k-Lehmer three mean labeling of some graphs

M.J. Abisha ${ }^{1 *}$ and K. Rubin Mary ${ }^{2}$

Abstract

A function h is called k - Lehmer-3 mean graph G with r vertices and s edges, if it is possible to label the vertices $v \in V$ with distinct labels $h(x)$ from $k, k+1, k+2, \ldots, k+s$ in such a way that each edge $e=x y$ is labeled with $h(e)=\left\lceil\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rceil$ (or) $\left\lfloor\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rfloor$ then the edge labels are distinct.In this paper we proved k-Lehmer-three mean labeling of some standard graphs.

Keywords

Lehmer three mean labeling, k- Lehmer three mean labeling, path, comb, caterpillar, kite.
AMS Subject Classification
05C78.
${ }^{1}$ Research Scholar, Reg No:19113232092003, Department of Mathematics, St Jude's College, Thoothoor-629176, Tamil Nadu, India.
${ }^{2}$ Department of Mathematics, St Jude's College, Thoothoor-629176, Tamil Nadu, India.
Affliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.
*Corresponding author: ${ }^{1}$ abisharejeesh@gmail.com; ${ }^{2}$ rubyjudes@yahoo.com
Article History: Received 08 April 2020; Accepted 19 July 2020

Contents

1 Introduction 1219
2 Preliminaries 1219
3 Main Theorem 1219
4 Conclusion 1221
References 1221

1. Introduction

Graphs described here is simple, undirected and connected graphs.Let $\mathrm{V}(\mathrm{G})$ and $\mathrm{E}(\mathrm{G})$ be stated as the vertex and edge set of graph G.We refer Gallian for more comprehensive survey [1].We follow Harrary for some standard words, expressions and symbols[2], The concept and notation of mean labeling was first introduced by S somasundaram and R Ponraj[3].S Somasundaram,S S Sandya and T Pavithra introduced the concept of Lehmer three mean graph [4]. Here we investigating some more standard graphs in K-Lehmer three mean graphs.

2. Preliminaries

Definition 2.1. Let G be a (r, s) graph.A function h is called Lehmer three mean labeling of graph G, if it is possible to label the vertices $v \in V$ with distinct labels $h(x)$ from $1,2,3, \ldots, s+$ 1 in such a way that each edge $e=x y$ is labeled with $h(e)=$ $\left\lceil\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rceil$ (or) $\left\lfloor\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rfloor$ then the edge labels are dis-
tinct. A graph which admits a Lehmer three mean labeling is called Lehmer three mean graph.

Definition 2.2. Let G be a (r, s) graph.A function h is called k Lehmer three mean labeling of graph G, if it is possible to label the vertices $v \in V$ with distinct labels $h(x)$ from $k, k+1, k+$ $2, \ldots, k+s$ in such a way that each edge $e=x y$ is labeled with $h(e)=\left\lceil\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rceil$ (or $\left\lfloor\frac{h(x)^{3}+h(y)^{3}}{h(x)^{2}+h(y)^{2}}\right\rfloor$ then the edge labels are distinct.A graph which admits a k-Lehmer three mean labeling is called k-Lehmer three mean graph.

3. Main Theorem

Theorem 3.1. The path P_{n} is k-Lehmer three mean graph for all k and $n \geq 2$.

Proof. Let $V\left(P_{n}\right)=\left\{v_{j}, 1 \leq j \leq n\right\}$ and
$E\left(P_{n}\right)=\left\{e_{j}=\left(v_{j}, v_{j+1}\right) ; 1 \leq j \leq n-1\right\}$
We define $h: V\left(P_{n}\right) \rightarrow\{k, k+1, k+2, \ldots, k+s\}$ by

$$
h\left(v_{j}\right)=k+j-1 \quad 1 \leq j \leq n
$$

Then edge labels are

$$
h^{*}\left(e_{j}\right)=k+j-1 \quad 1 \leq j \leq n-1
$$

Hence path is k-Lehmer three mean graph.
Example 3.2. 50-Lehmer three mean labeling of P_{7}.

Theorem 3.3. A comb $P_{n} \odot K_{1}$ is a k-Lehmer three mean graph.

Proof. Let $V\left(P_{n} \odot K_{1}\right)=\left\{u_{j} v_{j}, 1 \leq j \leq n\right\}$ and $E\left(P_{n} \odot K_{1}\right)=\left\{u_{j}, u_{j+1} ; 1 \leq j \leq n-1\right\} \cup\left\{u_{j} v_{j}, 1 \leq j \leq n\right\}$
We define $h: V\left(P_{n}\right) \rightarrow\{k, k+1, k+2, \ldots, k+s\}$ by

$$
\begin{array}{ll}
h\left(u_{j}\right)=k+2 j-2 & 1 \leq j \leq n \\
h\left(v_{j}\right)=k+2 j-1 & 1 \leq j \leq n
\end{array}
$$

Then edge labels are

$$
\begin{array}{cc}
h^{*}\left(u_{j}, u_{j+1}\right)=k+2 j-1 & 1 \leq j \leq n-1 \\
h^{*}\left(u_{j}, v_{j}\right)=k+2 j-2 & 1 \leq j \leq n-1
\end{array}
$$

Hence $P_{n} \odot K_{1}$ is k-Lehmer three mean graph.
Example 3.4. 20-Lehmer three mean labeling of $P_{6} \odot K_{1}$.

Theorem 3.5. A graph G obtained with pendant edges attached to both sides of each vertex of P_{n}. Then G is k-Lehmer- 3 mean graph.

Proof. A graph G obtained with pendent edges to both sides of each vertex of P_{n}.
We define $h: V(G) \rightarrow\{k, k+1, k+2, \ldots, k+s\}$ by

$$
\begin{array}{ll}
h\left(u_{j}\right)=k+3 j-3 & 1 \leq j \leq n \\
h\left(v_{j}\right)=k+3 j-2 & 1 \leq j \leq n \\
h\left(w_{j}\right)=k+3 j-1 & 1 \leq j \leq n
\end{array}
$$

Then edge labels are

$$
\begin{aligned}
h^{*}\left(u_{j}, u_{j+1}\right) & =k+3 j-1 & & 1 \leq j \leq n-1 \\
h^{*}\left(u_{j}, v_{j}\right) & =k+3 j-3 & & 1 \leq j \leq n \\
h^{*}\left(u_{j}, w_{j}\right) & =k+3 j-2 & & 1 \leq j \leq n
\end{aligned}
$$

Hence caterpillar is k-Lehmer three mean graph.
Example 3.6. 100-Lehmer three mean labeling of caterpillar.

Theorem 3.7. A graph G attaching $K_{1,2}$ to each pendant vertex of a comb forms a k - Lehmer-3 mean graph.

Proof. Let $V\left(\left(P_{n} \odot K_{1}\right) \odot K_{1,2}\right)=\left\{u_{j} v_{j} w_{j} x_{j} ; 1 \leq j \leq n\right\}$ and $E\left(\left(P_{n} \odot K_{1}\right) \odot K_{1,2}\right)=\left\{u_{j}, u_{j+1} ; 1 \leq j \leq n-1\right\} \cup\left\{u_{j} v_{j}, v_{j} w_{j}\right.$, $\left.v_{j} x_{j} ; 1 \leq j \leq n\right\}$
We define $h: V\left(\left(P_{n} \odot k_{1}\right) \odot k_{1,2}\right) \rightarrow\{k, k+1, k+2, \ldots, k+s\}$ by

$$
\begin{array}{ll}
h\left(u_{j}\right)=k+4 j-4 & 1 \leq j \leq n \\
h\left(v_{j}\right)=k+4 j-3 & 1 \leq j \leq n \\
h\left(w_{j}\right)=k+4 j-2 & 1 \leq j \leq n \\
h\left(x_{j}\right)=k+4 j-1 & 1 \leq j \leq n
\end{array}
$$

Then edge labels are

$$
\begin{array}{cc}
h^{*}\left(u_{j}, u_{j+1}\right)=k+4 j-1 & 1 \leq j \leq n-1 \\
h^{*}\left(u_{j}, v_{j}\right)=k+4 j-4 & 1 \leq j \leq n \\
h^{*}\left(v_{j}, w_{j}\right)=k+4 j-2 & 1 \leq j \leq n \\
h^{*}\left(v_{j}, x_{j}\right)=k+4 j-3 & 1 \leq j \leq n
\end{array}
$$

Hence $V\left(\left(P_{n} \odot K_{1}\right) \odot K_{1,2}\right)$ is k-Lehmer three mean graph.
Example 3.8. 3- Lehmer three mean labeling of $V\left(\left(P_{6} \odot\right.\right.$ $\left.\left.K_{1}\right) \odot K_{1,2}\right)$.

Theorem 3.9. A graph G attaching each vertex of P_{n} by the central vertex of $K_{1,2}$. Then G is a k-Lehmer- 3 mean labeling.

Proof. Let $V\left(P_{n} \odot K_{1,2}\right)=\left\{u_{j} v_{j}, w_{j} ; 1 \leq j \leq n\right\}$ and $E\left(P_{n} \odot K_{1,2}\right)=\left\{u_{j}, u_{j+1} ; 1 \leq j \leq n-1\right\} \cup\left\{u_{j} v_{j}, 1 \leq j \leq n\right\}$ We define $h: V\left(P_{n} \odot k_{1,2}\right) \rightarrow\{k, k+1, k+2, \ldots, k+s\}$ by

$$
\begin{array}{ll}
h\left(u_{j}\right)=k+3 j-3 & 1 \leq j \leq n \\
h\left(v_{j}\right)=k+3 j-2 & 1 \leq j \leq n \\
h\left(w_{j}\right)=k+3 j-1 & 1 \leq j \leq n
\end{array}
$$

Then edge labels are

$$
\begin{array}{rc}
h^{*}\left(u_{j}, u_{j+1}\right)=k+3 j-1 & 1 \leq j \leq n-1 \\
h^{*}\left(u_{j}, v_{j}\right)=k+3 j-3 & 1 \leq j \leq n \\
h^{*}\left(v_{j}, w_{j}\right)=k+3 j-2 & 1 \leq j \leq n
\end{array}
$$

Hence $V\left(P_{n} \odot K_{1,2}\right)$ is k-Lehmer three mean graph.
Example 3.10. 3000-Lehmer three mean labeling of $P_{5} \odot K_{1,2}$

Theorem 3.11. A graph G which identifying a pendant vertex P_{n} and an end vertex C_{3}.Then G is k-Lehmer three mean labeling.

Proof. Let P_{n} be $v_{1}, v_{2}, v_{3}, \ldots, v_{n}$ and $u v x$ be C_{3}.
We define $h: V(G) \rightarrow\{k, k+1, k+2, \ldots, k+s\}$ by

$$
\begin{gathered}
h\left(v_{j}\right)=k+j-1 \quad 1 \leq j \leq n \\
h(u)=k+2 n-4 \\
h(x)=k+2 n-3
\end{gathered}
$$

Then edge labels are

$$
\begin{gathered}
h^{*}\left(v_{j} v_{j+1}\right)=k+j-1 \quad 1 \leq j \leq n-1 \\
h^{*}\left(v_{n} u\right)=k+2 n-5 \\
h^{*}\left(v_{n} x\right)=k+2 n-3 \\
h^{*}(u x)=k+2 n-4
\end{gathered}
$$

Hence G is a k-Lehmer three mean graph.
Example 3.12. 250-Lehmer three mean labeling of G.

4. Conclusion

From this paper, we get a knowledge of necessary and sufficient conditions for a graph to be a k-Lehmer three mean labelled and also we have attained some graphs which has k -Lehmer three mean labeling.

Acknowledgment

The authors wish to thank the anonymous referees for their comments and suggestions.

References

${ }^{[1]}$ J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatories, (2019), DS6.
${ }^{[2]}$ F. Harary, Graph theory, Narosa Publication House Reading, New Delhi, 1988.
${ }^{\text {[3] S. Somasundaram and R. Ponraj, Mean Labeling of }}$ Graphs, National Academy of Science Letters, 26(2003), 210-213.
${ }^{[4]}$ S. Somasundaram, S.S. Sandhya and T.S. Pavithra, Lehmer-3 mean labeling of graphs, International Journal of Mathematical Forum, 12(17)(2017), 819-825.
${ }^{[5]}$ S. Somasundaram and R. Ponraj and S. S. Sandhya, Harmonic mean labeling of graphs, Journal of Combinatorial Mathematics and Combinatorial Computing, to appear.

```
    *********
```

$\operatorname{ISSN}(\mathrm{P}): 2319-3786$

Malaya Journal of Matematik
ISSN(O):2321-5666
$\star \star \star \star \star \star \star \star \star$

