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Cartesian magicness of 3-dimensional boards

Gee-Choon Lau'*, Ho-Kuen Ng? and Wai-Chee Shiu®

Abstract

A (p,q,r)-board that has pg+ pr+ gr squares consists of a (p,q)-, a (p,r)-, and a (g, r)-rectangle. Let S be the set
of the squares. Consider a bijection f: S — [1, pg+ pr+gr]. Firstly, for 1 <i < p, let x; be the sum of all the g+ r
integers in the i-th row of the (p,q+ r)-rectangle. Secondly, for 1 < j < g, let y; be the sum of all the p + r integers
in the j-th row of the (¢, p +r)-rectangle. Finally, for 1 <k <r, let z; be the the sum of all the p+ ¢ integers in
the k-th row of the (r, p+ ¢)-rectangle. Such an assignment is called a (p,q,r)-design if {x;: 1 <i < p} = {c;} for
some constant ¢y, {y;: 1 < j < ¢} = {c2} for some constant ¢, and {z;: 1 <k <r} = {c3} for some constant cs.
A (p,q,r)-board that admits a (p,q,r)-design is called (1) Cartesian tri-magic if ¢|, ¢, and ¢3 are all distinct; (2)
Cartesian bi-magic if ¢1, ¢, and ¢3 assume exactly 2 distinct values; (3) Cartesian magic if ¢; = ¢, = ¢3 (which
is equivalent to supermagic labeling of K(p,q,r)). Thus, Cartesian magicness is a generalization of magic
rectangles into 3-dimensional space. In this paper, we study the Cartesian magicness of various (p, g, r)-board
by matrix approach involving magic squares or rectangles. In Section 2, we obtained various sufficient conditions
for (p,q,r)-boards to admit a Cartesian tri-magic design. In Sections 3 and 4, we obtained many necessary
and (or) sufficient conditions for various (p, ¢, r)-boards to admit (or not admit) a Cartesian bi-magic and magic
design. In particular, it is known that K(p, p, p) is supermagic and thus every (p, p, p)-board is Cartesian magic.
We gave a short and simpler proof that every (p, p, p)-board is Cartesian magic.
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Contents let PP; denote a matrix of size p; x p;, where P,P; is an entry
of a block matrix B as shown below
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such that the r-th row of B, denoted B, (1 <r <k), is a
. submatrix of size p, X (p1 +---+ pi). For 1 <d <k, we sa
1. Introduction a (P1,...,pk)—boaIr7d is ((ll:,d)—magiic)ki)f ’
For positive integers p;, 1 <i <k, k > 2, the k-tuple
(p1,p2,...,pr) is called a (py, pa, ..., pi)-board, or a gener-
alized plane, in k-space that is formed by (5) rectangles PP;
(1 <i< j<k)ofsize p; X p;. Abusing the notation, we also (i) {c1,c2,...,ci} has exactly d distinct elements.

(i) the row sum of all the entries of each row of M, is a
constant ¢, and



We also say that a (k,d)-magic (pj,..., pi)-board admits a
(k,d)-design. Thus, a (2,2)-magic (p,q)-board is what has
been known as a magic rectangle while a (2,1)-magic (p,q)-
board is what has been known as a magic square. We shall say
a (3,3)-magic, a (3,2)-magic and a (3,1)-magic (p,q,r)-board
is Cartesian tri-magic, Cartesian bi-magic and Cartesian
magic respectively. In this paper, we determine Cartesian
magicness of (p,q,r)-boards by matrix approach involving
magic squares or rectangles.

For a,b € Z and a < b, we use [a,b] to denote the set of
integers from a to b. Let S be the set of the pg + pr+ gr
squares of a (p,q,r)-board. Consider a bijection f : S —
[1, pg+ pr+ gr]. For convenience of presentation, throughout
this paper, we let PQ, PR, and OR be the images of (p,q)-,
(p,r)-, and (g,r)-rectangles under f in matrix form, respec-
tively. Hence, PQ, PR and QR are matrices of size p X q, p X r
and g x r, respectively.

Let G = (V,E) be a graph containing p vertices and ¢
edges. If there exists a bijection f : E — [1,4] such that the

map f(u) = Z f(uv) induces a constant map from V to
uvek
Z, then G is called supermagic and f is called a supermagic

labeling of G [13, 14].

A labeling matrix for a labeling f of G is a matrix whose
rows and columns are named by the vertices of G and the
(u,v)-entry is f(uv) if uv € E, and is * otherwise. Sometimes,
we call this matrix a labeling matrix of G. In other words,
suppose A is an adjacency matrix of G and f is a labeling of
G, then a labeling matrix for f is obtained from A = (a,,,) by
replacing ay, by f(uv) if a,, = 1 and by * if a,, = 0. This
concept was first introduced by Shiu, et al. in [11]. Moreover,
if f is a supermagic labeling, then a labeling matrix of f is
called a supermagic labeling matrix of G [12]. Thus, a simple
(p,q)-graph G = (V,E) is supermagic if and only if there
exists a bijection f : E — [1,q] such that the row sums (as
well as the column sums) of the labeling matrix for f are the
same. For purposes of these sums, entries labeled with * will
be treated as 0. It is easy to see that K(p, g, r) is supermagic
if and only if the (p, g, r)-board is Cartesian magic.

Note that the block matrix B in (1.1) is a labeling matrix
of the complete k-partite graph K(pi,...,px). In particular,
consider the complete tripartite graph K(p,q,r). Suppose f
is an edge-labeling of K(p,q,r). According to the vertex-list
{x1,...5xp,¥1,- -, ¥g:21, - - -, 2}, the labeling matrix of f is

* PO PR
B=|(PQT *x OR|,
(PR)T (OR)T

where PQ, PR and QR are defined before, each ¥ is a certain
size matrix whose entries are *. For convenience, we use QP,
RP and RQ to denote (PQ), (PR)T and (QR)7, respectively.

Throughout this paper, we will use s(PQ), s(PR) and
s(OR) to denote the sum of integers in PQ, PR and QOR, re-
spectively.
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2. Cartesian tri-magic

In this section, we will make use of the existence of magic
rectangles. From [3, 4], we know that a & x k magic rectangle
exists when A,k >2, h =k (mod 2) and (h,k) # (2,2).

Theorem 2.1. Suppose 3 < p < g <r, where p, q are odd
and r is even. The (p,q,r)-board is Cartesian tri-magic.

Proof. Fill the (p + g) x r rectangle with integers in
[1,(p + q)r] and the p x g rectangle with integers in
[(p+q)r+1,pg+ pr+ gr] to form two magic rectangles.
Thus, ¢1 = (pr* +qr> + pq* +q+71)/2+ pgr+ ¢*r, ¢2 =
(P*q+pr? +qr + p+71)/2+ par+ p*r, and c3 = (p°r +
¢’r+p+q)/2+ pgr. Observe that

2(c1 —c2) = (g—p)(pg+1+2(p+q)r),
2(cy —c3) = pr(r+p)+ (qr+1)(r—q) + p’q.

Clearly, ¢ > ¢2 > c3. Hence, the theorem holds. O

Theorem 2.2. If3 < p < g <r, where q is even, and p and r
are odd, then the (p,q,r)-board is Cartesian tri-magic.

Proof. Fill the p x r rectangle with integers in [1, pr| and

(p+7) X g rectangle with integers in [pr+ 1, pg+ pr+gqr] to

form two magic rectangles. We have

2Acr—c1) =pq—pq —q’r+qr’ +pr+2p°r+p—q
=p(r* =p*) +qr(r—q) +2p°r+ (p* = g +p
>0,

2ci—c3) =pr* —p’r+r—p=(r—p)(pr+1)>0.
Thus ¢; > ¢; > c¢3. Hence the theorem holds. O

Theorem 2.3. If2 < p < g < r, where p is even, and q and r
are odd, then the (p,q,r)-board is Cartesian tri-magic.

Proof. Fill the g x r rectangle with integers in [1,gr] and the
p % (g +r) rectangle with integers in [gr + 1, pg + pr+gr] to
form two magic rectangles. Thus, 2¢| = 2¢%r + 2qr? + pg® +
prr+q+r—+2pgr, 2co = qr* + p*q+ p*r+r+ p+2pgr, and
2c3 = p’q+ p*r+q*r+q+ p+2pqr. Now

2(c2—c3) = (r—q)(qr+1),
2(c1 —c2) = pr(r—p) + (pg+1)(q— p) +2¢°r +qr.

Clearly, ¢ > ¢» > c3. Hence, the theorem holds. ]

Theorem 2.4. Suppose 2 < p < q <r, where p, q and r have
the same parity and (p,q) # (2,2). Then (p,q,r)-board is
Cartesian tri-magic.

Proof. Fill the p x r rectangle with integers in [1, pr], the
p X g rectangle with integers in [pr+ 1, pr+ pq], and the g x r
rectangle with integers in [pr+ pg+ 1, pr+ pq + gr] to form
three magic rectangles. Now, 2¢| = 2pgr+ pg*> + pr> +r+q,

S
= 00247:

v

AW



2y = 2pqr +2p°r + 2pr* + p*q +qr* +r+ p, and 2¢3 =
2pqgr+2pq® + p*r+ q*r + g+ p. Therefore,
2(cz—C3)=p2r+2pr2+P2‘1+‘1”2
—2p¢* —Pr+r—gq
=2p( —¢*)+ p*(r+q)+ (r—q)(gr+1)
>0,
2er—cr) =2p"r+p*q+ar* +pr’ —pi*+p—q
=2p°r+p’q+pr’+p+q(r’ —pg—1)
>0,

2(c3—cy) :pq2+p2r+q2rfpr2—r+p. 2.1)

Fill the p x r rectangle with integers in [1, pr], the g x r
rectangle with integers in [pr+ 1, pr+ gr|, and the p x ¢
rectangle with integers in [pr+gr+ 1, pr+ gr+ pq| to form
three magic rectangles. Now, 2c1 = 2pgr+ pg® + pr* +2q¢*r+
r+q, 2co = 2pgr + 2p*r + 2pr? + p*q + gr* + r + p, and
2c3 = 2pqr + p*r+ ¢*r+q+ p. Therefore,

2(c1—c3) =pr’—p'r+q’r+pg+r—p
=(r—p)(pr+1)+¢*(p+r) >0,
2er—c3)=pPr+2pr? +pq+ar’ —grtr—q
=P (r+4q)+2pr* +(r—q)(gr+1) >0,
2(cp—cy) = pr2 —&—qr2 + 2p2r— 2q2r
+p°q—pq’ —q+p. (22)
The sum of (2.1) and (2.2) is

3p°r =@’ r+art +pPg—r—q+2p
=qr(r—q)+4q(p> = 1) +r(3p> = 1) +2p > 0.

So at least one of (2.1) and (2.2) is positive. Hence we have
the theorem. O

For p = g = 2, we have the following.

Theorem 2.5. For all r > 1, the (2,2,r)-board is Cartesian
tri-magic.

Proof. For r =1, a labeling matrix for (1,2,2) is:

x| 6 8|1 5 20
6% x|7 2 15
81 *x|3 4 15
117 3% = 11
512 4% x 11

The right column contains the row sums of the left matrix.
For r = 2, consider

214 715 1] 12
PO=7713 PR=1%7T7% OR=15T79

Clearly, we get a Cartesian tri-magic design with c¢; = 18,
C) = 26, and c3 = 34,
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Now assume r > 3. For r =0 (mod 4), consider

| 4r+1 | 4r+4
PQ = 4r+3 | 4r+2
PR =
[1]2r=1]2r=2] 4 [ Qr=7]r+7]r+6[r=4]r=3[r+3[r+2] r |
[2r] 2 1 3 [2r=3] - r+8]r—6|r=5]r+5|r+a[r—2[r—1[r+1]
OR=
[2r+1Tar—1]4r—2[2r+4] - [3r=7[3r+7[3r+6[3r—4]3r—3[3r+3[3r+2[3r+1]
[ 4r [2r+2]2r+3]4r=3] - |3r+8]3r—6[3r—5[3r+5|3r+4[3r—2[3r—1] 3r |

Clearly, we get a Cartesian tri-magic design with ¢ =
P4 17r/245,¢0 =3r*+17r/2+5, and c3 = 8r + 2.
For r =1 (mod 4), consider

_| 4r+3 | 4r+2
PO = 4r+1 | 4r+4
PR =

1 J2r—1]2r—2] 4

l I»-«I)‘78[r+8[r+7[r75|r74[r+4[r72[r+2[ 3r]
Lrl 213

[2r=3] - Jr+9[r=7[r—6[r+6r+5]r=313r—2[r—1[r+1]
OR =
[2r+1[ar —1[4r —2[2r+ 4] - |3r —8[3r+8]3r + 7[3r = 5[ 3r—4[3r+4] r+3 [3r + 2[3r + 1]
[ 4r |2r+2[2r+3]dr=3] - |3r+9[3r = 7[3r—6[3r + 6]3r+5[3r =3[3r+3[3r— 1] r |

Clearly, we get a Cartesian tri-magic design with ¢ =
4+ (21r+5)/2, ¢co = 3r2 4+ (13r+15) /2, and ¢3 = 8r + 2.
For r =2 (mod 4), consider

4r4+2 [ 4r+4
PO= T a3
PR= i P ssEseses et
OR =
[2r+1T4r—1T4r—2]2r+4 ] J3r=5[3r+5[3r+4[3r—2[3r+2[3r+1]
[ 4r [2r+2[2r+3[4r—3] - |3r+6[3r—413r—=3[3r+3]3r—1[ 3r |

Clearly, we get a Cartesian tri-magic design with ¢ =
4+ 17r/245,¢c0 =3r* +17r/2+5, and c3 = 8r + 2.
Finally for r =3 (mod 4), consider

4r+1 | 4r+3
PO=r o Tar+3
PR= PP e e
OR =
[2r+1Tdar—1T4r—2]2r+4] - J3r—6[3r+6[3r+5[3r—3] r+3 [3r+2[3r+1]
[ 4r [2r+2[2r+3[4r=3] - |3r+7[3r—5[3r—4[3r+4|3r+3[3r—1] r |

Clearly, we get a Cartesian tri-magic design with ¢; = r +
(21r+5)/2,c2 =3 +(13r+15)/2,and c3 = 8r+2. O

Corollary 2.6. The (p, p, p)-board is Cartesian tri-magic for
allp > 1.



We now consider the case p = 1. We first introduce some
notation about matrices.

Let m,n be two positive integers. For convenience, we
use M,, , to denote the set of m x n matrices over Z. For any
matrix M € My, ri(M) and c;(M) denote the i-th row sum
and the j-th column sum of M, respectively.

We want to assign the integers in [1, g + r + gr] to matrices
PRE M, ,, OR € M, and QP = (PQ)" € M, such that the
matrix

* PR
M= (QP QR)

has the following properties:
P.1 Each integers in [1,q + r + gr| appears once.

P.2 r;(M) is a constant not equal to r (M) + ¢ (M),
2<i<qg+1.

P.3 ¢j(M) is a constant not equal to r;(M) or ri (M) + c1 (M),
2<j<r+1.

Such a matrix M is called a Cartesian labeling matrix of the
(1,q,r)-board (or the graph K(1,4,r).)

Theorem 2.7. The (1,1,r)-board is Cartesian tri-magic.

Proof. A Cartesian labeling matrix of the (1, 1,r)-board is

s o1 2
2r—|—1‘2r 2r—1 - r+1
Clearly, we get a Cartesian tri-magic design with

c1 = (rP+5r+2)/2,c2 = (3r* +5r+2)/2 and ¢3 = 2r +
1. O

Note that the (1, 1,2)-board also admits a different Carte-
sian labeling matrix

x| 2 5
314 1
with ¢; = 10, ¢; = 8, and c3 = 6 respectively.

Theorem 2.8. Suppose g=r (mod 2) and g > 2. The (1,q,r)-
board is Cartesian tri-magic if ¢ < r.

Proof. Let A be a (¢+ 1) x (r+ 1) magic rectangle. Ex-
changing columns and exchanging rows if necessary, we may
assume that (¢ + 1)(r+1) is put at the (1, 1)-entry of A. Now
let PR be the 1 x r matrix obtained from the first row of A by
deleting the (1,1)-entry; let QP be the g x 1 matrix obtained
from the first column of A by deleting the (1, 1)-entry; let OR
be the g x r matrix obtained from A by deleting the first row
and the first column.
It is easy to check that

¢ = (q+r+2)[(q-§1)(r+l)+l] —2g+1)(r+1),
¢ = Ll g
C3:Mwithcl>cz>qifq<r. O
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Suppose g = 2s+ 1 and r = 2k, where k > s > 1. We
assign the integers in [1,4sk 4 4k + 2s + 1] to form a matrix
M satisfying the properties P.1-P.3.

Letor= (1 2 k)and = (k k—1 1) be
row vectors in My . Let J,, , be the m X n matrix whose entries
are 1.

Let A be the following (2s+ 1) x (2k) matrix:

a+ [2S+ 1]]]11(
B+ [2S+ 1 +3k}]1.k
0+ 25+ 1+ 4kJy 1

o+ [23+ 1 +k]]]1k
B+ [28-‘1— 1 +2k}J1‘k
0+ [25+ 1+ 5kJJy

B+[2s+ 1+ (ds— DkJiy | B+[2s+1+ (ds— 2kl 4
o+ 25+ 1+ 4sk]J; x o+ 25+ 1+ (4s+ 1)k|J; &

We separate A into two parts, left and right. Now reverse the
rows of the right part of A from top to bottom:

o+ [2S+ 1}]1’/\»
B+[2s+143k]J1
o+ 25+ 14 4k] T, &

o+ 25+ 14 (4s+ DEJJ;
B+ 25+ 14 (4s—2)k|J; &

o+ 25+ 14 (4s—3)k|J;
B= .

B+ [2s+.1+2k]J11k
(X+[25+ 1 +k}‘/|.k

B+[2s+1 +.(4s —DkJ1x
o+ 25+ 14 4sk)Jy «

We insert
(B+2s+1+(4s+3)kl1x | B+ [2s+ 14 (4s+2)k)J1 1)

to B as the first row. So we get a (25 +2) x (2k) matrix

B+[2s+ 14+ (4s+3)klJix | B+[2s+ 1+ (4s+2)klJix

o+ 2s+1]J1 4 o+ 25+ 1+ (4s+1)klJ «

B+ [2s+ 143k« B+ (25414 (4s —2)k|Jy «

C— o+ 25+ 144k, & o+ 254+ 1+ (4s — 3)k|J1 &

ﬁ + [2S+ 1 +2k]J1,k
o+ [2S+ 1 +k}J11k

B+ [25+ 1+ (4s— ])k}/]‘k
o+ 25+ 1+ 4sk]J; x

Each column sum of C is (s+ 1) (4sk+4s+4k+3). Each
row sum (except the 1st row) of C is k(4sk +4s+ 2k +3) and
r1(C) = k(8sk +4s+ 6k +3). The set of remaining integers
is [1,2s+ 1] which will form the column matrix QP.

It is easy to see that the difference between the (2i+ 1)-st
and the (2i+2)-nd rows of C is

(-1 -3 —(2k=3) —(2%k—1) 2%k-1 2%-3 - 3 1)

for1 <i<s. Welet QP be

(s#1 ] s+2 s |s43 s—1 ] - |2511 D) €My ;.
Now let
* | BA[2s+14(4s+3)k ik | B+ [2s+ 1+ (4s+2)k] 1k
s+1 o+ 25+ 17« o+ 25+ 1+ (4s+ Dk[J x
s+2 B+ [2s+1+3k|Jy & B+ [25+ 1+ (4s — 2)k|Jy &
o+ 25+ 14 (4s—3)k|J1x

N = s o+ 25+ 1 +4k]J1 &

B+ [2s+ 142K
o425+ 1+kJ1k

2541 | B+[2s+1+(4s— Dk g
1 a+ 25+ 1+4skl)

Here r3i4+1(N) — r2i42(N) = 2i, 1 < i <. For odd i, we swap
the (2i4 1,2k + 1 —i)-entry with the (2i +2,2k+ 1 —i)-entry.

0gl0
S0,
S5027:

(N



For even i, we swap the (2i+ 1,2k + 1 — i)-entry with the
(2i+2,2k+ 1 —i)-entry of N and swap the (2i+ 1,2)-entry
with the (2i+2,2)-entry of N. Note that, they work since
1 <i <5 < k. The resulting matrix is the required matrix M €
M2s+2,2k+1 . Note that ¢ = V,'(M) = k(4sk+4s+2k+3) +s5+
1for2 <i<2s+2,c3=c;j(M)=(s+1)(4sk+4s+4k+3)
for2 < j<2k+1andc;=r(M)+ci(M)=k(8sk+4s+
6k+3)+(s+1)(2s+1).

Remark 2.9. In the above construction, we use integers in
[2s + 2,45k + 4k + 25 + 1] to form the matrix C. We may
use integers in [1,4sk + 4k] to form a new matrix C’, namely
C' = C— (254 1)Jp5322 The remaining integers of [4sk +
4k + 1,45k + 4k + 25+ 1] form the new matrix PQ’, namely
PQ' = PQ + (4sk +4k)Jos11,1. By the same procedure as
above, we have a new matrix M’ with ¢ = r;(M’) = ri(M) +
2k = k(4sk+4s+2k+5)+s+1for2 <i<2s+2, ¢, =
cj(M')=cj(M)—(25+2)(2s+1) = (s+1)(4sk+4k+1) for
2<j<2k+landcy=r(M)+ci(M)=ri(M)+ci(M)—
(2s+1)2k+ (254 1)(4sk+4k) = k(8sk+4s+6k+3) + (25 +
1)(4sk+2k). So, if ¢; = ¢3 in the above discussion, then we
may change the arrangement M to M’ to obtain a Cartesian
tri-magic labeling for the (1,2s+ 1,2k)-board.

Thus we have

Theorem 2.10. Suppose q > 3 is odd and r is even.
(1,q,r)-board is Cartesian tri-magic.

The

Example 2.11. (1,5,8)-board

53 52 51 50
6 7 8 9
21 20 19 18
22 23 24 25
37 36 35 34
38 39 40 41

53 52 51 50
6 7 8 9
21 20 19 18
22 23 24 25
37 36 35 34
38 39 40 41

49
10
17
26
33
42

49
42
33
26
17
10

48
11
16
27
32
43

48
43
32
27
16
11

47
12
15
28
31
44

47
44
31
28
15
12

46
13
14
29
30
45

46
45
30
29
14
13

—C=

The first row is the matrix PR and the last 5 rows form the
matrix OR.

Now each column sum is 177, each row sum of OR is 204.
But we have to put 1,2,3,4,5 into the matrix PQ (or QP). The
average of these numbers is 3. So we have to make each row
sum of the augmented matrix (QP|QR) to be 207. Thus we
put these numbers into QP as follows:

53 52 51 50
6 7 8 9
21 20 19 18
22 23 24 25
37 36 35 34
38 39 40 41

49
42
33
26
17
10

48
43
32
27
16
11

47
44
31
28
15
12

46
45
30
29
14
13

AN NS I SN N Y
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Now the row sums of QR are 207, 208, 206, 209 and 205. So
we must swap some entries of QR. We will pair up rows of
OR and QP, namely 2nd and 3rd, 4th and 5th. The 2nd row
sum is greater than the 3rd row sum by 2; and the 4th row sum
is greater than the 5th row sum by 4. In 2nd and 3rd row of
OR, there are two entries at the same column whose difference
is 1 (namely 29 and 30); two entries at the same column with
difference —1 (namely 37 and 38) and two entries at the same
column with difference +3 (namely 15 and 12). So, swapping
these pairs of integers we get

x| 53 52 51 50|49 48 47 46

316 7 8 9 |42 43 44 45

M 4121 20 19 18|33 32 31 ®
2122 23 24 25|26 27 28

5 36 35 34|17 16 ©@ 14

1[6) 39 40 41|10 11 @ 13

Now c¢; =411, ¢ =207 and ¢3 = 177.
Or

x |48 47 46 45|44 43 42 41
5101 2 3 4137 38 39 40

M= 52116 15 14 13|28 27 26
5017 18 19 20|21 22 23 @

5316 31 30 29|12 11 @ 9

49 |6 34 35 365 6 @ 8

Now ¢| =611, ¢}, =215 and ¢y = 147.

Suppose g = 2s and r =2k — 1, where k > s > 1. We want
to assign the integers in [1,4sk + 2k — 1] to form a matrix M
satisfying the properties P.1-P.3.

When s = 1, we have the following.

For r = 3, consider the Cartesian labeling matrix

Clearly, we get a Cartesian tri-magic design with ¢; = 30,
Cy) = 27, and c3 = 16.

Now forr=1 (mod 4), r > 5,letr =4s+ 1,5 > 1. Con-
sider

PR =
[1]3] - [4s—5[4s—3[4s—1]10s+3]2[4]--- [4s—4[4s—24s]
QP+ OR =
[125+5]125+3[ 65+ 1 [---[4s+5 [10s+5[ 45+ 3 [4s+ []10s+2[ 85+ 1 |- [65 + 5[8s+ 4]65 + 3]

[125+4] 6s+2 [125+2]---[10s+ 6] 45 +4 [10s + 4]4s + 2] 85 +2 [10s + 1[---[85+ 5|65+ 4[85+ 3]

Clearly, we get a Cartesian tri-magic design with ¢
852 +36s+ 12, ¢y = 3252 +275+6, and c3 = 185+ 6.

Finally for r =3 (mod 4), r > 7, let r = 4s+3,s > 1.
Consider

PR =
[1]3[5] - [4s—1]ds+1[4s+3[2]4] - [4s—2]4s[4s+2]




[125+10] 6s+5[125+8[ 6s+3 -

OP+QOR= [12s+ 11125 +9] 6s+4 [125+ 7]

- [105+10[ 45+ 5 [105 + 8] 85+ 6 [10s +6[--- |65 + 8[85 + 8] 65+ 6
[ 4s+6 [105+9[45+4 105+ 7[8s+5[--[85+9[65+7[8s+7|

We now get c; = 8s> 4 38s+27 and c3 = 185+ 15. How-
ever, we have y; = 3252 +61s+29 and y, = 32s% + 635+ 31.
To make y; = y,, we perform the following exchanges. Note
that none of these exchanges would modify the values of
Zk, 1 <k < r. Only the value of ¢; would be changed.

(a) Interchange the labels 4s — 2 and 65+ 8. The value of y;
is decreased by 2s + 10.

(b) Interchange the labels 4s — 1 and 4s+ 6. The value of y,
is decreased by 7.

(c) Interchange the labels 45 4-2 and 85+ 7. The value of y;
is decreased by 4s+ 5.

In total, the value of y; is decreased by 2s+ 10, and the
value of y, is decreased by 4s+ 12. Thus, we now have
c2 = 325> + 595+ 19 and ¢; = 8s% + 445 +49. Clearly, we
now have a Cartesian tri-magic design.

We now assume s > 2. Let A be a 25 X 2 magic rectangle
using integers in [0,4s — 1]. The construction of A can be
found in [4]. Hence ri(A) =4s—1 and c¢j(A) = s(4s—1).
Exchanging columns and rows if necessary, we may assume
the (1, 1)-entry of A is 0, hence the (1,2)-entry of A is 4s — 1.

(3)

B

notes the Kronecker’s multiplication. Thus r;(Q) = k(k+1),
cj(Q)=s(k+1), r;,(®) = (45— 1)k* and c;(®) = s(4s— 1)k
for1 <i<2s,1<j<2k.

Let Q =J;» ® and ® = A®kJ;, where ® de-

Let N = Q+®. Then r;(N) = 4sk* + k and ¢;(N) = 4s*k+
sfor 1 <i<2s, 1< j<2k Now the set of entries of N is
[1,4sk]. We set N = (QP|QR). Now, the set of remaining
integers is [4sk + 1,4sk + 2k — 1], which will be arranged to
form the matrix PR. Let

'}/:(* 2 4 2k—4 2k—-21]1 3 2k—3 Zkfl),
Insert y+ 4skJ; o to the first row of N, with * still denot-

ing ‘* +4sk’. The resulting matrix is denoted by N’. Now

if2<j<k

i(N)+4sk+(2j—2
CJ(N/): C]( )+ S +( ] )a . .
ifk+1<j<2k.

cj(N)+4sk+(2j—1-2k),
Look at the first row of N which is

ND = 2 k| dsk—k+1 dsk—k+2 4sk).
We swap the j-th entry with the (k+2 — j)-th entry of N ™), for
2 < j < [k/2] and swap the j-th entry with the (3k+1 — j)-
th entry of N fork+1<j<k+ |k/2] to get a new row.

It is equivalent to reversing the order of the entries from
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the 2nd to the k-th and reversing the order of the entries
from the (k4 1)-st to the 2k-th of N(!). Replace N (i.e.,
the second row of N') by this new row to get a matrix M.
Hence ¢;(M) = ¢;(N) + 4sk + k = 45’k + 4sk + s + k = c2,
2 < j < 2k. Note that r;(M) = r;_1(N) = 4sk*> +k = c3 for
2<i<2s+1; r(M)+ci(M) =r(N')+ci(N) = 8sk> +
45%k — Ask +2k* +5s —k = ¢1. Clearly ¢; > ¢z and ¢] > c3.
Now, ¢3 — ¢y = s[4k(k—s—1)—1] # 0. So M corresponds to
a tri-magic (1,2s,2k — 1)-board. So we have

Theorem 2.12. Suppose q > 2 is even and r is odd. The
(1,q,r)-board is Cartesian tri-magic.

Example 2.13. Consider the graph (1,6,9)-board, i.e., s =3
and k = 5. Now
11

N
SR O
— ) A~ WO
N = N = =
LRSI (OIS )
[OSRUSRUS RIS RIS RN
DR RARNDA~
—_ N = N = N
N = N = =
AR
W W W W W W
[NSIE S ST S (S
— N = N = N

0O 0 O O O0]5 5 55 55 55
10 10 10 10 10|45 45 45 45 45
30 30 30 30 30 (25 25 25 25 25
— ] 35 35 35 35 35120 20 20 20 20
40 40 40 40 40|15 15 15 15 15
50 50 50 50 505 S5 S5 5 5

and
x 62 64 66 68|61 63 65 67 69

15 14 13 12 11 |50 49 48 47 46
N =] 31 32 33 34 35|26 27 28 29 30
40 39 38 37 36|25 24 23 22 21
41 42 43 44 45116 17 18 19 20
55 54 53 52 51110 9 8 7 6

Now

* |62 64 66 68 61 63 65 67 69

1|5 4 3 2 60 5 58 57 56

15114 13 12 11 50 49 48 47 46

M=| 31|32 33 34 35 26 27 28 29 30
40 139 38 37 36 25 24 23 22 21

41 142 43 44 45 16 17 18 19 20

55154 53 52 51 10 9 8 7 6

c1 =768, cp =248 and c¢3 = 305.
By a similar way we have

Example 2.14. The following is a required matrix for (1,4,7)-
board:

* ‘ 34 36 38 33 35 37 39

14 3 2 32 31 30 29
16|15 14 13 20 19 18 17
21122 23 24 9 10 11 12
28127 26 25 8 7 6 5

c1 =318, cp =102 and ¢3 = 132.




In [1], the authors introduced the concept of local an-
timagic chromatic number of a graph G, denoted y;,(G).
Observe that for every complete tripartite graph K(p,q,r),
X1a(K(p,q,r)) =3 if and only if the (p,q,r)-board is Carte-
sian tri-magic. Thus, we have obtained various sufficient con-
ditions such that x;,(K(p,q,r)) = 3. Interested readers may
refer to [2, 5-7] for more results on local antimagic chromatic
number of graphs. Note that our argument on (1,2, r)-board
is the proof of Theorem 1 in [5].

3. Cartesian bi-magic

Theorem 3.1. The (1,1,r)-board is Cartesian bi-magic if
and only if r Z1 (mod 4).

Proof. [Sufficiency] Suppose r £ 1 (mod 4). We have three
cases.

1. Suppose r =0 (mod 4). Assign 2r+ 1 to PQ. The as-
signments to PR and QR are given by row 1 and row 2
respectively in the matrix below.

2r—1(2r—2| 4 5
2r—3|2r—4| 6 7

PR=|1 2r—=5[2r—6] 8 |-
OR=[2r 2 | 3 7
e r=T|r+7|\r+6|r—4|r=3{r+3|r+2| r
Nr+8{r—6|r=5{r+5 r+4{r—2r—1{r+1

Clearly, c; = ¢y =r*+5r/2+1and c3 = 2r + 1.

2. Suppose r =2 (mod 4). For r =2, assign 1 to PQ, assign
2 and 4 to the only row of PR and assign 5 and 3 to the
only row of QR. Clearly, c; =c3=7,¢c2 =9. Forr > 6,
assign 1 to PQ. The assignments to PR and OR are given
by row 1 and row 2 respectively in the matrix below. Note
that if » > 10, we would assign from the 7th column to the
last column in a way similar to that for =0 (mod 4).

PR=[r—4]r+6[r=2[r+4]r+3[r+2][ 2 J[2r[2r—1] 5 |-

QR:[r+7[r73[r+5[rfl[ r [r+l“2r+l[3[ 4 [2r72|»--
~~-|r—8[r+10[r+9[r—5]
~~|r+ll[r77[r76[r+8]

Clearly, ¢c; = cy =r> +3r/2+ 1 and ¢3 = 2r + 3.

3. Suppose r =3 (mod 4). Assign r+ 1 to PQ. The as-
signments to PR and QR are given by row 1 and row 2
respectively in the matrix below. Note that if » > 7, we
would assign from the 4th column to the last column in a
way similar to that for r =0 (mod 4).

PR=|r—=2|r+3|r+2 1 |2r{2r—1| 4 |-
OR=|r+4|r—1| r |[2r+1]|2 3 |2r—21Q---

c|lr=6|r+7|r+6|r—3
|r+8|r—5{r—4(r+5

Clearly, c; =2 = r2+2r+1 and c3=2r+2.

[Necessity] Suppose there is a Cartesian bi-magic (1, 1,r)-
board. Clearly, r > 1.
Since res = (r+1)(2r+1) —s(PQ), 2r+1 < 3 <2r+3. So
we have three cases.
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(1) Suppose ¢3 = 2r+ 1. In this case, s(PQ) =2r+1. It
follows that ¢; = ¢ # ¢3. Hence, we must divide [1,2r]
into two disjoint sets of r integers with equal total sums.
Hence, r(2r+1)/2 is even. So that r must be even.

(2) Suppose c3 =2r+2. In this case, s(PQ) = r+ 1. Hence,
we must divide [1,7] U [r+2,2r + 1] into two disjoint
sets of r integers, say A and A,, such that (a) s(A;) =
s(A2) £r+1,0r(b)s(A) =r+1, s(A2) #r+ 1, where
s(A;) denotes the sum of all integers in A;, i = 1,2. For
both case, s(A]) +s(A2) =2r(r+1).

(a) Suppose (A1) = s(A2) # r+ 1. This implies that
s(A;) = r(r+1). Since ¢3 = 2r+ 2, integers in
[1,r]U [r+2,2r + 1] must be paired as (1,2r+ 1),
(2,2r), ..., (r,r+2) as the corresponding entries
in the two 1 X r rectangles PR and QR. Let PR =
(a1 -+ a;) and QR = (b; b:). Here a; +

bi=c3=2r+2,1<i<r. Also we have ¥ |a;—
i=1

.
bl = Y, 2i =r(r+1). Without loss of generality,
=1

we may assume a; > b; when 1 <i<kand b; > a;
when k+1 < j <r, for some k. Thus,

r k r
rir+1) =Y lai—bi| =Y (ai—b)+ ) (bj—a)).
=1 =1 =k 1

3.

- ) (bj—ay).

i=1 j=k+1

k r
Hence we get Y. (a;—b;)) = Y (bj—aj). Com-
=1

i= Jj=k+1
k
bining with (3.1) we have r(r+1) =2 Y (a; — b;).
i=1
Since each a; — b; is even, r(r+1) =0 (mod 4).

Hence r =0,3 (mod 4).
(b) The sum of r distinct positive integers is at least

I+ +r=r(r+1)/2. So
s(A1)=r+1>r(r+1)/2. Hence r =2.

(3) Suppose ¢3 = 2r+ 3. In this case, s(PQ) = 1. Hence, we
must divide [2,2r+ 1] into two disjoint sets of r integers,
say A; and Aj, such that (a) s(A;) = s(A2) #2r+2, or
(b) s(A1) =2r+2 and s(Az) # 2r+2. For these case,
s(A1) +5(A2) =r(2r+3).

In (a), we get 2s(A1) = r(2r+3). Hence r is even.

In (b), similar to the case (2)(b) above, 2r+2 = s(A;) >
(r+3)r/2. Thus r(r— 1) <4, and hence r = 2.



O

Corollary 3.2. Suppose 1 < p <r, where p is odd and r is
even. The (p, p,r)-board is Cartesian bi-magic.

Proof. When p = 1, the corollary follows from Theorem 3.1.
For p > 3, we make use of the equations obtained in Theo-
rem 2.1 and let p = gq. O

Theorem 3.3. The (2,2,r)-board is Cartesian bi-magic for
evenr.

Proof. For r =2, arequired design with ¢; = ¢3 = 24, and
¢y = 30 is given below.

4110 812 12 |9

PO=—=71T1 PR=717 OR=1—5"%
For r > 4, let

4r+1 | 4r+2
Pe= a3

For r =0 (mod 4), the assignments to PR and OR are
then given by rows 1,2 and rows 3,4 respectively below.

PR — 1 8 9 16 |- 2r [2r+1]-
dr—1|4r—6] 4r—9 |4r—14]---|2r+2[2r—1J---
OR = 4r—2|4r—54r—10|4r—13}--- | 2r+3|2r—-21---
4 5 12 13 | 2r=3|2r4+4]---
4r—15|4r—8 |4r—17| 4r
15 10 7 2
14 11 6 3
4r—124r—11|4r—4|4r—-3

Now, interchange entries 2r and 2r +2. We get a Cartesian
bi-magic design with ¢; = ¢y = 2r> +17r/2+5, and ¢3 =
8r+2.

For r =2 (mod 4), the assignments to PR and QR are
then given by rows 1,2 and rows 3,4 respectively below.

PR — 4 5 12 13 | 2r |2r+1
4r—2|4r—514r—104r—13]--- | 2r+2|2r—11---
OR — 4r—1|4r—6| 4r—9 |4r—14]--- | 2r+3|2r—-21---
1 8 9 16 -|2r—312r+4]---
-|4r—1214r—11|4r—4|4r—-3

14 11 6 3
15 10 7 2
4r—8 |4r—17| 4r

Now, interchange entries 2r and 2r +2. We also get a
Cartesian bi-magic design with ¢; = ¢y = 21> + 17r/2+5,
and c3 = 8r+2. ]

Theorem 3.4. The (p, p, p)-board is Cartesian bi-magic for
all even p > 2.
Proof. For p =2, arequired design is given in the proof of

Theorem 3.3. For p = 4, a required design is given as follows
with ¢; = ¢3 =180, and ¢, = 228

411415 ] 44 29[ 23 [32
20 |39 [38 [ 17 8 [27]26] 5
PO= o TTo 1837 PR=58T7 1% 25
134243 16 113031 4
4510 1148
2435 | 34 | 21
OR=3cT23 22 [ 33
9 |46 |47 |12
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For even p = 2n > 6, we can get a (p, p, p)-design that is

Cartesian magic as follows.

(1) Begin with a PQ, PR and QR each of size 2 x 2.

(2) Substitute each entry of the above matrices by a magic
square of order n using the integers in the given interval

accordingly assigned below.

po—|-@ 32+ 1,4n%] | (10) [9n% + 1,10n%]
[ G [dn?+ 15471 | (11) [10n% +1,1147]
PR—® (Tn? + 18221 | (2) [0 +1,247]
- (D [1,n7] (7) [6n* + 1,7n7]
g~ (2 1177+ 1,1207] [ 9) [8n% +1,9%]
OR = (3) [2n% +1,3n7] (6) [5n% + 1,6n7]

Thus, we can get a required Cartesian bi-magic design
with ¢; = ¢3 = 22n° 4+ 2n and ¢; = 28n° + 2n. O

Theorem 3.5. The (p, p, p)-board is Cartesian bi-magic for
all odd p > 3.

Proof. Let p=2n+1be odd. Let M be a p X p magic square,
with each row sum is equal to each column sum which is
p(p*+1)/2.

Define matrices A, B, and C, each a p x p matrix, as fol-
lows. The entries in A are filled row by row. In the first
row of A, Ajj =2 for je[l,n], Ajpp1 =1, and A;; =0
for j € [n+2,2n+ 1]. Beginning with the second row of A,
Ajj=Ai_1j-1,and Aj = A,y for i, j € 2, p]. The matrix
B is formed column by column such that B; ; = A; 41+, for
j€[l,n], and B; j = A; j_y, for j € [n+1,2n+1]. Clearly,
beginning with the second row of B, each row can be ob-
tained from the previous row using the rearrangements as in
the rows of A. The entries in C are filled row by row. In the
first row of C, Cyj =1 for j € [1,n], Ci 41 =0, Cy; = 1 for
Jj € [n+2,2n], and C} 2,11 = 2. Beginning with the second
row of C, each row is obtained from the previous row using
the rearrangements as in the rows of A.

Observe that, in each of the matrices A, B, and C, each row
sum and each column sum is equal to p. In addition, for
i,j € [1,p].{Ai;,Bi;,Ci;} = {0,1,2}.

We now define the matrices PQ, PR, and QR as follows. For
i,j€1,p],

3Mi;—Aij+1 ifi=j,
(PQ)ij= M e
3M,'7/'—A,"j lfl#],
3M; ;—B; ;-2 ifi=j
(PR);,; = o Lo
3M,',J'—B,'1j 1fl7é‘]7
and
3M; j—Cij+1  ifi=,
(OR)ij =14 7, e
3M,'7j—C,')j lfl#].

In addition, note that in PQ and QR, each row sum is equal
to each column sum and is equal to 3p(p> +1)/2 —p+1

o
N
t%&%“’iff.’

(N



while in PR, each row sum is equal to each column sum and
is equal to 3p(p*> +1)/2 — p — 2. Hence, the (p, p, p)-board
is Cartesian bi-magic with ¢; = ¢3 = 3p(p?>+1) —2p—1 and
c2=3p(p*+1)—2p+2. O

We now provide the example of p = 7.

30(39(48| 1 [10|19|28
38477 |9 [18]|27]|29
46| 6 | 8 |17]26(35|37
M=|5|14{16(25(34|36|35A =
13|15(24(33(42|44| 4
21(23(32(41(43| 3 |12
22(31(40(49| 2 |11|20

0(0(0|2

[STR ST Rl Reo] Re] § S
N = OO N
e E=lE=] =11 S} S]]
=== = = O] [ O O] O N N —
[« Renl [ (S]] I S I Re)
[« ST ST ST Ren) Ren)

=== O = =] [N — OO O

S| | | | | —
(=11 ST SR S ) Kool Ren}
[NSTRIS TR ) e Kol Ren)
ST S R Reol ean] Ran)
| = OO
—| O O | N
O OO N N N —

a

Il
=] =] o] =] =] o] —~
—| o =] =[] =[] —~
o| —=| =] o] =| —[ —~
—| | =] =] =| | —
0 = = =[] =]—

89 115|142 2 | 30 | 57 | 84
114|140| 19| 25 | 53 | 81 | 87
138| 18 | 23 | 49| 76 104|111
PO=| 15|42 |48 | 74 100|106 |134
38 | 45|72 |99 |125(130| 10
61 | 68 | 96 [123(129| 8 | 34
64 | 91 |119]147| 6 | 33 | 59

88 |117|144| 1 | 28 | 55 | 83
113|139 21 | 27 | 52|79 | 85
136| 17 | 22| 51 | 78 |103|109
PR=|13 |40 | 47|73 |102|108|133
37 |43 | 70 | 98 | 124|132 12
63 | 67 | 94 [121(128| 7 | 36
66 | 93 [118(145| 4 |32 | 58

90 [116]143| 3 |29 | 56 | 82
112|141]| 20 | 26 | 54 | 80 | 86
137| 16 | 24 | 50 | 77 |105|110
OR=| 14| 41|46 | 75 |101|107|135
39 |44 | 71 | 97 | 126|131 11
62|69 | 95 (122(127| 9 | 35
65 |92 [120(146| 5 | 31 | 60

Theorem 3.6. For p > 3, (i) the (p, p,r)-board is Cartesian
bi-magic when r = p or r is even, (ii) the (p,r,r)-board is
Cartesian bi-magic for even p.

Proof. (i) View the board as containing a (2p,r)-rectangle
and another (p, p)-square. Since p? < 2pr, we first assign
integers in [1, p?] to the (p, p)-rectangle to get a p x p magic
square with magic constant p(p® +1)/2. Next we assign in-
tegers in [p? + 1, p* +2pr] to get a magic (2p, r)-rectangle
with row sum constant (2pr + 1) /2 + p*r and column sum
constant p(2pr+ 1) +2p>. Note that the existence of magic
rectangle of even order can be found in [4]. Hence, the as-
signment we have now is Cartesian bi-magic with c; = ¢ =
p(P*+ 1)/ 24+r2p* +2pr+1)/2# c3 =2p> +2p*r + p.
(ii) We repeat the approach as in (i). Begin with the (p, 2r)-
rectangle and then the (r, r)-rectangle if 2pr < 2. Otherwise,
reverse the order. O
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From the proof of Theorem 2.3, we also have

Corollary 3.7. Suppose 2 < p < r, where p is even and r is
odd. The (p,r,r)-board is Cartesian bi-magic.

From the proof of Theorem 2.8, one can check that ¢; >
e =c3if q=r.

Corollary 3.8. Suppose r > 2. The (1,r,r)-board is Cartesian
bi-magic.
4. Cartesian magic

Clearly, the (1,1,1)-board is not Cartesian magic. In this
section, we always assume (p,q,r) # (1,1,1). Let m be the
magic constant of a Cartesian magic (p, g, r)-board.

Lemma 4.1. If a (p,q,r)-board is Cartesian magic, then
p+q+rdivides (pg+ pr+qr)(pg+ pr+qr+1).

Proof. Tt follows from the fact that (p+q+r)m=2[1+2+
w4 (pg+pr+qr)]. O

Lemma 4.2. Ifa (p,q,r)-board is Cartesian magic, then

(i) s(PQ) + s(PR) = mp, s(PQ) + s(OR) = mgq, s(PR) +
s(OR) = mr;

(ii) s(QR) —s(PR) =m(q—p);
(iii) s(QR) —s(PQ) = m(r — p);
(iv) s(PR)—s(PQ)

Proof. By definition, we get (i). Clearly, (ii), (iii) and (iv)
follow from (i). O

m(r—q).

Theorem 4.3. If a (p, p, pr)-board is Cartesian magic for
p,r>1,thenr=1.

Proof. Under the hypothesis, by Lemma 4.1, m = (2p*r +
p?)(2p*r+p*+1)/(pr+2p). By Lemma 4.2(i), s(PR) +
s(QR) = prm. Since s(PQ) > 1, s(PR) + s(QR) is always
less than the sum of all labels. That is, (2p*r + p?)(2p*r +
PP+1)/(r+2) < (2p*r+ p?)(2p*r+ p*+1)/2. We have
H%<%.Hencer:1. O

Theorem 4.4. There is no Cartesian magic (1,q,r)-board for
allr>q> 1.

Proof. Suppose there is a Cartesian magic (1, ¢, r)-board. By
Lemma 4.2(i), s(PR) +s(QR) =mr =r(q+ 1)(r+1)(g+r+
gr)/(14+q+r). Thus wehave r(g+1)(r+1)(g+r+qr)/(1+
g+r) <(g+1)(r+1)(g+r+gr)/2. This implies that r <
1+ ¢, hence r = q. By Lemma 4.2(i) and (iv) we know that m

] 2 4 2
is an even number. So m/2 = % =¢ +q+ %

is an integer. So 2¢ + 1 is a factor of ¢*(q+ 1)(g — 1). Since
gced(2g+1,9) =1 and ged(2¢+1,9+1)=1,2g+1is a
factor of g — 1. It is impossible except when g = 1. But when
q =1, we know that there is no Cartesian magic (1,1, 1)-board.
This completes the proof. O



From [12], we know that K(p, p, p) = Cz o N,, the lex-
icographic product of C3 and N, is supermagic. That is,
(p, p, p)-board is Cartesian magic for p > 2. In the following
theorems, we provide another Cartesian magic labeling.

Theorem 4.5. The (p, p, p)-board is Cartesian magic for all
even p > 2.

Proof. For p =2, arequired design with m = 26 is given by
the rectangles below.

815 519 0] 2
PO=1%17 PR=713 OR=7713

For p = 4, arequired design with m = 196 is given below.

3218|1929 48| 2 | 3 |45
25123 (22|28 33 1 15|14 | 36
Po= 17 | 31 | 30 | 20 PR= 1 |47 46| 4
24126 | 27 | 21 16 |34 | 35| 13

46 741
37 | 1110 | 40
R=—5TH a3
123839 9

For p = 2n > 6, using the approach as in the proof of
Theorem 3.4 and the (2,2,2)-design as above. Clearly, the
Cartesian magic constant thus obtained is m = p(3p? +1).

O

For example, a Cartesian magic (6,6,6)-design is given
below with m = 654.

65 | 72 | 67 | 38 | 45 | 40
70 | 68 | 66 | 43 | 41 | 39
PO— 69 | 64 | 71 | 42 | 37 | 44
0= 47 | 54 | 49 | 56 | 63 | 58
52 | 50 | 48 | 61 | 59 | 47
51 | 46 | 53 | 60 | 55 | 62
29 | 36 | 31 74 81 76
34 | 32 | 30 79 77 75
PR— 33 | 28 | 35 78 73 80
2 9 4 101 | 108 | 103
7 5 3 106 | 104 | 102
6 1 8 105 | 100 | 107
83 | 90 | 85 11| 18 | 13
88 | 86 | 84 | 16 | 14 | 12
OR = 87 | 82 | 89 | 15 | 10 | 17
92 | 99 | 94 | 20 | 27 | 22
97 | 95 | 93 | 25 | 23 | 21
96 | 91 | 98 | 24 | 19 | 26

Theorem 4.6. The (p, p, p)-board is Cartesian magic for all
odd p > 3.

Proof. Let A, B, C and M be as defined in the proof of The-
orem 3.5. We now define the matrices PQ, PR, and OR as
follows. For i,j S [l,p], (PQ),'J = 3Mzﬂj _AiAj, (PR),"j =

Cartesian magicness of 3-dimensional boards — 1184/1185

We now provide the example of p = 7. Only matrices
PQ, PR and QR are shown.

88 | 115|142 2 | 30 | 57 | 84
114 1139| 19 | 25 | 53 | 81 | &7
138 18 | 22 | 49 | 76 | 104 | 111
PQO=| 15 | 42 | 48 | 73 | 100 | 106 | 134
38 | 45 | 72 | 99 124|130 10
61 | 68 | 96 | 123 129| 7 | 34
64 | 91 (119|147 | 6 | 33 | 58

90 | 117144 | 1 | 28 | 55 | 83
113141 21 | 27 | 52 | 79 | &5
136 | 17 | 24 | 51 | 78 | 103 | 109
PR=| 13 | 40 | 47 | 75 | 102|108 | 133
37 | 43 | 70 | 98 | 126|132 | 12
63 | 67 | 94 | 121 128| 9 | 36
66 | 93 | 118 |145| 4 | 32 | 60

89 | 116|143 | 3 | 29 | 56 | 82
112 (140| 20 | 26 | 54 | 80 | 86
137 16 | 23 | 50 | 77 | 105 | 110
OR=| 14 | 41 | 46 | 74 | 101 | 107 | 135
39 | 44 | 71 | 97 | 125|131 | 11

62 | 69 | 95 | 122|127| 8 | 35

65|92 120|146 | 5 | 31 | 59

5. Miscellany and unsolved problems
Here are some ad hoc examples:

Example 5.1. Modifying a 3 x 3 magic square we get a Carte-
sian bi-magic labeling for the (1,2,3)-board whose correspond-
ing labeling matrix is

* |1 215 11 4 23
1|« |6 7 9 23
2 % x [ 10 3 8 23
516 10 * % 21
11|17 3 * % 21
4 19 8 * % 21

Example 5.2. A Cartesian tri-magic labeling for the (1,3,3)-
board whose corresponding labeling matrix is

* |10 13 7 (12 4 8 54
10 « = x| 1 6 15 32
13 «  * % 3 11 5 32
71 *x x |14 9 2 32
1211 3 14 % % % 30
4 16 11 9 | % x = 30
8115 5 2| x x % 30

Example 5.3. A Cartesian tri-magic labeling for the (2,3,3)-
board whose corresponding labeling matrix is

3M; ;— B; ;, and (QR);.; = 3M; ; — C; ;. Thus, * % [ 14 11 12|21 17 18 93
b (QR):, o x % |13 15 10|16 19 20 93
{(PQ)ij,(PR):;,(OR)i;:i,j € [1,p]} 4 13| + * =« |4 2 7 40

= {(3M;; —k:i.j€[1,p],k€[0,2]} = [1,3p%. IS s w1 356 40
(3Myy—k:i.j €1, plk € 0,2]} = 1,357 oIsx v 356 ] 40
In addition, note that each row sum and each column sum 21 16| 4 3 8 * % % 52
is equal to 3p(p? +1)/2 — p. Hence, the (p, p, p)-board is 17 1912 5 9| % % x 52
Cartesian magic with m = 3p(p? + 1)—2p. O 18 2007 6 1 | x x «x 52

1184 r\c



It is well known that magic rectangles and magic squares
have wide applications in experimental designs [8—10]. Thus,
results on Cartesian magicness can be potential tools for use
in situations yet unexplored. We end this paper with the
following open problems and conjectures.

Problem 5.4. Characterize Cartesian tri-magic (1,r,r)-boards
forr > 4.

Problem 5.5. Characterize Cartesian tri-magic (p, p,r)-boards

forr > p where p is odd, p > 3 and r is even.

Problem 5.6. Characterize Cartesian tri-magic (p,r,r)-boards
for r > p where pis even, p > 2 and r is odd.

Problem 5.7. Characterize Cartesian tri-magic (p,q,r)-boards

forr>q > p > 2 where exactly two of the parameters are
even.

Conjecture 5.8. Almost all (p,q,r)-boards are Cartesian bi-
magic.

Conjecture 5.9. Almost all (p,q,r)-boards are not Cartesian
magic.

Finally, we may say a (p, g, r)-board is Pythagorean magic
if {c1,c2,c3} is a set of Pythagorean triple. Thus, both (1, 1, 1)-
and (1,1,2)-boards are Pythagorean magic. The study of
Pythagorean magic is another interesting and difficult research
problem.
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