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k-Lehmer three mean labeling of some graphs
M.J. Abisha 1* and K. Rubin Mary2

Abstract
A function h is called k- Lehmer-3 mean graph G with r vertices and s edges, if it is possible to label the vertices
v ∈ V with distinct labels h(x) from k,k+ 1,k+ 2, . . . ,k+ s in such a way that each edge e = xy is labeled with
h(e) =

⌈
h(x)3+h(y)3

h(x)2+h(y)2

⌉
(or)

⌊
h(x)3+h(y)3

h(x)2+h(y)2

⌋
then the edge labels are distinct.In this paper we proved k-Lehmer-three

mean labeling of some standard graphs.
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1. Introduction
Graphs described here is simple,undirected and connected

graphs.Let V(G) and E(G) be stated as the vertex and edge set
of graph G.We refer Gallian for more comprehensive survey
[1].We follow Harrary for some standard words,expressions
and symbols[2],The concept and notation of mean labeling
was first introduced by S somasundaram and R Ponraj[3].S
Somasundaram,S S Sandya and T Pavithra introduced the con-
cept of Lehmer three mean graph [4]. Here we investigating
some more standard graphs in K-Lehmer three mean graphs.

2. Preliminaries
Definition 2.1. Let G be a (r,s) graph.A function h is called
Lehmer three mean labeling of graph G,if it is possible to label
the vertices v ∈V with distinct labels h(x) from 1,2,3, . . . ,s+
1 in such a way that each edge e = xy is labeled with h(e) =⌈

h(x)3+h(y)3

h(x)2+h(y)2

⌉
(or)

⌊
h(x)3+h(y)3

h(x)2+h(y)2

⌋
then the edge labels are dis-

tinct.A graph which admits a Lehmer three mean labeling is
called Lehmer three mean graph.

Definition 2.2. Let G be a (r,s) graph.A function h is called k-
Lehmer three mean labeling of graph G,if it is possible to label
the vertices v ∈ V with distinct labels h(x) from k,k+ 1,k+
2, . . . ,k+s in such a way that each edge e = xy is labeled with
h(e) =

⌈
h(x)3+h(y)3

h(x)2+h(y)2

⌉
(or)

⌊
h(x)3+h(y)3

h(x)2+h(y)2

⌋
then the edge labels are

distinct.A graph which admits a k-Lehmer three mean labeling
is called k-Lehmer three mean graph.

3. Main Theorem
Theorem 3.1. The path Pn is k-Lehmer three mean graph for
all k and n≥ 2.

Proof. Let V (Pn) = {v j,1≤ j ≤ n} and
E(Pn) = {e j = (v j,v j+1);1≤ j ≤ n−1}
We define h : V (Pn)→{k,k+1,k+2, . . . ,k+ s} by

h(v j) = k+ j−1 1≤ j ≤ n

Then edge labels are

h∗(e j) = k+ j−1 1≤ j ≤ n−1

.
Hence path is k-Lehmer three mean graph.

Example 3.2. 50-Lehmer three mean labeling of P7.
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50 5651 52 53 54 55

Theorem 3.3. A comb Pn �K1 is a k-Lehmer three mean
graph.

Proof. Let V (Pn�K1) = {u jv j,1≤ j ≤ n} and
E(Pn�K1) = {u j,u j+1;1≤ j ≤ n−1}∪{u jv j,1≤ j ≤ n}
We define h : V (Pn)→{k,k+1,k+2, . . . ,k+ s} by

h(u j) = k+2 j−2 1≤ j ≤ n

h(v j) = k+2 j−1 1≤ j ≤ n

Then edge labels are

h∗(u j,u j+1) = k+2 j−1 1≤ j ≤ n−1

h∗(u j,v j) = k+2 j−2 1≤ j ≤ n−1

Hence Pn�K1 is k-Lehmer three mean graph.

Example 3.4. 20-Lehmer three mean labeling of P6�K1.

20 3022 24 26 28

21 23 25 27 29 31

Theorem 3.5. A graph G obtained with pendant edges at-
tached to both sides of each vertex of Pn. Then G is k-Lehmer-3
mean graph.

Proof. A graph G obtained with pendent edges to both sides
of each vertex of Pn.
We define h : V (G)→{k,k+1,k+2, . . . ,k+ s} by

h(u j) = k+3 j−3 1≤ j ≤ n

h(v j) = k+3 j−2 1≤ j ≤ n

h(w j) = k+3 j−1 1≤ j ≤ n

Then edge labels are

h∗(u j,u j+1) = k+3 j−1 1≤ j ≤ n−1

h∗(u j,v j) = k+3 j−3 1≤ j ≤ n

h∗(u j,w j) = k+3 j−2 1≤ j ≤ n

Hence caterpillar is k-Lehmer three mean graph.

Example 3.6. 100-Lehmer three mean labeling of caterpillar.

100 112103 106

101

102

104

105

107

108

109

110

111

113

114

115

116

117

Theorem 3.7. A graph G attaching K1,2 to each pendant
vertex of a comb forms a k- Lehmer-3 mean graph.

Proof. Let V ((Pn�K1)�K1,2) = {u jv jw jx j;1≤ j ≤ n} and
E((Pn�K1)�K1,2)= {u j,u j+1;1≤ j≤ n−1}∪{u jv j,v jw j,
v jx j;1≤ j ≤ n}
We define h : V ((Pn�k1)�k1,2)→{k,k+1,k+2, . . . ,k+ s}
by

h(u j) = k+4 j−4 1≤ j ≤ n

h(v j) = k+4 j−3 1≤ j ≤ n

h(w j) = k+4 j−2 1≤ j ≤ n

h(x j) = k+4 j−1 1≤ j ≤ n

Then edge labels are

h∗(u j,u j+1) = k+4 j−1 1≤ j ≤ n−1

h∗(u j,v j) = k+4 j−4 1≤ j ≤ n

h∗(v j,w j) = k+4 j−2 1≤ j ≤ n

h∗(v j,x j) = k+4 j−3 1≤ j ≤ n

Hence V ((Pn�K1)�K1,2) is k-Lehmer three mean graph.

Example 3.8. 3- Lehmer three mean labeling of V ((P6 �
K1)�K1,2) .

3 237 11

4 8 12

5 6 9 10 13 14

15

16

17 18

19

20

21 22

24

25 26

Theorem 3.9. A graph G attaching each vertex of Pn by the
central vertex of K1,2. Then G is a k-Lehmer-3 mean labeling.

Proof. Let V (Pn�K1,2) = {u jv j,w j;1≤ j ≤ n} and
E(Pn�K1,2) = {u j,u j+1;1≤ j ≤ n−1}∪{u jv j,1≤ j ≤ n}
We define h : V (Pn� k1,2)→{k,k+1,k+2, . . . ,k+ s} by

h(u j) = k+3 j−3 1≤ j ≤ n

h(v j) = k+3 j−2 1≤ j ≤ n

h(w j) = k+3 j−1 1≤ j ≤ n
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Then edge labels are

h∗(u j,u j+1) = k+3 j−1 1≤ j ≤ n−1

h∗(u j,v j) = k+3 j−3 1≤ j ≤ n

h∗(v j,w j) = k+3 j−2 1≤ j ≤ n

Hence V (Pn�K1,2) is k-Lehmer three mean graph.

Example 3.10. 3000-Lehmer three mean labeling of P5�K1,2

3000 30123003 3006

3001 3002 3004 3005 3007 3008

3009

3010 3011 3013 3014

Theorem 3.11. A graph G which identifying a pendant vertex
Pn and an end vertex C3.Then G is k-Lehmer three mean
labeling.

Proof. Let Pn be v1,v2,v3, . . . ,vn and uvx be C3.
We define h : V (G)→{k,k+1,k+2, . . . ,k+ s} by

h(v j) = k+ j−1 1≤ j ≤ n

h(u) = k+2n−4

h(x) = k+2n−3

Then edge labels are

h∗(v jv j+1) = k+ j−1 1≤ j ≤ n−1

h∗(vnu) = k+2n−5

h∗(vnx) = k+2n−3

h∗(ux) = k+2n−4

Hence G is a k-Lehmer three mean graph.

Example 3.12. 250-Lehmer three mean labeling of G.

250 255251 252 253

254

4. Conclusion
From this paper, we get a knowledge of necessary and suf-
ficient conditions for a graph to be a k-Lehmer three mean
labelled and also we have attained some graphs which has
k-Lehmer three mean labeling.
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