and so, we obtain from Lemma 2.6

that R
J(R) is finite. Hence, R is finite. Suppose that n≥ 2. As

mi+m j = R for all distinct i, j ∈ {1,2, . . . ,n}, we obtain from
the Chinese remainder theorem [3, Proposition 1.10(ii) and
(iii)] that the mapping f : R→ R

m1
× R

m2
×·· ·× R

mn
defined by

f (r) = (r+m1,r+m2, . . . ,r+mn) is a surjective homomor-
phism of rings with Ker f = ∩n

i=1mi = J(R). Therefore, we
obtain from the fundamental theorem of homomorphism of
rings that R

J(R)
∼= R

m1
× R

m2
×·· ·× R

mn
as rings. Let us denote

the field R
mi

by Fi for each i ∈ {1,2, . . . ,n}. Now, R
J(R)
∼= F1×

F2×·· ·×Fn as rings. As 2 ∈U( R
J(R) ) and ω(UG( R

J(R) ))< ∞,
we obtain from Lemma 2.7 that ω(UG(Fi)) < ∞ for each
i ∈ {1,2, . . . ,n}. Therefore, we obtain from Lemma 2.6 that
Fi is finite for each i ∈ {1,2, . . . ,n}. Hence, R

J(R) is finite and
so, R is finite.

Corollary 2.9. Let R be a semiquasilocal ring such that 2 ∈
U(R). If UG(R) satisfies (Ku1), then R is finite.

Proof. If UG(R) satisfies (Ku1), then ω(UG(R))≤ 4 and so,
we obtain from Proposition 2.8 that R is finite.

Example 2.10. Let R = Z2[[X ]] be the power series ring in
one variable X over Z2. Then ω(UG(R)) = 2.

Proof. It is well-known that R = Z2[[X ]] is a discrete val-
uation ring. We know from [3, Exercise 5(i), page 11] that
U(R) = {1+X f (X)| f (X)∈ R}. Observe that the subgraph of
UG(R) induced on {0,1} is a clique. Hence, ω(UG(R))≥ 2.
We claim that ω(UG(R))≤ 2. Suppose that ω(UG(R))≥ 3.
Then there exist r1,r2,r3 ∈ R such that the subgraph of UG(R)
induced on {r1,r2,r3} is a clique. Note that r1 + r2 ∈U(R)
and r1+r3 ∈U(R). Hence, r1+r2 = 1+X f (X) and r1+r3 =
1+Xg(X) for some f (X),g(X) ∈ R. Since char(R) = 2, we
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obtain that r2 + r3 = X( f (X)+g(X)). This implies that r2 +
r3 /∈U(R). This is a contradiction. Therefore, ω(UG(R))≤ 2
and so, ω(UG(R)) = 2. It is clear that R is an infinite local
domain with m= RX as its unique maximal ideal.

3. Classification of rings R with
|Max(R)|= 2 in order that UG(R) is planar

Let R be a ring such that |Max(R)|= 2. The aim of this
section is to classify such rings in order that UG(R) is planar.

Remark 3.1. Let R be a ring such that |Max(R)| = 2. We
try to classify R in order that UG(R) is planar. Suppose that
UG(R) is planar. Then we know from [5, Theorem 5.9] that
UG(R) satisfies (Ku2). Therefore, we obtain from Proposition
2.3 and Remark 2.4 that there exist finite local rings (R1,m1)
and (R2,m2) such that R∼= R1×R2 as rings. We know from
Lemma 2.2 that UG(Ri) satisfies (Ku2) for each i ∈ {1,2}.
It now follows from (iv)⇒ (v) of [9, Theorem 2.5] that Ri
is isomorphic to one of the rings from the collection B =

{Z2,F4,Z3,Z5,Z4,
Z2[X ]

X2Z2[X ]
} for each i ∈ {1,2}.

Lemma 3.2. Let R1,R2 be rings and let R = R1 × R2. If
|U(Ri)| ≥ 3 for each i ∈ {1,2}, then UG(R) does not satisfy
(Ku2).

Proof. We are assuming that |U(Ri)| ≥ 3 for each i ∈ {1,2}.
Let u1,u2 ∈U(R1)\{1} and let v1,v2 ∈U(R2)\{1}. Let V1 =
{(1,0),(u1,0),(u2,0)} and let V2 = {(0,1),(0,v1),
(0,v2)}. It is clear that V1∪V2 ⊆V (UG(R)) and V1∩V2 = /0.
For any u ∈U(R1) and for any v ∈U(R2),(u,0)+ (0,v) =
(u,v) ∈U(R). Thus for any x ∈ V1 and y ∈ V2, x+ y ∈U(R)
and so, x and y are adjacent in UG(R). Note that Vi is an
independent set of UG(R) for each i ∈ {1,2}. Therefore, the
subgraph of UG(R) induced on V1∪V2 is a K3,3. Hence, we
obtain that UG(R) does not satisfy (Ku2).

Lemma 3.3. Let R1,R2 be rings and let R=R1×R2. Suppose
that there exist a∈R1,b∈R2 such that 2a= 0,2b= 0,1+a∈
U(R1) , and 1+ b ∈ U(R2). Then UG(R) does not satisfy
(Ku2).

Proof. Let V1 = {(0,0),(0,b),(a,b)} and let V2 = {(1,1),(1,1+
b),(1+ a,1+ b)}. Note that V1 ∪V2 ⊆ V (UG(R)) and V1 ∩
V2 = /0. From the assumption 2a = 0,2b = 0,1+a ∈U(R1),
and 1+b ∈U(R2), it follows that for any x ∈V1 and y ∈V2,
x+ y ∈U(R). Hence, x and y are adjacent in UG(R). This
shows that the subgraph of UG(R) induced on V1 ∪V2 con-
tains K3,3 as a subgraph. Therefore, we get that UG(R) does
not satisfy (Ku2).

We make use of [2, Proposition 2.4] in some of the
results to follow in this Section. For the sake of convenient
reference, we state it here as Proposition 3.4.

Proposition 3.4 (2, Proposition 2.4). Let R be a finite ring.
Then the following hold.

(i) If 2 /∈U(R), then degUG(R)x = |U(R)| for any x ∈ R.
(ii) If 2 ∈U(R), then degUG(R)x = |U(R)|−1 if x ∈U(R)

and for any x ∈ R\U(R), degUG(R)x = |U(R)|.

Proposition 3.5. Let n ≥ 2. Let R = Z2×Z2× ·· ·×Z2 (n
factors). Then UG(R) is planar.

Proof. Note that |R| = 2n, 2 /∈U(R), and (1,1, . . . ,1) is the
only unit of R. Hence, we obtain from Proposition 3.4 (i) that
degUG(R)r = 1 for any r ∈ R. Let i ∈ {1,2, . . . ,n} and let us
denote the element of R whose i-th coordinate equals 1 and
whose j-th coordinate equals 0 for all j ∈ {1,2, . . . ,n}\{i}
by ei. Note that ∑

n
i=1 ei is the only unit of R. For any r ∈ R,

the component of UG(R) containing r is the complete graph
on two vertices {r,r +∑

n
i=1 ei}. It is clear that UG(R) has

exactly |R|2 = 2n

2 = 2n−1 components and each component is a
complete graph on two vertices and so, it follows that UG(R)
is planar.

Remark 3.6. Let T1 = Z4. Note that UG(T1) is the cycle of
length four given by 0−1−2−3−0. Let us denote the ring
Z2[X ]

X2Z2[X ]
by T2. It is convenient to denote the ring Z2[X ] by R

and the ideal X2R by I. For any element r ∈ R, we denote
r+ I by r. Observe that UG(T2) is the cycle of length four
given by 0−1−X−1+X−0.

Proposition 3.7. Let n ≥ 1 and let R1 = Z2 × ·· · ×Z2 (n
factors). Let R = R1×R2, where R2 ∈ {Z4,

Z2[X ]
X2Z2[X ]

}. Then
UG(R) is planar.

Proof. Note that |U(R)|= |U(R1)||U(R2)|= 2, and 2 /∈U(R).
Hence, we obtain from Proposition 3.4 (i) that degUG(R)r = 2
for any r ∈ R. Note that R1 = {(x1, . . . ,xn)|xi ∈ {0,1} for
each i ∈ {1, . . . ,n}}. Suppose that R2 = Z4. It is easy to ver-
ify that for any (x1, . . . ,xn) ∈ R1, the component of UG(R)
containing (x1, . . . ,xn,0) is the cycle of length four given by
(x1, . . . ,xn,0)− (1+ x1, . . . ,1+ xn,1)− (x1, . . . ,xn,2)− (1+
x1, . . . ,1+ xn,3)− (x1, . . . ,xn,0) and it is also the component
of (x1, . . . ,xn, i) for any i ∈ Z4. Suppose that R2 = Z2[X ]

X2Z2[X ]
.

With the same use of notation as in Remark 3.6 note that
R2 = {0,1,X ,1+X}. For any (x1, . . . ,xn) ∈ R1, the com-
ponent of UG(R) containing (x1, . . . ,xn,0) is the cycle of
length four given by (x1, . . . ,xn,0)− (1+ x1, . . . ,1+ xn,1)−
(x1, . . . ,xn,X)−(1+x1, . . . ,1+xn,1+X)−(x1, . . . ,xn,0) and
it is also the component of (x1, . . . ,xn,y) for any y ∈ R2. In
both the cases, it follows that UG(R) has exactly |R|4 = 2n+2

4 =
2n components and each component is a cycle of length four.
As any cycle of length four is planar, we obtain that UG(R) is
planar.

Remark 3.8. Note that F4 can be expressed as
F4 = {0,1,α,α2}, where α ∈ F4\{0} is such that 1+α +
α2 = 0. Observe that UG(F4) is a complete graph on four
vertices.
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Proposition 3.9. Let n≥ 1. Let R1 =Z2×·· ·×Z2 (n factors).
Let R = R1×F4. Then UG(R) is planar.

Proof. Note that |R| = 2n+2, |U(R)| = |U(R1)||U(F4)| = 3,
and 2 /∈U(R). Hence, we obtain from Proposition 3.4 (i) that
degUG(R)r = 3 for any r∈R. Observe that R1 = {(x1, . . . ,xn)|xi ∈
{0,1} for each i ∈ {1, . . . ,n}}. As in Remark 3.8, let us de-
note F4 by F4 = {0,1,α,1+α}, where α ∈ F4\{0} is such
that 1 +α +α2 = 0. For any (x1, . . . ,xn) ∈ R1, let us de-
note the component of UG(R) containing (x1, . . . ,xn,0) by
H. It is not hard to verify that H is the union of a cycle Γ

given by Γ : v1 = (x1, . . . ,xn,0)−v2 = (1+x1, . . . ,1+xn,1)−
v3 = (x1, . . . ,xn,α)− v4 = (1+ x1, . . . ,1+ xn,1+α)− v5 =
(x1, . . . ,xn,1)−v6 =(1+x1, . . . ,1+xn,0)−v7 =(x1, . . . ,xn,1+
α)−v8 = (1+x1, . . . ,1+xn,α)−v1 = (x1, . . . ,xn,0) and the
edges e1 : v1− v4,e2 : v5− v8,e3 : v2− v7, and e4 : v3− v6. It
is clear that H is also the component of (x1, . . . ,xn,β ) for any
β ∈ F4. The graph H is shown in Figure 1. It follows from the
figure of H that it is planar. Observe that if r is any element of
R, then the component of UG(R) containing r contains exactly
8 vertices and is isomorphic to H. Note that the number of
components of UG(R) equals |R|8 = 2n+2

8 = 2n−1. Since H is
planar, it follows that UG(R) is planar.

Figure 1. H

Lemma 3.10. Let R = Z2×Z3. Then UG(R) is planar

Proof. Observe that R∼= Z6 as rings. Let us denote the ring
Z6 by T . Observe that UG(T ) is the cycle of length 6 given
by 0−1−4−3−2−5−0. Hence, UG(T ) is planar and so,
UG(R) is planar.

Remark 3.11. Let R = T ×Z5, where T is a nonzero ring
such that U(T ) = {1}. Then UG(R) satisfies (Ku2).

Proof. Suppose that UG(R) does not satisfy (Ku2). Then
there exist subsets V1,V2 of R such that |Vi| = 3 for each
i ∈ {1,2}, V1∩V2 = /0, and for any x ∈V1 and y ∈V2, x and y
are adjacent in UG(R). Let V1 = {(a1,b1),(a2,b2),(a3,b3)}
and let V2 = {(a4,b4),(a5,b5),(a6,b6)}. Observe that ai ∈ T

and bi ∈ Z5 for each i ∈ {1,2,3,4,5,6}. Now, a1 + a j ∈
U(T ) = {1} for each j ∈ {4,5,6} and so, a j = 1+a1. Simi-
larly, it follows that a j = 1+a2 = 1+a3 for each j ∈ {4,5,6}.
Therefore, a1 = a2 = a3 and a4 = a5 = a6 = 1+ a1. Thus
V1 = {(a1,b1),(a1,b2),(a1,b3)} and V2 = {(1+a1,b4),(1+
a1,b5),(1+ a1,b6)}. It is clear that b1,b2,b3 are distinct el-
ements of Z5 and b4,b5,b6 are distinct elements of Z5 and
bk +bt ∈U(Z5) for all k ∈ {1,2,3} and t ∈ {4,5,6}. That is,
bk +bt 6= 0 for all k ∈ {1,2,3} and t ∈ {4,5,6}. Note that ei-
ther bi 6= 0 for each i∈{1,2,3} or b j 6= 0 for each j∈{4,5,6}.
Without loss of generality we can assume that bi 6= 0 for
each i ∈ {1,2,3}. Note that at least two among b4,b5,b6 are
nonzero elements of Z5. Without loss of generality, we can as-
sume that b4 and b5 are nonzero. Since |U(Z5)|= 4, it follows
that at least one between b4,b5 ∈ {b1,b2,b3}. We can assume
without loss of generality that b4 = b1. Now, both b1 +b2 and
b1 + b3 are nonzero. Therefore, b2,b3 ∈ {2b1,3b1}. From
b5+bi 6= 0 for each i ∈ {2,3}, we get that b5 = 4b1. In such a
case, it follows that b5+b1 = 5b1 = 0. This is in contradiction
to the assumption that b5 +b1 6= 0. Therefore, we obtain that
UG(T ×Z5) satisfies (Ku2).

Proposition 3.12. Let R = Z5×T , where T is a ring with
char(T ) = 2. Then UG(R) does not satisfy (Ku∗2).

Proof. Let V1 = {(0,0),(4,0),(3,0)} and let
V2 = {(3,1),(2,1),(4,1)}. It is clear that V1 is an indepen-
dent set of UG(R). It follows from char(T ) = 2 that V2 is an
independent set of UG(R). Note that both (0,0) and (4,0)
are adjacent to each element of V2 in UG(R). Observe that
(3,0) is adjacent to both (3,1) and (4,1) in UG(R) , whereas
(3,0) is not adjacent to (2,1) in UG(R). It is obvious to
verify that (3,0)− (1,1)− (1,0)− (2,1) is a path of length
3 in UG(R). Let H be the subgraph of UG(R) induced on
V1∪V2∪{(1,1),(1,0)}. Let us denote the edges (0,0)−(1,1)
and (1,0)− (3,1) of H by e1 and e2. Let H1 be the subgraph
of H defined by H−{e1,e2}. The subgraph H1 is shown in
Figure 2. It is clear that H1 is homeomorphic to K3,3. This
shows that UG(R) contains a subgraph homeomorphic to K3,3
and so, UG(R) does not satisfy (Ku∗2).

Figure 2. H1
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Proposition 3.13. Let R = Z3×Z3. Then UG(R) is planar.

Proof. Note that V (UG(R)) = {v1 = (0,0),v2 = (0,2),v3 =
(1,2),v4 =(1,0),v5 =(1,1),v6 =(0,1),v7 =(2,1),v8 =(2,0),
v9 = (2,2)}. It is not hard to verify that UG(R) is the union
of a cycle Γ of length 8 given by Γ : v2− v3− v4− v5− v6−
v7− v8− v9− v2 and the edges e1 : v1− v3,e2 : v1− v5,e3 :
v1− v7,e4 : v1− v9, e5 : v2− v4,e6 : v4− v6,e7 : v6− v8, and
e8 : v8− v2. The cycle Γ can be represented by means of a
polygon of size 8. The vertex v1 can be plotted inside the
polygon representing Γ and it can be joined to v3,v5,v7,v9
by means of line segments representing the edges e1,e2,e3,e4
without any crossing over of the edges. The edges e5,e6,e7,e8
are chords of the polygon representing Γ and they can be
drawn outside the polygon representing Γ in such a way that
there are no crossing over of the edges. It is clear from the
above description of UG(R) that UG(R) is planar. The graph
UG(Z3×Z3) is shown in Figure 3. One can also refer [2,
Figure 4, page 2869].

Figure 3. UG(Z3×Z3)

Proposition 3.14. Let R= S×F, where S is a quasilocal ring
which is not a field and F is a field. If |F | ≥ 3, then UG(R)
does not satisfy (Ku∗2).

Proof. Let m denote the unique maximal ideal of S. Let
x∈m,x 6= 0. Since F is a field with |F | ≥ 3, there exist α,β ∈
F\{0} such that α 6= β . If UG(S) does not satisfy (Ku2), then
we know from Lemma 2.2 that UG(R) does not satisfy (Ku2)
and so, UG(R) does not satisfy (Ku∗2). Hence, we can assume
that UG(S) satisfies (Ku2). In such a case, we know from
(iii)⇒ (iv) of Lemma [9, 2.4] that S is isomorphic to one of
the rings from the collection {Z4,

Z2[X ]
X2Z2[X ]

}. Let V1 = {(1+
x,0),(1+x,α),(1,α)} and let V2 = {(x,0),(x,−β ),(0,−β )}.
It is clear that both (1+ x,α) and (1,α) are adjacent to each
element of V2 in UG(R). Observe that (1+x,0) is adjacent to
both (x,−β ) and (0,−β ) in UG(R), whereas (1+ x,0) is not
adjacent to (x,0) in UG(R). Note that (1+x,0)−(x,α)−(1+
x,−β )− (x,0) is a path of length 3 in UG(R). Let H be the
subgraph of UG(R) induced on V1∪V2∪{(x,α),(1+x,−β )}.
It is not hard to verify that H contains a subgraph H1 such

that H1 is homeomorphic to K3,3. The subgraph H1 is shown
in Figure 4. As H1 is homeomorphic to K3,3, we obtain that
UG(R) does not satisfy (Ku∗2).

Figure 4. H1

Proposition 3.15. Let R = S×F×T , where S is a quasilocal
ring which is not a field, F is a field with |F | ≥ 3, and T is a
nonzero ring. Then UG(R) does not satisfy (Ku∗2).

Proof. We use the same notations that are used in the proof
of Proposition 3.14. Let x ∈ m\{0} and let α,β ∈ F\{0}
be such that α 6= β . Using the same reasoning as in the
proof of Proposition 3.14, it can be assumed that S is iso-
morphic to one of the rings from the collection {Z4,

Z2[X ]
X2Z2[X ]

}.
Let W1 = {(1+ x,0,0),(1+ x,α,0),(1,α,0)} and let W2 =
{(x,0,1),((x,−β ,1),(0,−β ,1)}. Observe that (1+x,0,0)−
(x,α,1)− (1+ x,−β ,0)− (x,0,1) is a path of length 3 in
UG(R). It can be shown as in the proof of Proposition 3.14
that UG(R) contains a subgraph g such that g is homeomor-
phic to K3,3. The subgraph g is shown in Figure 5. This proves
that UG(R) does not satisfy (Ku∗2).

Figure 5. H1

Corollary 3.16. Let S ∈ {Z4,
Z2[X ]

X2Z2[X ]
}. Let R = Z3×S. Then

UG(R) does not satisfy (Ku∗2).

Proof. It follows from Proposition 3.14 that UG(R) does not
satisfy (Ku∗2).
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Proposition 3.17. Let R = Z3×F4. Then UG(R) does not
satisfy (Ku∗2).

Proof. Note that F4 = {0,1,α,1+α}, where α ∈ F4 is such
that α2 +α +1 = 0. Let V1 = {(1,1),(0,1+α),(1,1+α)}
and let V2 = {(1,0),(1,α),(0,α)}. Note that V1∪V2 ⊆ R =
V (UG(R)). Let H be the subgraph of UG(R) induced on
V1∪V2∪{(2,1)}. Observe that (1,1) (respectively, (1,1+α))
is adjacent to all the elements of V2 in UG(R) and (0,1+α) is
adjacent to both (1,0) and (1,α) in UG(R) and (0,1+α)−
(2,1)− (0,α) is a path of length 2 in UG(R). Consider the
subgraph H1 of H shown in Figure 6. It is clear that (2,1) is
of degree 2 in H1 and H1 is homeomorphic to K3,3. Therefore,
we obtain that UG(R) does not satisfy (Ku∗2).

Figure 6. H1

Proposition 3.18. Let R = Z3×F4×T , where T is a ring
with char(T ) = 2. Then UG(R) does not satisfy (Ku∗2).

Proof. We use the same notations as in the proof of Propo-
sition 3.17 and proceed as in the proof of Proposition 3.17.
Let V1 = {(1,1,0),(0,1+α,0),(1,1+α,0)} and let V2 =
{(1,0,1),(1,α,1),(0,α,1)}. It is clear that both (1,1,0) and
(1,1+α,0) are adjacent to each element of V2 in UG(R). Ob-
serve that (0,1+α,0)− (2,1,1)− (2,1+α,0)− (0,α,1) is
a path of length 3 in UG(R). Note that (0,1+α,0) is adjacent
to both (1,0,1) and (1,α,1) in UG(R). Let H be the subgraph
of UG(R) induced on V1 ∪V2 ∪{2,1,1),(2,1+α,0)}. It is
clear that V1,V2 are independent sets of UG(R) and (2,1,1)
and (2,1+α,0) are vertices of degree 2 in H. The graph H
is shown in Figure 7. From the above given arguments, it
follows that H is homeomorphic to K3,3. Therefore, we get
that UG(R) does not satisfy (Ku∗2).

Proposition 3.19. Let R = Z3×Z5. Then UG(R) does not
satisfy (Ku∗2).

Proof. Let V1 = {(0,0),(0,4),(0,3)} and let V2 = {(2,2),(1,4),(2,3)}.
Let H be the subgraph of UG(R) induced on V1∪V2∪{(2,0)}.
Observe that (0,0) (respectively, (0,4)) is adjacent to each
element of V2 in UG(R). It is clear that (0,3) is adjacent to

Figure 7. H

(1,4) and (2,3) in UG(R) and (0,3)− (2,0)− (2,2) is a path
of length two in UG(R). Note that Vi is an independent set of
UG(R) for each i ∈ {1,2} and consider the subgraph H1 of H
shown in Figure 8. It is clear that H1 is homeomorphic to K3,3.
Therefore, we obtain that UG(R) does not satisfy (Ku∗2).

Figure 8. H1

Corollary 3.20. Let R ∈ {F4×F4,F4×Z5}. Then UG(R)
does not satisfy (Ku2).

Proof. Let R ∈ {F4×F4,F4×Z5}. Note that |U(F4)| = 3
and |U(Z5)| = 4. Hence, we obtain from Lemma 3.2 that
UG(R) does not satisfy (Ku2).

Corollary 3.21. Let R∈{F4×Z4,F4× Z2[X ]
X2Z2[X ]

}. Then UG(R)
does not satisfy (Ku2)

Proof. Now, F4 = {0,1,α,1+α}, Z4 = {0,1,2,3}, and Z2[X ]
X2Z2[X ]

= {0,1,X ,1+X}, where for an element f (X)∈Z2[X ], we de-
note f (X)+X2Z2[X ] by f (X). Let R = F4×Z4. Let a = α

and b = 2. Note that 2a = 0,2b = 0, 1+ a ∈ U(F4), and
1+ b ∈U(Z4). Therefore, we obtain from Lemma 3.2 that
UG(R) does not satisfy (Ku2). Let R = F4× Z2[X ]

X2Z2[X ]
. Let

a = α and b = X . Then 2a = 0,2b = 0, 1+a ∈U(F4), and
1+X ∈U( Z2[X ]

X2Z2[X ]
). Hence, we obtain from Lemma 3.2 that

UG(R) does not satisfy (Ku2). Thus if R ∈ {F4×Z4,F4×
Z2[X ]

X2Z2[X ]
}, then UG(R) does not satisfy (Ku2).
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Lemma 3.22. Let (R1,m1) and (R2,m2) be quasilocal rings
such that mi 6= (0) for each i ∈ {1,2}. Let R = R1×R2. Then
UG(R) does not satisfy (Ku2).

Proof. Let xi ∈mi\{0} for each i∈{1,2}. Let V1 = {(0,0),(x1,0),(0,x2)}
and let V2 = {(1,1),(1,1+x2),(1+x1,1+x2)}. Observe that
V1 ∪V2 ⊆ V (UG(R)) and V1 ∩V2 = /0. For any x ∈ V1 and
y ∈ V2, x+ y ∈U(R) and so, x and y are adjacent in UG(R).
Hence, the subgraph of UG(R) induced on V1∪V2 contains
K3,3 as a subgraph. This proves that UG(R) does not satisfy
(Ku2).

Corollary 3.23. Let R = R1×R2, where Ri ∈ {Z4,
Z2[X ]

X2Z2[X ]
}

for each i ∈ {1,2}. Then UG(R) does not satisfy (Ku2).

Proof. It is clear that both Z4 and Z2[X ]
X2Z2[X ]

are finite local rings
which are not fields. Hence, we obtain from Lemma 3.22 that
UG(R) does not satisfy (Ku2).

Lemma 3.24. Let R=R1×R2, where R1 ∈ {Z4,
Z2[X ]

X2Z2[X ]
} and

R2 = Z5. Then UG(R) does not satisfy (Ku2).

Proof. Let R1 = Z4. Let V1 = {(0,0),(2,0),(0,2)} and let
V2 = {(1,1),(3,1),
(3,2)}. Note that V1∪V2 ⊆V (UG(R)) and V1∩V2 = /0. It is
clear that Vi is an independent set of UG(R) for each i∈ {1,2}
and for any x∈V1 and y∈V2, x+y∈U(R) and so, x and y are
adjacent in UG(R). Hence, the subgraph of UG(R) induced
on V1∪V2 is a K3,3. Therefore, UG(R) does not satisfy (Ku2).

Let R1 = Z2[X ]
X2Z2[X ]

. Let V1 = {(0,0),(X ,0),(0,2)}
and let V2 = {(1,1),(1+X ,1),(1+X ,2)}, where for any
f (X) ∈ Z2[X ], we denote f (X) +X2Z2[X ] by f (X). Now,
it follows as in the previous paragraph that the subgraph of
UG(R) induced on V1∪V2 is a K3,3. Therefore, UG(R) does
not satisfy (Ku2).

In Theorem 3.25, we classify rings R with |Max(R)|=
2 such that UG(R) is planar.

Theorem 3.25. Let R be a ring such that |Max(R)|= 2. The
following statements are equivalent:

(i) UG(R) is planar.
(ii) UG(R) satisfies both (Ku∗1) and (Ku∗2).
(iii) UG(R) satisfies (Ku∗2).
(iv) R is isomorphic to one of the rings from the collection

A = {Z2×Z2,Z2×Z3,Z2×F4,Z2×Z4,Z2× Z2[X ]
X2Z2[X ]

,Z3×
Z3}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [5,
Theorem 5.9].
(ii)⇒ (iii) This is clear.
(iii)⇒ (iv) We are assuming that |Max(R)| = 2 and UG(R)
satisfies (Ku∗2). Hence, UG(R) satisfies (Ku2). Therefore,
we obtain from Remark 3.1 that there exist finite local rings
(R1,m1) and (R2,m2) such that R∼= R1×R2 as rings, where

Ri ∈ {Z2,F4,Z3,Z5,Z4,
Z2[X ]

X2Z2[X ]
} for each i ∈ {1,2}. If R1 =

Z2 and R2 = Z5, then we know from Proposition 3.12 that
UG(R1×R2) does not satisfy (Ku∗2). If R1 = Z3 and R2 ∈
{Z4,

Z2[X ]
X2Z2[X ]

,F4,Z5}, then we know from Corollary 3.16 and
Propositions 3.17 and 3.19 that UG(R1×R2) does not satisfy
(Ku∗2). If R1 = F4 and R2 ∈ {F4,Z5,Z4,

Z2[X ]
X2Z2[X ]

}, then we
know from Corollaries 3.20 and 3.21 that UG(R1×R2) does
not satisfy (Ku2). If Ri ∈ {Z4,

Z2[X ]
X2Z2[X ]

} for each i ∈ {1,2},
then we know from Corollary 3.23 that UG(R1×R2) does
not satisfy (Ku2). If R1 ∈ {Z4,

Z2[X ]
X2Z2[X ]

} and R2 = Z5, then we
know from Lemma 3.24 that UG(R1×R2) does not satisfy
(Ku2). From the above given arguments, it is clear that if
UG(R) satisfies (Ku∗2), then R is isomorphic to one of the
rings from the collection A , where A is as in the statement
(iv) of this theorem.
(iv)⇒ (i) We are assuming that R is isomorphic to one of the
rings from the collection A , where A is as in the statement(iv)
of this theorem. Let T ∈ A . If T = Z2×Z2, then UG(T )
is a simple graph on four vertices and so, UG(T ) is planar.
If T = Z2×Z3, then it is noted in Lemma 3.10 that UG(T )
is planar. If T ∈ {Z2×Z4,Z2× Z2[X ]

X2Z2[X ]
,Z2×F4}, then we

know from Propositions 3.7 and 3.9 that UG(T ) is planar.
If T = Z3×Z3, then we know from Proposition 3.13 that
UG(T ) is planar. This proves that if R is isomorphic to one of
the rings from the collection A , then UG(R) is planar.
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