

https://doi.org/10.26637/MJM0803/0081

A note on pre generalized b-closed set

J.B. Toranagatti*

Abstract

In this paper, we show that some results obtained in [S. Sekar and R. Brindha, On Pre Generalized B-Closed Set In Topological Spaces, Int. J. Pure Appl. Math., 111(4)(2016),577-586] are incorrect in general,by giving counter examples. Also, we illustrate that Example 3.5,Example 3.13, Example 3.15 and Example 3.17 are incorrect. Moreover, the correction form of the incorrect results of [13] is presented. Finally, we established that the concepts of b-closed sets and pgb-closed sets are same.

Keywords

pg-closed sets, $g\alpha$ b-closed sets, pgb-closed sets, rgb-closed sets, b-closed sets.

AMS Subject Classification

54A05.

Department of Mathematics,Karnatak University's Karnatak College, Dharwad-580001, India.

*Corresponding author:jagadeeshbt2000@gmail.com

Article History: Received 24 March 2020; Accepted 12 July 2020

Contents

1	Introduction1200
2	Preliminaries 1200
3	Counter Examples 1201
4	Corrected Results1201
	References

1. Introduction

The concept of b-open set in topological spaces was introduced in 1996 by Andrijevic [2]. Many results had been obtained by using the concept of b-open sets. Also, S. Sekar and R.Brindha [13] discussed and established the concept of pre generalized b-closed sets as a generalization of b-closed sets.

But we observe that some results made in [13] are incorrect.So the aims of this work are, first, to point out that Example 3.5, Example 3.13, Example 3.15 and Example 3.17 of [13] are incorrect, by giving illustrative examples. Second, to show some errors in[Theorem 3.9,Theorem 3.14, Theorem 3.16, Theorem 4.1, Theorem 4.3 and Theorem 4.6] in [13], by presenting examples and then we give corrected form of these results. Finally, to conclude that the notions of b-closed set, $g\alpha$ b-closed set and pgb-closed set are same. This implies that all results in [13–15] are considered as the same well-known results.

2. Preliminaries

©2020 MJM

Definition 2.1. A subset M of a space (X, τ) is said to be:

(1) pre-closed [11] if $cl(int(M)) \subseteq M$

(2) β -closed [3](=semi-preclosed[1]) if int(cl(int(M))) $\subseteq M$.

(3) α -closed [12] if $cl(int(cl(M))) \subseteq M$

(4) g-closed[8] if $cl(M) \subseteq O$ whenever $M \subseteq O$ and O is open in (X, τ) .

(5) rgb-closed[10] if $bcl(M) \subseteq O$ whenever $M \subseteq O$ and O is regular open in (X, τ) .

(6) pg-closed[9] if $pcl(M) \subseteq O$ whenever $M \subseteq O$ and O is pre-open in (X, τ) .

(7) $g\alpha b$ -closed[15] if $bcl(M) \subseteq O$ whenever $M \subseteq O$ and O is α -open in (X, τ)

(8) pgb-closed[13] if $bcl(M) \subseteq O$ whenever $M \subseteq O$ and O is preopen in (X, τ) .

Lemma 2.2. In (X, τ) , let $p \in X$ and $M \subseteq X$. Then (a)[6] each $\{p\}$ is pre-open or nowhere dense. (b)[5] If $\{p\}$ is nowhere dense, then $\{p\}$ is α -closed and thus semi-closed, preclosed and β -closed. (c)[4] $p \in bcl(M)$ if and only if $M \cap U \neq \phi$ for every b-open

(c)[4] $p \in bcl(M)$ if and only if $M \cap U \neq \varphi$ for every b-open set U containing p.

Example 2.3. (*Example 3.5[13]:The converse of theorem* (3.4) *is not true*). Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}$ be a topological space on $X = \{a, b, c\}$.

The set $\{a,c\}$ is pgb-closed set but it is not a b-closed set.

Example 2.4. (*Example 3.13[13]:The converse of theorem* (3.12) *is not true*). Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}\}$ be a space on $X = \{a,b,c\}$.

The set $\{a\}$ *is pgb-closed set but it is not a* $g\alpha b$ *-closed set.*

Example 2.5. (*Example 3.15[13]:The converse of theorem* (3.14) *is not true*) Let $\tau = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}$ be a space on $X = \{a, b, c\}$. The set $\{a\}$ is pgb-closed set but not a rgb-closed set.

Example 2.6. (*Example 3.17[13]* :The converse of theorem (3.16) is not true). Let $\tau = \{X, \phi, \{a,b\}\}$ be a topological space on $X = \{a,b,c\}$.

The set $\{a,b\}$ *is pg-closed set but it is not a pgb-closed set.*

3. Counter Examples

In this section, we point out where the errors occur in [13] and then give counter examples to confirm our claim.

Remark 3.1. (1)Consider (X, τ) as in Example 3.5 of [13]. Let $M = \{a, c\}$. Then $int(cl(M)) \cap cl(int(M)) = \{a\} \cap \{a\} = \{a\} \subseteq \{a, c\}$. Therefore M is b-closed. (2)Consider (X, τ) as in Example 3.13 of [13]. Let $N = \{a\}$, $bcl(N) = \{a\} \subseteq \{a\}$, $\{a, b\}$ which are α -open sets containing N. Therefore N is $g\alpha b$ -closed. (3)Consider (X, τ) as in Example 3.15 of [13]. Let $P = \{a\}$, $bcl(P) = \{a\} \subseteq \{a\}$ which is regular-open set containing P.Therefore P is rgb-closed. (4) Consider (X, τ) as in Example 3.17 of [13].

Set $Q = \{a,b\}$, pcl(Q) = X which is not a subset of preopen set $\{a,b\} \supseteq Q$. Therefore Q is not pg-closed.

Theorem 3.2. [13]

(1)[Theorem 3.9]:Every g-closed set is pgb-closed.
(2)[Theorem 3.14]:Every rgb-closed set is pgb-closed.
(3)[Theorem 3.16]:Every pgb-closed set is pg-closed.
(4)[Theorem 4.1]:If A and B are pgb-closed sets in X then A∪B is pgb-closed set in X.

(5)[Theorem 4.3]:The intersection of any two subsets of pgbclosed sets in X is pgb-closed set in X.

(6)[Theorem 4.6]: If A is both pre-open and pgb-closed, then A is pre-closed.

Example 3.3. Consider (X, τ) where $X = \{u, v, w, x\}$ and $\tau = \{X, \phi, \{u\}, \{v\}, \{u, v\}, \{u, w\}, \{u, v, w\}\}$.then we have $PO(X) = \{X, \phi, \{u\}, \{v\}, \{u, v\}, \{u, w\}, \{u, v, w\}, \{u, v, x\}\}$ BC(X) = $\{X, \phi, \{v\}, \{w\}, \{x\}, \{u, w\}, \{v, w\}, \{v, x\}, \{u, w, x\}, \{v, w, x\}\}$

 $GC(X) = \{X, \phi, \{x\}, \{u,x\}, \{v,x\}, \{w,x\}, \{u,v,x\}, \{u,w,x\}, \{v,w,x\}\}$

 $PGC(X) = \{X, \phi, \{w\}, \{x\}, \{v,x\}, \{w,x\}, \{u,w,x\}, \{v,w,x\}\}$ $RGBC(X) = \{X, \phi, \{u\}, \{v\}, \{w\}, \{x\}, \{u,v\}, \{u,w\}, \{u,x\}, \{v,w\}, \{w,x\}, \{v,x\}, \{u,v,w\}, \{u,v,x\}, \{u,w,x\}, \{v,w,x\}\}$

 $PGBC(X) = \{X, \phi, \{v\}, \{w\}, \{x\}, \{u,w\}, \{v,w\}, \{w,x\}, \{v,x\}, \{u,w,x\}, \{v,w,x\}\}$

(1)Let $M = \{u, v, x\}$, then M is g-closed but it is not a pgbclosed set in (X, τ) . (2)Let $N = \{u\}$, then N is rgb-closed but not a pgb-closed set in (X, τ) .

(3)Let $L = \{v\}$, then L is pgb-closed but not a pg-closed set in (X, τ) .

(4)The sets $M = \{u, w\}$ and $N = \{v, w\}$ are pgb-closed sets but $M \cup N = \{u, v, w\}$ is not a pgb-closed set in (X, τ) .

(5)*The sets* $L = \{v, x\}$ *and* $M = \{u, x\}$ *are pgb-open sets but* $L \cap M = \{x\}$ *is not a pgb-open set in* (X, τ) .

(6)*The set* $\{v\}$ *is both pgb-closed and b-closed but it is not pre-closed in* (X, τ) .

4. Corrected Results

The following Theorem is the correction form of [Theorem 3.9, p. 580] in [13].

Theorem 4.1. The concept of g-closed set is independent of a pgb-closed set.

Example 4.2. Consider (X, τ) as in Example 3.3

(1)Let $M = \{v\}$. Then M is pgb-closed but not a g-closed set. (2)Let $N = \{u, v, x\}$. Then N is g-closed but not a pgb-closed set.

The following Theorem is the correction form of [Theorem 3.14, p. 581] in [13].

Theorem 4.3. Every pgb-closed set is rgb-closed but not conversely.

Proof. Let N⊆X be a pgb-closed set such that N ⊆ G where G is a regular open set in (X,τ) .Since every regular open set is preopen.Then bcl(N)⊆ G.This means that N is rgb-closed.

Example 4.4. Consider (X,τ) as in Example 3.3, let $M = \{u\}$, then M is rgb-closed but not a pgb-closed set in (X,τ) .

The following Theorem is the correction form of [Theorem 3.16, p.581] in [13].

Theorem 4.5. *Every pg-closed set is pgb-closed but not conversely.*

Proof. Let $N \subseteq X$ be a pg-closed set such that $N \subseteq G$ where G is a preopen set in (X,τ) . Since every preclosed set is b-closed it follows that $bcl(N) \subseteq pcl(N)$. Then $bcl(N) \subseteq pcl(N) \subseteq G$, in consequence, N is pgb-closed.

Example 4.6. Consider (X, τ) as in Example 3.3, let $N = \{v\}$. Then N is pgb-closed but not a pg-closed set in (X, τ) .

The following Theorem is the correction form of [Theorem 4.6, p. 583] in [13].

Theorem 4.7. If *M* is both preopen pgb-closed set, then it is *b*-closed.

The following Theorem is the correction form of [Theorem 4.1, p. 582] in [13].

Remark 4.8. *The union of any two pgb-closed sets need not be pgb-closed.*

Example 4.9. Consider (X, τ) as in Example 3.3. Then the sets $M = \{u, w\}$ and $N = \{v, w\}$ are pgb-closed but $M \cup N = \{u, v, w\}$ is not a pgb-closed set in (X, τ) .

The following Theorem is the correction form of [Theorem 5.2, p. 583] in [13].

Remark 4.10. The intersection of any two pgb-open sets need not be pgb-open.

Example 4.11. Consider (X, τ) as in Example 3.3 Then the sets $C = \{v, x\}$ and $D = \{u, x\}$ are pgb-open sets but $C \cap D = \{x\}$ is not a pgb-open set in (X, τ) .

Theorem 4.12. Let (X, τ) be a topological space and $N \subseteq X$. Then the following statements are equivalent:

(i) N is pgb-closed.

(ii) N is $g\alpha b$ -closed.

(iii) N is b-closed.

Proof. (i) \Rightarrow (ii) Since all α -open set is preopen, then all pgbclosed set is a g α b-closed set.

 $\label{eq:abclosed} \begin{array}{l} (ii){\Rightarrow}(iii){:}Let\;N\subseteq X \; be\;g\alpha b\text{-closed set and}\; u\in bcl(N). To\\ prove \; that\; u\in N. \end{array}$

By Lemma 2.9, $\{u\}$ is either pre-open or nowhere dense.

(a)If {u} is pre-open which implies {u} is b-open. Then {u} $\cap N \neq \phi$ and hence by Theorem 2.11, $u \in N$.

(b)If {u} is nowhere dense. Then by Lemma 2.10, {u} is α -closed. Hence X-{u} is α -open. Suppose that $u \notin N$, then $N \subseteq (X-\{u\})$ and since N is $g\alpha$ b-closed, then we have $bcl(N)\subseteq(X-\{u\})$. Thus $u \notin bcl(N)$ which is a contradiction and hence $u \in N$. Therefore $bcl(N)\subseteq N$, in consequence, N is b-closed. (iii) \Rightarrow (i):Obvious

References

- D. Andrijivic, On semi pre open sets, *Mat. Vesnic*, 38(1986), 24–32.
- [2] D. Andrijivic, On b-open sets, *Mat. Vesnic*, 48(1996), 59–64.
- [3] M.E. Abd. El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12(1983), 77–90.
- [4] A.A. El-Atik, H.M. Abu Donia, A.S. Salama, On bconnectedness and b-disconnectedness and their applications, *J. Egyptian Math. Soc.*, 21(2013), 63–67.
- ^[5] J. Cao, M. Ganster, I. Reilly and M. Steiner, δ -closure, θ -closure and generalized closed sets, *Applied General Topology, Universidad Politecnica de Valencia*, 6(2005), 79–86.
- [6] D. Jankovic and I.L. Reilly, On semi-separation properties, *Indian J. Pure Appl. Math.*, 16(1985), 957–964.

- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70(1963), 36–41.
- [8] N. Levine, Generalized closed sets in topology, *Rent. Circ. Mat. Palermo*, 19(1970), 89–96.
- [9] H. Maki, J. Umehara, and T. Noiri, Every topological space is pre-T¹/₂, *Mem. Fac. Sci. Kochi Univ. Math.*, 17(1996), 33–42.
- ^[10] K. Mariappa and S. Sekar, On regular generalized bclosed sets, *Int. J. Math. Anal.*, 7(2013), 613–624.
- [11] A. S. Mashhour, M. E. Abd El-Monsef, and S. N. EL-Deeb,On pre-continuous and weak pre continuous mappings, *Proc. Math and Phys.Soc. Egypt*, (53)(1982), 47– 53.
- [12] O.Njastad, On some classes of nearly open sets, *Pacific. J. Math.*, (15)(1965), 961–970.
- [13] S. Sekar and R. Brindha, On pre generalized b-closed set in topological spaces, *Int. J. Pure Appl. Math.*, 111(2016), 577–586.
- [14] S. Sekar and R. Brindha, Almost contra pre generalized b-continuous functions in topological spaces, *Malaya J.Mat.*, 5(2017), 194–201.
- [15] L. Vinayagamoorthi and N. Nagaveni, On generalized αbclosed set, *Proceeding ICMD-Allahabad*, *Pusbha Publication*(1),(2011), 1–10.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******