

https://doi.org/10.26637/MJM0803/0084

On almost contra δgp -continuous functions in topological spaces

J.B.Toranagatti

Abstract

The aim of this paper is to introduce a new class of almost contra continuity. The notion of almost contra δ gp-continuous functions is introduced and studied.

Keywords

 δ gp-open set, δ gp-closed set,almost contra pre-continuous function,almost contra δ gp-continuous function.

AMS Subject Classification 54C08,54C10.

Department of Mathematics,Karnatak University's Karnatak College, Dharwad-580 001, India. Corresponding author: jagadeeshbt2000@gmail.com Article History: Received 29 November 2019; Accepted 14 July 2020

```
©2020 MJM.
```

Contents

1	Introduction
2	Preliminaries
3	Almost contra δ gp-continuous functions 1214
	References

1. Introduction

Recently, Baker(resp,Ekici,Balasubramanian and Laxmi) introduced and investigated the notions of almost contra continuity [3] (resp, almost contra pre-continuity[10] and almost contra gpr-continuity [4] as a continuation of research done by Dontchev(resp,S.Jafari and T.Noiri and P.Jeyalakshmi) on the notion of contra continuity [9] (resp,contra pre-continuity [16] and contra gpr-continuity [18].

In this paper, we offer a stronger form of almost contra gprcontinuity called almost contra δ gp-continuity. Also, some properties and characterizations of the said type of functions are investigated.

Throughout this paper, $(U,\tau), (V,\sigma)$ and (W,η) (or simply U,V and W) represent topological spaces on which no separation axioms are assumed unless explicitly stated and f: $(U,\tau) \rightarrow (V,\sigma)$ or simply f: $U \rightarrow V$ denotes a function f of a topological space U into a topological space V. Let $M \subseteq U$, then cl(M) = \cap {F: M \subseteq F and $F^c \in \tau$ } is the closure of M. Also,int(M) = \cup {O: O \subseteq M and O $\in \tau$ } is the interior of M. The class of δ gp-open (resp, δ gp-closed, open, closed, regular

open, regular closed, δ -preopen, δ -semiopen, e^* -open, preopen, semiopen, β -open and clopen) sets of (U,τ) is denoted by δ GPO(U) (resp, δ GPC(U), O(U), C(U), RO(U), RC(U), δ PO(U), δ SO(U), e^* O(U), PO(U), SO(U), β O(U) and CO(U)).

2. Preliminaries

Definition 2.1. A set $M \subseteq U$ is called δ -closed [36] if $M = cl_{\delta}(M)$ where $cl_{\delta}(M) = \{ p \in U : int(cl(G)) \cap M \neq \phi, G \in \tau \text{ and } p \in G \}$. The complement of a δ -closed set is called δ -open

Definition 2.2. A set $M \subseteq \bigcup$ is called pre-closed [21] (resp, *b*-closed [1], regular-closed [33], semi-closed [19] and α -closed [22] if $cl(int(M)) \subseteq M$ (resp, $cl(int(M)) \cap int(cl(M)) \subseteq M$, M = cl(int(M)), $int(cl(M)) \subseteq M$ and $cl(int(cl(M))) \subseteq M$).

Definition 2.3. A set $M \subseteq \bigcup$ is called δ -preclosed [27] (resp, e^* -closed [13], δ -semiclosed [26] and a-closed [14]) if $cl(int_{\delta}(M)) \subseteq M$ (resp,int($cl(int_{\delta}(M)) \subseteq M$, $int(cl_{\delta}(M)) \subseteq M$ and $cl(int(cl_{\delta}(M))) \subseteq M$).

Definition 2.4. A set $M \subseteq \bigcup$ is called:

(i) δ gp-closed [7] (resp, gpr-closed [15] and gp-closed [20]) if $pcl(M) \subseteq G$ whenever $M \subseteq G$ and G is δ -open (resp, regular open and open) in U.

(ii) $g\delta s$ -closed [5] if $scl(M) \subseteq G$ whenever $M \subseteq G$ and G is δ -open in U

Definition 2.5. A function $f:(U,\tau) \rightarrow (V,\sigma)$ is said to be: (i) almost contra continuous [3] (resp,contra R-map [11], δ -continuous [23], almost contra super-continuous [12], almost contra pre-continuous [10], almost contra gp-continuous, almost contra gpr-continuous [4] and almost contra $g\delta s$ continuous [6]) if $g^{-1}(N)$ is closed (resp. regular closed, δ open, δ -closed, pre-closed, gp-closed, gpr-closed and $g\delta s$ closed) in (X, τ) for every $N \in RO(Y)$.

(ii) contra continuous [9] (resp,contra pre-continuous [16], contra δ gp-continuous [35] and contra gpr-continuous [18]) if $g^{-1}(N)$ is closed (resp,pre-closed, δ gp-closed and gpr-closed) in U for every $N \in \sigma$.

(iii) perfectly-continuous [24] (resp, almost perfectly-continuous [29]) if $g^{-1}(N) \in CO(U)$ for every $N \in \sigma$ (resp,RO(V). (iv) R-map [8] if $g^{-1}(N) \in RO(U)$ for every $N \in RO(V)$

Definition 2.6. [34] A space U is called:

- (i) $T_{\delta gp}$ -space[7] if $\delta GPC(U)=C(U)$.
- (*ii*) $\delta gpT_{\frac{1}{2}}$ -space[7] if $\delta GPC(U)$)=PC(U).
- (*iii*) preregular $T_{\frac{1}{2}}$ -space[15] if GPRC(U)=PC(U)
- (iv) hyper connected [32] if every open set is dense.

3. Almost contra δgp-continuous functions

Definition 3.1. A function $f: U \to V$ is called almost contra δ gp-continuous if the inverse image of every regular open set of V is δ gp-closed in U.

Theorem 3.2. The following are equivalent for $f: U \to V$ (*i*) f is almost contra δ gp-continuous (*ii*) For every $M \in RC(V)$, $f^{-1}(M) \in \delta GPO(U)$.

Proof. Clear

Remark 3.3. From Definitions 2.5 and 3.1, we have the following diagram for a function $f: U \rightarrow V$:

$$1 \longrightarrow 2 \longrightarrow 3 \longrightarrow 4 \longrightarrow 5 \longrightarrow 6 \longrightarrow 7$$

$$\uparrow \\ 8$$

Notation: 1-contra R-map. 2-almost contra-super-continuous. 3-almost contra continuity. 4-almost contra pre continuity. 5- almost contra gp-continuity. 6-almost contra δ gp-continuity. 7-almost contra gpr-continuity. 8- contra δ gp-continuous. None of these implications is reversible.

Example 3.4. Consider (U, τ) and (V, η) where $U = \{p,q,r,s\}$ = V, $\tau = \{U, \phi, \{p\}, \{q\}, \{p,q\}, \{p,q,r\}\}$ and $\eta = \{V, \phi, \{p\}, \{q\}, \{p,q\}, \{p,r\}, \{p,q,r\}\}$. Define f: $(U,\tau) \rightarrow (V,\eta)$ by f(p) = f(r) = q, f(q) = p and f(s) = r. Clearly f is almost contra δ gp-continuous but for $\{q\} \in RO(V)$, $f^{-1}(\{q\}) = \{p,r\} \notin GPC(U)$. Therefore f is not almost contra

gp-continuous. Define $g: (U, \tau) \to (V, \eta)$ by g(p) = p, g(q) = s, g(r) = r and g(s) = q. Then g is almost contra δgp -continuous but for $\{u\} \in O(Y)$, $g^{-1}(\{p\}) = \{p\} \notin \delta GPC(U)$. Therefore g is not contra δgp -continuous. Define $h: U \to V$ by h(p)

= h(q) = q, h(r) = p and h(s) = r. Then h is almost contra gpr-continuous but for $\{q\} \in RO(V)$, $h^{-1}(\{q\}) = \{p,q\} \notin \delta GC(U)$. Therefore h is not almost contra δ gp-continuous

Definition 3.5. [17] A space \bigcup is called locally indiscrete if $O(\bigcup)=RO(\bigcup)$.

Theorem 3.6. Let V be a locally indiscrete space. Then every almost contra δgp -continuous function f: U \rightarrow V is contra δgp -continuous.

Proof. Let V be a locally indiscrete space.Let $B \in O(V)$,then $B \in RO(V)$.As f is almost contra δ gp-continuous, $f^{-1}(B) \in \delta$ GPC(U). Hence f is contra δ gp-continuous

Theorem 3.7. Let U be a locally indiscrete space, then the following statements are equivalent for any $M \subseteq U$:

- (i) M is gpr-closed.
- (ii) M is δgp -closed.
- (iii) M is gp-closed.

Proof. Follows from the Definition 3.5 As a consequence of Theorem 3.7, we have the following result \Box

Theorem 3.8. Let U be a locally indiscrete space, then the following properties are equivalent:

(i) $f: U \to V$ is almost contra gpr-continuous.

(ii) $f: U \to V$ is almost contra δgp -continuous.

(iii) $f: U \to V$ is almost contra gp-continuous.

Remark 3.9. almost contra δgp -continuity and almost contra $g\delta s$ -continuity are independent eachother.

Example 3.10. In Example 3.4, *f* is δ gp-continuous but it is not a contra δ gp-continuous

Example 3.11. Consider (U, τ) and (V, η) as in Example 3.4, Define $f: (U, \tau) \to (V, \eta)$ by f(p) = q, f(q) = s, f(r) = p and f(s) = r. Then f is almost contra $g\delta s$ -continuous but for $\{q\}$ $\in RO(V)$, $f^{-1}(\{q\}) = \{p\} \notin \delta GPC(U)$. Therefore f is not almost contra δgp -continuous

Example 3.12. Consider (U, τ) and (V, σ) where $U = \{p,q,r,s,t\}$, $V = \{a,b,c,d\}, \tau = \{U, \phi, \{p,q\}, \{r,s\}, \{p,q,r,s\}\}$ and $\sigma = \{V,\phi,\{a\},\{b\},\{a,b\}, \{a,c\}, \{a,b,c\}\}.$

Define $f: \cup \to V$ by f(p) = a, f(q) = d, f(r) = c and f(s) = b. *clearly f is almost contra* δ *gp-continuous but for* $\{a,c\} \in RO(V), f^{-1}(\{a,c\}) = \{p,r\} \notin \delta SC(\cup)$. Therefore f is not almost contra g δ s-continuous,

Theorem 3.13. [34] (1)In extremely disconnected space, every $g\delta s$ -closed set is δgp -closed.

(2)In strongly irresolvable space, every δ gp-closed set is g δ s-closed.

As a consequence of Theorem 3.13, we have the following Theorem.

Theorem 3.14. (1) Let U be extremely disconnected space, then (1) $f: U \to V$ is almost contra continuous. every almost contra $g\delta s$ -continuous function $f: U \to V$ is al-(2) $f: U \to V$ is almost contra pre-continuous. most contra δgp -continuous. (2) Let U be strongly irresolvable space. Then every almost (3) $f: U \to V$ is almost contra gp-continuous. contra δgp -continuous function f:U \rightarrow V is almost contra $g\delta s$ -continuous. (4) $f: U \to V$ is almost contra δgp -continuous. **Lemma 3.15.** [34] The following are equivalent for any M (5) $f: U \to V$ is almost contra gpr-continuous. \subseteq U: **Theorem 3.20.** The following properties are equivalent:. (1) M is clopen. (1) $f: U \to V$ is almost contra δgp -continuous. (2) *M* is open and pre-closed. (2) for every $M \in \beta O(V)$, $f^{-1}(cl(M)) \in \delta GPO(U)$. (3) *M* is open and gp-closed. (3) for every $M \in SO(V)$, $f^{-1}(cl(M)) \in \delta GPO(U)$. (4) *M* is δ -open and δ gp-closed. (4) for every $M \in PO(V)$, $f^{-1}(int(cl(M))) \in \delta GPC(U)$. (5) *M* is regular-open and gpr-closed. (5) for every $M \in O(V)$, $f^{-1}(int(cl(M))) \in \delta GPC(U)$. (6) *M* is regular-open and pre-closed. (6) for every $F \in C(V)$, $f^{-1}(int(cl(F))) \in \delta GPO(U)$ (7) *M* is δ -open and pre-closed. *Proof.* (1) \rightarrow (2) Let $M \in \beta O(V)$, then $cl(M) \in RC(V)$. Then **Theorem 3.16.** *The following statements are equivalent:* by (1), $f^{-1}(cl(M))$ is δ gp-open in U. $(2) \rightarrow (3)$ Obvious. (1) $f: U \to V$ is almost perfectly continuous. $(3) \rightarrow (4)$ Let $M \in PO(V)$. Then $V \setminus int(cl(M))$ is regular closed and hence it is semi-open. By (3), $f^{-1}(cl(V \setminus int(cl(M)))) =$ (2) f: $U \rightarrow V$ is almost continuous and almost contra pre $f^{-1}(V \setminus int(cl(M)) = U \setminus f^{-1}(int(cl(M))) \in \delta GPO(U)$. Hence continuous. $f^{-1}(\operatorname{int}(\operatorname{cl}(\mathbf{M}))) \in \delta \operatorname{GPC}(\mathbf{U}).$ (3) f: $U \rightarrow V$ is almost continuous and almost contra gp- $(4) \rightarrow (1)$ Let $H \in RO(V)$. Then $H \in PO(V)$. By (4), $f^{-1}(H) =$ continuous. $f^{-1}(int(cl(H)))$ is δ gp-closed in U. (1) \rightarrow (5) Let H \in O(V). Since int(cl(H)) is regular open,by (4) f: $U \rightarrow V$ is δ -continuous and almost contra δ gp-continuous. (1), $f^{-1}(int(cl(G)))$ is δgp -closed in U. $(5) \rightarrow (1)$ Similar to $(1) \rightarrow (5)$ (5) f: $U \rightarrow V$ is R-map and almost contra gpr-continuous. $(1) \leftrightarrow (6)$ Similar to $(1) \leftrightarrow (5)$ (6) $f: U \rightarrow V$ is *R*-map and almost contra pre-continuous. **Lemma 3.21.** [25] the following properties hold for any M (7) f: $U \rightarrow V$ is δ -continuous and almost contra pre-continuous. \subset U: **Theorem 3.17.** Let \bigcup be a $\delta gpT_{\frac{1}{2}}$ -space. Then the following (1) $\alpha cl(M) = cl(M)$ for every $M \in \beta O(U)$. are equivalent: (2) pcl(M) = cl(M) for every $M \in SO(U)$. (1) $f: U \to V$ is almost contra pre-continuous. (3) scl(M) = int(cl(M)) for every $M \in PO(U)$. (2) $f: U \to V$ is almost contra gp-continuous. **Theorem 3.22.** The following statements are equivalent:. (3) $f: U \to V$ is almost contra δgp -continuous. (1) f: $U \rightarrow V$ is almost contra δgp -continuous. **Theorem 3.18.** Let \bigcup be a preregular $T_{\frac{1}{2}}$ -space. Then the (2) for every $A \in \beta O(V)$, $f^{-1}(\alpha cl(A)) \in \delta GPO(U)$. following statements are equivalent: (3) for every $A \in SO(V)$, $f^{-1}(pcl(A)) \in \delta GPO(U)$. (1) $f: U \to V$ is almost contra pre-continuous. (4) for every $A \in PO(V)$, $f^{-1}(scl(A))) \in \delta GPC(U)$. (2) $f: U \to V$ is almost contra gp-continuous. **Theorem 3.23.** [7] Let $M \subseteq \bigcup$. Then $p \in \delta gpcl(M)$ if and only (3) $f: U \to V$ is almost contra δgp -continuous. if $H \cap M \neq \Phi$ for every $H \in \delta GPO(U,p)$. *Recall that for a set* $M \subseteq U$, *rker*(M)= \cap { $G \in RO(U)$:M(4) $f: U \to V$ is almost contra gpr-continuous. $\subseteq G$ } where rker(M) is called the kernel of M [11]. **Theorem 3.19.** Let \bigcup be a $T_{\delta gp}$ -space. Then the following

Lemma 3.24. [11] For any sets $M, N \subseteq U$, the following hold:

are equivalent:

- (1) $p \in rker(M)$ if and only if $M \cap F = \phi$ for every $F \in$ RC(U,p)
- (2) $M \subseteq rker(M)$ and M = rker(M) if $M \in RO(U)$
- (3) If $M \subseteq N$, then $rker(M) \subseteq rker(N)$.

Definition 3.25. [34] A space \cup is called δ gp-additive if $\delta GPC(U)$ is closed under arbitrary intersections.

Theorem 3.26. *The following properties are equivalent:*

- (1) $f: U \to V$ is almost contra δgp -continuous and U is δgp additive.
- (2) For each $p \in U$ and each $N \in RC(V, f(p))$, there exists an $M \in \delta GPO(U,p)$ such that $f(M) \subseteq N$.
- (3) For each $p \in U$ and each $B \in SO(V, f(p))$, there exists an $A \in \delta GPO(U,p)$ such that $f(A) \subseteq cl(B)$.
- (4) $f(\delta gpcl(C)) \subseteq rker(f(C))$ for any $M \subseteq U$.
- (5) $\delta gpcl(f^{-1}(D)) \subseteq f^{-1}(rker(D))$ for any $any D \subseteq V$.

Proof. (1) \rightarrow (2)Let N \in RC(V) such that f(p) \in N, then p \in $f^{-1}(N)$. By hypothesis, $f^{-1}(N) \in \delta \text{GPO}(U)$. Set $M = f^{-1}(N)$, then $f(M)=f(f^{-1}(N)) \subseteq N$.

 $(2) \rightarrow (3)$ Let $B \in SO(V)$ such that $f(p) \in B$, then $cl(B) \in RC(V)$. By hypothesis, $f^{-1}(cl(B)) \in \delta GPO(U)$ and $p \in f^{-1}(cl(B))$. Set A = $f^{-1}(cl(B))$, then $f(A)=f(f^{-1}(cl(B))\subseteq cl(B))$.

(3) \rightarrow (4) Let C \subseteq U. Suppose p $\notin f^{-1}[rker(f(C))]$ which implies $f(p) \notin [rker(f(C))]$. Then by Lemma 3.24, there exists a $D \in RC(V, f(p))$ such that $f(C) \cap D = \phi$ which implies there exists a $D \in SO(V, f(p))$ such that $C \cap f^{-1}(D) = \phi$. Then by (3), there exists a $G_n \in \delta \text{GPO}(U)$ such that $f(G_n) \subseteq cl(D) =$ D. Hence $f(C \cap G_p) \subseteq f(C) \cap f(G_p) \subseteq f(C) \cap D = \phi$ which implies $C \cap G_p = \phi$. This shows that $p \notin \delta \operatorname{gpcl}(C)$.

 $(4) \rightarrow (5)$ Let $D \subseteq V$, then $f^{-1}(D) \subseteq U$. By (4) and Lemma 3.24, f (δ gpcl($f^{-1}(D)$)) \subseteq rker(f($f^{-1}(D)$)) \subseteq rker(D). Thus δ gpcl $(f^{-1}(D)) \subseteq f^{-1}($ rker(D)).

 $(5) \rightarrow (1)$: Let $H \in RO(V)$. Then by (5) and Lemma 3.24, $\delta \operatorname{gpcl}(f^{-1}(\mathrm{H}) \subseteq f^{-1}(\operatorname{rker}(\mathrm{H})) = f^{-1}(\mathrm{H})$ and hence $\delta \operatorname{gpcl}(f^{-1}(\mathrm{H}))$ = $f^{-1}(H)$. Since U is δ gp-additive, $f^{-1}(H) \in \delta$ GPO(U).

Theorem 3.27. The following properties are equivalent:.

- (a) $f: U \to V$ is almost contra δgp -continuous.
- (b) for every $N \in e^*O(V)$, $f^{-1}(cl_{\delta}(N)) \in \delta GPO(U)$.
- (c) for every $N \in \delta SO(V, f^{-1}(cl_{\delta}(N)) \in \delta GPO(U)$.
- (*d*) for every $N \in \delta PO(V, f^{-1}(int(cl_{\delta}(N))) \in \delta GPC(U)$.
- (e) for every $N \in O(V, f^{-1}(int(cl_{\delta}(N))) \in \delta GPC(U)$.
- (f) for every $N \in C(V, f^{-1}(int(cl_{\delta}(N))) \in \delta GPO(U)$.

Proof. Similar to the proof of Theorem 3.20

Lemma 3.28. [2] For a set $M \subseteq \bigcup$, the following properties hold:

- (*i*) a- $cl(M) = cl_{\delta}(M)$ for every $M \in e^*O(U)$.
- (*ii*) δ -pcl(M) = cl_{δ}(M) for every $M \in \delta SO(U)$.
- (*iii*) δ -scl(M) = int(cl_{δ}(M)) for every $M \in \delta PO(U)$.

Theorem 3.29. The following statements are equivalent:

- (i) $f: U \to V$ is almost contra δgp -continuous.
- (*ii*) for every $H \in e^*O(V)$, $f^{-1}(a\text{-}cl(H)) \in \delta GPO(U)$.
- (*iii*) for every $H \in \delta SO(V)$, $f^{-1}(\delta \operatorname{-pcl}(H)) \in \delta GPO(U)$.
- (iv) for every $H \in \delta PO((V), f^{-1}(\delta \operatorname{-scl}(H))) \in \delta GPC(U)$.

Definition 3.30. A function $f: U \rightarrow V$ is said to be weakly δgp continuous if for every open subset H of V, $f^{-1}(cl(H)) \in$ $\delta GPO(U)$.

Definition 3.31. [29] A space U is said to be endowed with an almost partition topology if RC(U)=O(U).

Theorem 3.32. Every almost contra δ gp-continuous function $f:(U,\tau) \rightarrow (V,\sigma)$ is weakly δgp -continuous.

If, in addition, σ is almost partition topology, then the converse of the above statement is true.

Proof. Let $H \in O(V)$, then $cl(H) \in RC(V)$. By hypothesis, $f^{-1}(cl(H))$ is δgp -open in U. Therefore f is weakly δgp continuous.

Conversely, let σ be almost partition topology and $N \in RC(V)$. Then $N \in O(V)$. The weakly δgp -continuity of f implies $f^{-1}(\operatorname{cl}(N)) = f^{-1}(N) \in \delta \operatorname{GPO}(U).$

- **Theorem 3.33.** (i) If $f: U \rightarrow V$ is almost contra δgp -continuous and g: $V \rightarrow W$ is contra R-map, then $(g \circ f): U \rightarrow W$ is almost contra δgp -continuous
- (ii) If f: $U \rightarrow V$ is contra δgp -continuous and g: $V \rightarrow W$ is almost continuous, then $(g \circ f): U \to W$ is almost contra δgp -continuous
- (iii) If f: $U \rightarrow V$ is δgp -irresolute and g: $V \rightarrow W$ is almost contra δgp -continuous,then $(g \circ f): U \to W$ is almost contra δgp -continuous

Proof. (i) Let $N \in RO(W)$. Then $g^{-1}(N) \in RO(V)$ since g is contra R-map. The almost contra δ gp-continuity of f implies $f^{-1}[g^{-1}(\mathsf{N}))] = (g \circ f)^{-1}((\mathsf{N})) \in \delta \text{GPC}(\mathsf{U}).$ Hence gof is almost contra δ gp-continuous.

The proofs of (ii) and (iii) are similar to (i).

Definition 3.34. [35] A function $f: U \to V$ is called pre δgp closed if $f(M) \in \delta GPC(V)$ for every $M \in \delta GPC(U)$.

Theorem 3.35. *Let* $f: U \rightarrow V$ *be pre* δ *gp-closed surjection and* g: $V \rightarrow W$ be a function such that gof: $U \rightarrow W$ is almost contra δgp -continuous, then g is almost contra δgp -continuous.

Proof. Let $B \in RO(W)$. Then $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$ is δgp -closed in U. As f is pre δgp -closed surjection,

 $f(f^{-1}(g^{-1}(B))) = (g)^{-1}(B)$ is δ gp-closed in V. Therefore g is almost contra δ gp-continuous.

Theorem 3.36. If the graph function $g: \bigcup \rightarrow \bigcup \times \lor \forall$ of $f: \bigcup \rightarrow \lor$, defined by g(p)=(p,f(p)) for each $p \in \bigcup$ is almost contra δ gp-continuous, then f is almost contra δ gp-continuous.

Proof. Let $N \in RO(V)$, then $U \times N \in RO(U \times V)$. The almost contra δ gp-continuity of g implies $f^{-1}(N) = g^{-1}(X \times N) \in \delta$ GPC(U). Therefore f is almost contra δ gp-continuous

Recall that for a function $f: U \rightarrow V$, the subset

$$G_f = \{(x,f(x)): x \in U\} \subset U \times V \text{ is said to be graph of } f. \square$$

Definition 3.37. A graph G_f of a $f: U \to V$ is said to be δ gp-closed graph if for each $(p,q) \notin G_f$, there exist $M \in \delta$ GPO(X,p) and $N \in O(V,q)$ such that $(U \times V) \cap G_f = \phi$.

As a consequence of Definition 3.37 and the fact that for any subsets $A \subseteq U$ and $B \subseteq V$, $(A \times B) \cap G_f = \phi$ if and only if $f(A) \cap B = \phi$, we have the following result.

Lemma 3.38. For a graph G_f of a $f: U \to V$, the following statements are equivalent:

(1) G_f is δgp -closed in $U \times V$

(2)For each $(p,q) \notin G_f$, there exist $M \in \delta GPO(\bigcup,p)$ and $N \in O(\bigcup,q)$ such that $f(M) \cap N = \phi$.

Definition 3.39. A space \bigcup is called δgp - T_1 space if for any pair of distinct points p and q, there exist $G, H \in \delta GPO(\bigcup)$ such that $p \in G$, $q \notin G$ and $q \in H$, $p \notin H$.

Theorem 3.40. If $f: \cup \rightarrow \lor$ has a δgp -closed graph G_f . Then \cup is δgp - T_1 if f is injective.

 $\begin{array}{l} \textit{Proof.} \ \text{Let } f \text{ be an injection and } x_1, x_2 \in U \text{ with } x_1 \neq x_2. \text{Then } \\ f(x_1) \neq f(x_2) \text{ so that } (x_1, f(x_2)) \notin G_f. \text{By theorem , there exist } \\ M \in \delta \text{ GPO}(U, x_1) \text{ and } N \in O(V, f(x_2)) \text{ such that } f(M) \cap N = \\ \phi. \text{Then } f(x_2) \notin f(M) \text{ implies } x_2 \notin M \text{ and it follows that } U \text{ is } \\ \delta \text{gp-}T_1. \qquad \Box \end{array}$

Theorem 3.41. If $f: U \to V$ has a δgp -closed graph G_f . Then V is T_1 if f is surjective.

Proof. Let f be a surjection and $y_1, y_2 \in V$ with $y_1 \neq y_2$. Then $f(p) = y_2$ for some $p \in U$ and $(p, y_2) \notin G_f$. By Lemma 4.14, there exist $M \in \delta$ GPO(U,p) and $N \in O(V, y_1)$ such that $f(M) \cap N = \phi$. It follows that $y_2 \notin N$. Hence V is T_1 . \Box

Corollary 3.42. *If* $f: U \to V$ has a δgp -closed graph G_f . *If* f *is bijective, then both* U *and* U *are* δgp - T_1

Proof. Follows from Theorems 3.40 and 3.41

Definition 3.43. [30] A space \cup is said to be weakly Hausdorff if every point of \cup is expressed by the intersection of regular closed sets of of \cup

Theorem 3.44. If an injective $f: \cup \rightarrow \lor$ is almost contra δgp -continuous and \lor is weakly Hausdorff, then \bigcup is δgp - T_1 .

Proof. Let V be weakly Hausdorff and $p,q \in V$ with $p \neq q$. Then there exist A and $B \in RC(V)$ such that $f(p) \in A$, $f(q) \in B$ and $A \cap B = \phi$. The almost contra δ gp-continuity of f implies $f^{-1}(A)$ and $f^{-1}(B) \in \delta$ GPO(U) such that $p \in f^{-1}(A)$, $q \in f^{-1}(B)$ and $f^{-1}(A) \cap f^{-1}(B) = \phi$. This shows that U is δ gp-T₁.

Definition 3.45. A space U is said to be:

(i) δgp -connected [35] if U is not the union of two disjoint non empty δgp -open sets.

(ii) δ gp-ultra connected if every two non-void δ gp-closed subsets of U intersect.

Theorem 3.46. If a surjective $f: U \to V$ is almost contra δgp -continuous.Then

(1)V is connected if U is δgp-connected.
(2) V is hyper connected if U is δgp-ultra connected.

Proof. (1) On the contrary assume that V is not a connected space, then their exist $P(\neq \phi)$ and $Q(\neq \phi) \in O(V)$ such that $P \cap Q = \phi$ and $V = P \cup Q$. Also, P and $Q \in CO(V)$. Since f is almost contra δ gp-continuous, $f^{-1}(P)$, $f^{-1}(Q) \in \delta$ GPO(U), $f^{-1}(P) \cap f^{-1}(Q) = \phi$ and $U = f^{-1}(P) \cup f^{-1}(Q)$. This shows that U is not δ gp-connected. (2) Similar to (1)

Definition 3.47. A space U is called:

(*i*)[31]ultra Hausdorff if for each $p,q \in U$ with $p \neq q$, there exist disjoint clopen sets A and $B \in CO(U)$ such that $p \in A$, $q \in B$ and $A \cap B = \phi$.

(ii)[35] δ gp-Hausdroff if for each $p,q \in U$ with $p \neq q$, there exist disjoint clopen sets A and $B \in \delta$ GPO(U) such that $p \in A$, $q \in B$ and $A \cap B = \phi$

Theorem 3.48. If an injective $f: U \rightarrow V$ is almost contra δgp -continuous and V is ultra Hausdorff, then U is δgp -Hausdroff.

Proof. Let f be injective and and $p,q \in V$ with $p \neq q$. Then $f(p) \neq f(q)$. Since V is ultra Hausdorff, there exist M and $N \in CO(V)$ such that $p \in M$, $q \in N$ and $M \cap N = \phi$. The almost contra δ gp-continuity of f implies $f^{-1}(M)$ and $f^{-1}(N) \in \delta$ GPO(U) such that $p \in f^{-1}(M)$ and $q \in f^{-1}(N)$ and $f^{-1}(M) \cap f^{-1}(N) = \phi$. Hence U is δ gp-Hausdroff \Box

Definition 3.49. A space U is called:

(i)[31] Ultra normal if every pair of disjoint closed sets can be separated by disjoint clopen sets.

(ii) δ gp-normal if every pair of disjoint closed sets can be separated by disjoint δ gp-open sets.

Theorem 3.50. If $f: U \to V$ is almost contra δgp -continuous closed injection and V is ultra normal, then U is δgp -normal.

Proof. Let f be a closed injection and E, F ∈ C(U) with E ∩ F = φ. Then f(E), f(F) ∈ C(V) and f(E)∩f(F) = φ. Since V is ultra normal, there exists disjoint clopen sets M and N in V such that f(E) ⊂ M and f(F)⊂ N. This implies E ⊂ $f^{-1}(M)$ and F ⊂ $f^{-1}(N)$. Since f is an almost δgp-continuous injection, $f^{-1}(M)$ and $f^{-1}(N) ∈ \delta$ GPO(U) such that $f^{-1}(M) ∩ f^{-1}(N) = φ$. Therefore U is δgb-normal.

References

- ^[1] D.Andrijivic, On b-open sets,*Mat. Vesnic*, (48)(1996), 59–64.
- [2] B. S. Ayhan and M. Ozkoc,On almost contra e^{*}θcontinuous functions,*Jordan Journal of Mathematics and Statistics*,(11)(2018),383–408.
- [3] C.W.Baker,On contra almost β-continuous functions in topological spaces,*Kochi J.Math.*,(1)(2006),1–8.
- [4] S.Balasubramanian and M. Laxmi Sarada, Almost contragpr-continuity, *Int. J. Math. Engin. Science*, (1)(2012), 1–8.
- ^[5] S.S.Benchalli and Umadevi Neeli,Generalized δ semi closed sets in topological spaces,*Int.J. Appl. Math.*,(24)(2011), 21–38.
- [6] S.S.Benchalli, Umadevi Neeli and G.P.Siddapur, Almost contra gδs-continuous functions in topological spaces, J. Adv. Stud. Topol., (24) (2011), 21–38.
- [7] S.S.Benchalli and J.B.Toranagatti, Delta generalized pre-closed sets in topological spaces,*Int.J.Contemp.Math.Sciences*,(11)(2016), 281–292.
- D. A. Carnahan, Some properties related to compactness in topological spaces, *University of Arkansas*, (1973), Ph.D Thesis.
- [9] J. Dontchev, Contra continuous functions and strongly S-closed mappings, *Int. J. Math. Sci.*, (19)(1996), 303–310.
- ^[10] E.Ekici, Almost contra-precontinuous functions, *Bull. Malaysian Math.Sci.Soc.*, (27)(2006), 53–65.
- ^[11] E.Ekici,Another form of contra-continuity,*Kochi J.Math.*,(1)(2006),21–29.
- ^[12] E.Ekici, Almost contra-super-continuous functions, *Stud. Cere. St. Ser.Mat. Univ. Bacau*, (14)(2004), 31–42.
- ^[13] E.Ekici,On e^* -open sets and $(D,S)^*$ -sets and decompositions of continuous functions,*Mathematica Moravica*,(13)(2009),29–36.
- [14] E. Ekici, On a-open sets, A*-sets and decompositions of continuity and supercontinuity, Ann. Univ. Sci. Budapest. Eotvos Sect. Math., (51)(2008), 39–51.
- [15] Y.Gnanambal,On generalized pre-regular closed sets in topological spaces,*Indian. J. pure appl. Math.*, (28)(1997), 351–360.
- [16] S.Jafari and T.Noiri,On contra pre continuous functions. Bulletin of the Malaysian Mathematical Sciences Society, (25)(2002),115–128.
- [17] D.S.Jankovic, On locally irreducible spaces, *Ann. Soc. Sci. Bruxelles Sér. I*, (97)(1983), 59—72.
- ^[18] P.Jeyalakshmi,Some properties of contra gpr-continuous maps,*Int. J.Math.Appl.*,(5)(2017), 203–208.
- ^[19] N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, (70)(1963), 36–41.
- [20] H. Maki, J. Umehara and T. Noiri, Every topological space is pre-T₁, Mem. Fac. Sci. Kochi Univ. Math., (17)(1996), 33–42.
- ^[21] A. S. Mashhour, M. E. Abd El-Monsef and S. N. EL-Deeb,On pre-continuous and weak pre continuous map-

pings, Proc. Math and Phys. Soc. Egypt, (53)(1982), 47–53.

- [22] O. Njastad, On some classes of nearly open sets, *Pacific. J. Math.*, (15)(1965), 961–970.
- ^[23] T. Noiri, On δ -continuous functions, *J. Korean Math. Soc.*, (16)(1980), 161–166.
- [24] T.Noiri, Super-continuity and some strong forms of continuity, *Indian. J. Pure Appl. Math.*, (15)(1984), 241–250.
- ^[25] T.Noiri, Almost continuous functions,*Indian. J. Pure Appl. Math.*,(20)(1989),571–576.
- [26] J. H. Park, B. Y. Lee and M. J. Son, On δ -semiopen sets in topological space, *J. Indian Acad. Math.*, (19)(1)(1997), 59–67.
- ^[27] S. Raychaudhuri and M. N. Mukherjee, On δ -almost continuity and δ -preopen sets, *Bull. Inst. Math. Acad. Sinica*, (21)(1993), 357–366.
- ^[28] M.K.Singal and A.R.Singal,Almost continuous mappings,*Yokohama Math.J.*,(16)(1968), 63–73.
- ^[29] D.Singh,Almost perfectly continuous functions,*Quaest.Math.*, (33)(2010), 1–11.
- [30] T. Soundararajan, Weakly Hausdorff spaces and the cardinality of topological spaces General topology and its relations to modern analysis and algebra, *in: Proceedings Conference Kanpur*. 1968. Academy prague, (1971), 301– 306.
- [31] R.Staum, The algebra of bounded continuous functions into a non-archimedean field, *Pacific* J.Math., (50)(1974), 169–185
- ^[32] L.A.Steen and J.A.Seebach, Counter examples in topology, *Holt, Rinehart and Winston, New York*, 1970.
- [33] M.Stone, Application of the theory of Boolean rings to general topology, *Trans. Amer. Math.soc*, (41)(1937), 371– 381
- [34] J.B.Toranagatti,Delta generalized pre-continuous functions in topological spaces,*Int.J. Pure Appl. Math.*,(116)(2017), 829–843.
- [35] J.B.Toranagatti,On contra delta generalized precontinuous functions,*Int. J. Sci. Res. Math. Stat. Sci.*,(5)(2018), 283–288.
- ^[36] N.V.Veličko, H-closed topological spaces, *Amer.Math.Soc.Transl.*, (78)(1968),103–118.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******