Fuzzy α - ψ *-operator in fuzzy automata orbit structure spaces M. Rowthri¹* and B. Amudhambigai² #### **Abstract** In this paper, the notion of fuzzy automata orbit structure spaces is introduced and the concepts of fuzzy automata orbit- α - ψ *-open subsystems and fuzzy automata orbit- α - ψ *-closed subsystems are studied with suitable examples. Also, the notions of fuzzy automata orbit- α - ψ *-co-kernel subsystems, fuzzy automata orbit- α - ψ *-meager* subsystems and fuzzy automata orbit- α - ψ *-comeager* subsystems are introduced and some of their properties are studied. ### Keywords Fuzzy automata orbit structure spaces, $FA\mathscr{O}_{\phi}$ - α - ψ^* -open subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -closed subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -meager* subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-kernel subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -comeager* subsystems and fuzzy automata orbit- α - ψ^* -co-kernel spaces. #### **AMS Subject Classification** 54A40, 03E72. Article History: Received 12 April 2020; Accepted 14 August 2020 ©2020 MJM. ## **Contents** | 1 | Introduction1222 | |---|-------------------------------------------| | 2 | Preliminaries | | 3 | Fuzzy automata orbit structure spaces1223 | | 4 | Conclusion1227 | | | References | #### 1. Introduction Zadeh [8] initiated fuzzy set in 1965. In 1968, Chang [1] characterized fuzzy topological space. The notion of an automaton was first fuzzified by Wee [7]. Later, the concepts of fuzzy subsystems and strong fuzzy subsystems of a fuzzy finite state machine (briefly, ffsm) were introduced and studied by Malik and Mordeson [4]. The concept of orbit function in general metric space was introduced by Devaney[3]. In this paper, the notion of fuzzy automata orbit structure spaces is introduced. Also, the notions of fuzzy automata orbit- α - ψ *-co-kernel subsystems, fuzzy automata orbit- α - ψ *-meager* subsystems and fuzzy automata orbit- α - ψ *-comeager* subsystems are introduced and some of their properties are studied. # 2. Preliminaries In this section, some basic concepts of fuzzy automaton, fuzzy orbit under the function, etc. have been recalled. Also, related results and propositions are collected from various research articles **Definition 2.1.** [8] Let X be a space of points (objects). A fuzzy set A in X is characterized by a membership function $f_A: X \to [0,1]$. **Definition 2.2.** [5] A fuzzy automaton is a triple $M = (Q, X, \delta)$, where Q is a set(of states of M), X is a monoid (the input monoid of M), whose identity shall be denoted as e, and δ is a fuzzy subset of $Q \times X \times Q$, i.e., a map δ : $Q \times X \times Q \rightarrow [0, 1]$, such that $\forall q, p \in Q, \forall x, y \in X$. (i) $\delta(q, e, p) = 1$ or 0, according as q = p or $q \neq p$, (ii) $\delta(q, xy, p) = \bigvee \{ \delta(q, x, r) \land \delta(r, y, p) : r \in Q \}.$ **Notation 2.1.** For any non-empty set of states Q, I^Q denotes the collection of all functions from Q into I, where I is the unit interval [0,1]. **Definition 2.3.** [6] $\lambda \in I^Q$ is called a fuzzy subsystem of (Q, X, δ) if $$\lambda(q) \ge \lambda(p) \land \delta(p, x, q), \forall p, q \in Q, x \in X.$$ ^{1,2} Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India. ^{*}Corresponding author: 1 rowth3.m@gmail.com; 2 rbamudha@yahoo.co.in **Proposition 2.1.** [6] The function $c:I^Q\to I^Q$ defined as $c(\lambda)(q)=\bigvee\big\{\bigvee\big\{\lambda(p)\land\delta(p,x,q):x\in X\big\}:p\in Q\big\},$ $\forall\lambda\in I^Q, \forall q\in Q.$ is a kuratowski saturated fuzzy closure operator on Q. **Proposition 2.2.** [6] $\lambda \in I^Q$ is a fuzzy subsystem of (Q, X, δ) iff $c(\lambda) = \lambda$. (*i.e.*, iff λ is closed with respect to the fuzzy topology induced by c on Q) **Definition 2.4.** [2] A fuzzy subset λ of Q is said to be a generating fuzzy set of M if $c(\lambda) = 1$. **Definition 2.5.** [3] Orbit of a point x in X under the mapping f is of $$O_f(x) = \{x, f(x), f^2(x), \dots\}.$$ # 3. Fuzzy automata orbit structure spaces In this section, fuzzy automata orbit structure spaces, $FA\mathcal{O}_{\phi}$ - α - ψ^* -co-kernel subsystems, $FA\mathcal{O}_{\phi}$ - α - ψ^* -kernel subsystems, $FA\mathcal{O}_{\phi}$ - α - ψ^* -comeager* subsystems and fuzzy automata orbit α - ψ^* -co-kernel spaces are introduced and some of their properties are discussed. Further, some equivalent statements are established. **Definition 3.1.** Let $M = (Q, X, \delta)$ be a fuzzy automaton, where Q is a set (of states of M), X is a monoid (the input monoid of M), whose identity shall be denoted as e, and δ is a fuzzy subset of $Q \times X \times Q$, *i.e.*, a map $\delta : Q \times X \times Q \rightarrow [0,1]$, such that $\forall q, p \in Q, \forall x, y \in X$. - (i) $\delta(q, e, p) = 1$ or 0, according as q = p or $q \neq p$ respectively. - (ii) $\delta(q, xy, p) = \bigvee \{ \delta(q, x, r) \land \delta(r, y, p) : r \in Q \}.$ Let $\phi:I^Q\to I^Q$ be any mapping. For any $\lambda\in I^Q$, the fuzzy automata orbit subsystem under the mapping ϕ is denoted by $FA\mathscr{O}_{\phi}(\lambda)$ and defined as $FA\mathscr{O}_{\phi}(\lambda)=\{\lambda\wedge\phi(\lambda)\wedge\phi^2(\lambda)\wedge\ldots\}\in I^Q$. For all $\mu\in I^Q$ and $q\in Q$, $c(\mu)(p)=\vee_{q\in Q}\ \{\vee_{x\in X}\ \{\ (\mu)(q)\wedge\delta(q,x,p)\}\}$ is a Kuratowski saturated fuzzy closure operator on Q. Let $\tau=\{FA\mathscr{O}_{\phi}(\mu)\in I^Q:c(1_Q-FA\mathscr{O}_{\phi}(\mu))=(1_Q-FA\mathscr{O}_{\phi}(\mu)),$ where $(1_Q-FA\mathscr{O}_{\phi}(\mu))$ is the fuzzy complement of $FA\mathscr{O}_{\phi}(\mu)\}$ be the collection of fuzzy subsystems which satisfies the following axioms : - (i) $0_O, 1_O \in \tau$; - (ii) If $\gamma_1, \gamma_2 \in I^Q$ and $FA\mathscr{O}_{\phi}(\gamma_1), FA\mathscr{O}_{\phi}(\gamma_2) \in \tau$, then $FA\mathscr{O}_{\phi}(\gamma_1) \wedge FA\mathscr{O}_{\phi}(\gamma_2) \in \tau$; - (iii) If $\gamma_i \in I^Q$ and $FA\mathscr{O}_{\phi}(\gamma_i) \in \tau$ for each $i \in J$, where J is an indexed set, then $\vee_{i \in J} FA\mathscr{O}_{\phi}(\gamma_i) \in \tau$. Then, the ordered pair (Q,τ) is said to be a fuzzy automata orbit structure space iff there exists a fuzzy automaton (Q,X,δ) such that τ is a fuzzy topology associated with (Q,X,δ) . Moreover, the members of τ are called the fuzzy automata orbit open subsystems and their fuzzy complements are called the fuzzy automata orbit closed subsystems. **Notation 3.1.** Throughout this paper, 0_Q takes the membership value $\mathcal{M}_{0_Q}(q) = 0$, for all $q \in Q$ and 1_Q takes the membership value $\mathcal{M}_{1_Q}(q) = 1$, for all $q \in Q$. **Example 3.1.** Let $M = (Q, X, \delta)$ be a fuzzy automaton, where $Q = X = \{0, 1, 2, \dots\}$ and $\delta : Q \times X \times Q \rightarrow [0, 1]$ be given by $$\delta(q,0,p) = \begin{cases} 1, & \text{if } q = p \\ 0, & \text{if } q \neq p \end{cases}$$ with $\delta(q, x_0, p) = 0.35$, $\delta(q, x_0, q) = 0.75$, $\delta(p, x_0, p) = 0.8$, $\delta(p, x_0, q) = 0.7$ for fixed $x_0 \in X(x_0 \neq 0)$ and for fixed $p, q \in Q$. For other $p, q \in Q$ and $x \in X$, $\delta(p, x, q) = 0$. Let $\lambda, \mu \in I^Q$ be defined as follows: $\lambda(1) = 0.45$, $\lambda(2) = 0.55$, $\mu(1) = 0.33$, $\mu(2) = 0.5$ and for other $r \in Q$, $r \neq 1, 2$, $\lambda(r) = 0$, $\mu(r) = 0$. Let $\phi: I^Q \to I^Q$ be a mapping defined by $$\eta_{\phi}(x) = \begin{cases} \eta(2), & \text{if } x = 1, \\ \eta(1), & \text{if } x = 2, \\ 0, & \text{otherwise} \end{cases}$$ for all $\eta \in I^X$. Then $FA\mathscr{O}_\phi(\lambda)(1) = 0.45$, $FA\mathscr{O}_\phi(\lambda)(2) = 0.45$, $FA\mathscr{O}_\phi(\mu)(1) = 0.33$, $FA\mathscr{O}_\phi(\mu)(2) = 0.33$. The Kuratowski saturated fuzzy closure operator $c:I^Q\to I^Q$ on Q is defined as $$c(\mu)(p) = \bigvee_{q \in Q} \{ \bigvee_{x \in X} \{ (\mu)(q) \land \delta(q, x, p) \} \}.$$ It is clear that $$\begin{split} c(FA\mathscr{O}_{\phi}(\lambda)) &= FA\mathscr{O}_{\phi}(\lambda),\\ c(FA\mathscr{O}_{\phi}(\mu)) &= FA\mathscr{O}_{\phi}(\mu),\\ c(FA\mathscr{O}_{\phi}(0_Q)) &= FA\mathscr{O}_{\phi}(0_Q) = 0_Q\\ \text{and } c(FA\mathscr{O}_{\phi}(1_Q)) &= FA\mathscr{O}_{\phi}(1_Q) = 1_Q. \end{split}$$ Let $\tau = \{ 0_Q, 1_Q, 1_Q - FA\mathcal{O}_{\phi}(\lambda), 1_Q - FA\mathcal{O}_{\phi}(\mu) \}$. Then τ is a fuzzy automata orbit structure on Q and hence the ordered pair (Q, τ) is a fuzzy automata orbit structure space. **Definition 3.2.** Let (Q, τ) be a fuzzy automata orbit structure space. For any $FA\mathscr{O}_{\phi}(\mu)$, $\mu \in I^Q$, the fuzzy automata orbit interior of $FA\mathscr{O}_{\phi}(\mu)$ (briefly, $FA\mathscr{O}_{\phi}int(FA\mathscr{O}_{\phi}(\mu))$) is defined by $FA\mathscr{O}_{\phi}int(FA\mathscr{O}_{\phi}(\mu)) = \vee \{\sigma : \sigma \leq FA\mathscr{O}_{\phi}(\mu) \text{ and each } \sigma \in I^{Q} \text{ is a fuzzy automata orbit open subsystem in } (Q, \tau) \}.$ **Definition 3.3.** Let (Q, τ) be a fuzzy automata orbit structure space. For any $FA\mathcal{O}_{\phi}(\mu)$, $\mu \in I^Q$, the fuzzy automata orbit closure of $FA\mathcal{O}_{\phi}(\mu)$ (briefly, $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}(\mu))$) is defined by $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}(\mu)) = \wedge \{\sigma : \sigma \geq FA\mathcal{O}_{\phi}(\mu) \text{ and each } \sigma \in I^{\mathcal{Q}} \text{ is a fuzzy automata orbit closed subsystem in } (\mathcal{Q}, \tau) \}.$ **Definition 3.4.** Let (Q, τ) be a fuzzy automata orbit structure space. For any $\mu \in I^Q$, $FA\mathcal{O}_{\phi}(\mu)$ is said to be a fuzzy automata orbit- α -open subsystem in (Q, τ) if $FA\mathcal{O}_{\phi}(\mu) \leq FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}(\mu))))$ and the fuzzy complement of fuzzy automata orbit- α -open subsystem is said to be a fuzzy automata orbit- α -closed subsystem. **Notation 3.2.** Let (Q, τ) be a fuzzy automata orbit structure space. Then $FA\mathcal{O}_{\phi}$ - $\alpha O(Q, \tau)$ will denote the family of all fuzzy automata orbit- α -open subsystems in (Q, τ) and $FA\mathcal{O}_{\phi}$ - $\alpha C(Q, \tau)$ will denote the family of all fuzzy automata orbit- α -closed subsystems in (Q, τ) . **Definition 3.5.** Let (Q, τ) be a fuzzy automata orbit structure space. A function $$\psi^* : FA \mathcal{O}_{\phi} - \alpha O(O, \tau) \to I^Q$$ is called a fuzzy operator on $FA\mathscr{O}_{\phi}-\alpha O(Q,\tau)$, if for each $FA\mathscr{O}_{\phi}(\mu)\in FA\mathscr{O}_{\phi}-\alpha O(Q,\tau)$, $\mu\in I^Q$ with $FA\mathscr{O}_{\phi}(\mu)\neq 0_Q$, $FA\mathscr{O}_{\phi}int(FA\mathscr{O}_{\phi}(\mu))\leq \psi^*(FA\mathscr{O}_{\phi}(\mu))$ and $\psi^*(FA\mathscr{O}_{\phi}(0_Q))=0_Q$. **Remark 3.1.** It is easy to check that some examples of fuzzy operators on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q,\tau)$ are the well known fuzzy operators viz. $FA\mathcal{O}_{\phi}$ int, $FA\mathcal{O}_{\phi}$ int $(FA\mathcal{O}_{\phi}cl)$, $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int)$, $FA\mathcal{O}_{\phi}$ int $(FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int))$ and $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}cl))$. **Definition 3.6.** Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. Then any fuzzy automata orbit- α -open subsystem $FA\mathscr{O}_{\phi}(\mu) \in I^X$ is called fuzzy automata orbit- α - ψ^* -open if $FA\mathscr{O}_{\phi}(\mu) \leq \psi^*(FA\mathscr{O}_{\phi}(\mu))$. The fuzzy complement of a fuzzy automata orbit- α - ψ^* -open subsystem is said to be a fuzzy automata orbit- α - ψ^* -closed subsystem. **Definition 3.7.** Let (Q,τ) be a fuzzy automata orbit structure space and and ψ^* be a fuzzy operator on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q,\tau)$. Let $FA\mathcal{O}_{\phi}(\lambda) \in I^Q$ where $\lambda \in I^Q$. Then the fuzzy automata orbit- α - ψ^* -co-kernel of $FA\mathcal{O}_{\phi}(\lambda)$ is denoted by $FA\mathcal{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathcal{O}_{\phi}(\lambda))$ and defined as $FA\mathcal{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathcal{O}_{\phi}(\lambda))$ = $\vee \{FA\mathcal{O}_{\phi}(\mu) \in I^Q : FA\mathcal{O}_{\phi}(\mu) \text{ is fuzzy automata}$ orbit- α - ψ^* -closed and $FA\mathcal{O}_{\phi}(\mu) \leq FA\mathcal{O}_{\phi}(\lambda)\}$. **Definition 3.8.** Let (Q,τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}-\alpha O(Q,\tau)$. Let $FA\mathscr{O}_{\phi}(\lambda) \in I^Q$ where $\lambda \in I^Q$. Then the fuzzy automata orbit- α - ψ^* -kernel of $FA\mathscr{O}_{\phi}(\lambda)$ is denoted by $FA\mathscr{O}_{\phi}-\alpha$ - ψ^* - $ker(FA\mathscr{O}_{\phi}(\lambda))$ and defined as $FA\mathscr{O}_{\phi}-\alpha$ - ψ^* - $ker(FA\mathscr{O}_{\phi}(\lambda)) = \wedge \{FA\mathscr{O}_{\phi}(\mu) \in I^Q : FA\mathscr{O}_{\phi}(\mu) \text{ is fuzzy automata orbit } -\alpha$ - ψ^* -open and $FA\mathscr{O}_{\phi}(\lambda) \leq FA\mathscr{O}_{\phi}(\mu)\}$. **Remark 3.2.** Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q, \tau)$. Let $FA\mathcal{O}_{\phi}(\lambda) \in I^X$ be a fuzzy automata orbit subsystem in (Q, τ) . - (i) $(1_Q FA\mathcal{O}_{\phi} \alpha \psi^* ker(FA\mathcal{O}_{\phi}(\lambda))) = FA\mathcal{O}_{\phi} \alpha \psi^* co-ker(1_Q (FA\mathcal{O}_{\phi}(\lambda))).$ - (ii) $(1_Q FA\mathcal{O}_{\phi} \alpha \psi^* co ker(FA\mathcal{O}_{\phi}(\lambda)))$ = $FA\mathcal{O}_{\phi} - \alpha - \psi^* - ker(1_Q - (FA\mathcal{O}_{\phi}(\lambda))).$ - (iii) $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(0_Q) = 0_Q$ and $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(0_Q) = 0_Q$. - (iv) $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(1_Q) = 1_Q$ and $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(1_Q) = 1_Q$. - (v) If $FA\mathcal{O}_{\phi}(\lambda)$ is a fuzzy automata orbit $-\alpha$ - ψ^* -open subsystem then $$FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}(\lambda))=FA\mathcal{O}_{\phi}(\lambda).$$ (vi) If $FA\mathcal{O}_{\phi}(\lambda)$ is a fuzzy automata orbit $-\alpha$ - ψ^* -closed subsystem then $$FA\mathcal{O}_{\phi} - \alpha - \psi^* - co - ker(FA\mathcal{O}_{\phi}(\lambda)) = FA\mathcal{O}_{\phi}(\lambda).$$ (vii) $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathcal{O}_{\phi}(\lambda_1) \vee FA\mathcal{O}_{\phi}(\lambda_2))$ $$= \mathit{FAO}_{\phi} \text{-}\alpha \text{-}\psi^* \text{-}\mathit{co-ker}(\mathit{FAO}_{\phi}(\lambda_1)) \vee \mathit{FAO}_{\phi} \text{-}\alpha \text{-}\psi^* \text{-}\mathit{co-ker}(\mathit{FAO}_{\phi}(\lambda_2)).$$ (viii) $FA\mathscr{O}_{\phi}$ - α - ψ *- $ker(FA\mathscr{O}_{\phi}(\lambda_1) \wedge FA\mathscr{O}_{\phi}(\lambda_2))$ $$= FA \mathcal{O}_{\phi} - \alpha - \psi^* - ker(FA \mathcal{O}_{\phi}(\lambda_1)) \wedge FA \mathcal{O}_{\phi} - \alpha - \psi^* - ker(FA \mathcal{O}_{\phi}(\lambda_2)).$$ **Proof** The proof is simple. **Definition 3.9.** Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. Then (Q, τ) is said to be a fuzzy automata orbit - α - ψ^* -co-kernel space if, for any finite collection $\{FA\mathscr{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i=1,2,...,n, \text{ where each } FA\mathscr{O}_{\phi}(\lambda_i) \text{ is a fuzzy automata orbit open subsystem in } (Q,\tau)\}, FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$, i=1,2,...,n and $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(\bigwedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$. **Example 3.2.** Let $M = (Q, X, \delta)$ be a fuzzy automaton, where $Q = X = \{0, 1, 2, \ldots\}$ and $\delta : Q \times X \times Q \rightarrow [0, 1]$ be given by $$\delta(q,0,p) = \left\{ \begin{array}{ll} 1, & \text{if } q = p \\ 0, & \text{if } q \neq p \end{array} \right.$$ with $\delta(q, x_0, p) = 0.83$, $\delta(q, x_0, q) = 0.85$, $\delta(p, x_0, p) = 0.93$, $\delta(p, x_0, q) = 0.9$ for fixed $x_0 \in X(x_0 \neq 0)$ and for fixed $p, q \in Q$. For other $p, q \in Q$ and $x \in X$, $\delta(p, x, q) = 0$. Let $\lambda, \mu \in I^Q$ be defined as follows: $\lambda(1) = 0.77$, $\lambda(2) = 0.8$, $\mu(1) = 0.65$, $\mu(2) = 0.75$ and for other $r \in Q$, $r \neq 1, 2, \lambda(r) = 0$, $\mu(r) = 0$. Let $\phi: I^Q \to I^Q$ be a mapping defined by $$\eta_{\phi}(x) = \begin{cases} \eta(2), & \text{if } x = 1, \\ \eta(1), & \text{if } x = 2, \\ 0, & \text{otherwise} \end{cases}$$ for all $\eta \in I^X$. Then $FA\mathscr{O}_\phi(\lambda)(1) = 0.77$, $FA\mathscr{O}_\phi(\lambda)(2) = 0.77$, $FA\mathscr{O}_\phi(\mu)(1) = 0.65$, $FA\mathscr{O}_\phi(\mu)(2) = 0.65$ The Kuratowski saturated fuzzy closure operator $$c(\mu)(p) = \vee_{q \in O} \{ \vee_{x \in X} \{ (\mu)(q) \wedge \delta(q, x, p) \} \}.$$ It is clear that $c(FA\mathcal{O}_{\phi}(\lambda))$ = $FA\mathcal{O}_{\phi}(\lambda)$, $c(FA\mathcal{O}_{\phi}(\mu))$ = $FA\mathcal{O}_{\phi}(\lambda)$, $c(FA\mathcal{O}_{\phi}(\mu))$ = $FA\mathcal{O}_{\phi}(\mu)$, $c(FA\mathcal{O}_{\phi}(0_Q)) = FA\mathcal{O}_{\phi}(0_Q) = 0_Q$ and $c(FA\mathcal{O}_{\phi}(1_Q)) = FA\mathcal{O}_{\phi}(1_Q) = 1_Q$. Let $\tau = \{0_Q, 1_Q, 1_Q - FA\mathcal{O}_{\phi}(\lambda), 1_Q - FA\mathcal{O}_{\phi}(\mu)\}$. Then τ is a fuzzy automata orbit structure on Q and hence the ordered pair (Q,τ) is a fuzzy automata orbit structure space. Thus the collection $\{FA\mathcal{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i = 1,2 \text{ is a fuzzy automata orbit } -\alpha\text{-open subsystems in } (Q,\tau)\}$. Let $\psi^* = FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}cl)$. Then $FA\mathcal{O}_{\phi}(\lambda_i)$ is a fuzzy automata orbit $-\alpha$ - ψ^* -open subsystems in $(Q,\tau)\}$. Thus $$FA\mathcal{O}_{\phi}$$ - α - ψ^* - co - $ker(FA\mathcal{O}_{\phi}(\lambda_i)) = 0_Q$ and $$\mathit{FAO}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co-ker}(\bigwedge_{i=1,2}\mathit{FAO}_{\phi}(\lambda_i))=0_Q.$$ Hence (Q, τ) is a fuzzy automata orbit $-\alpha - \psi^*$ -co-kernel space. **Definition 3.10.** Let (Q, τ) be any fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. For any $\mu \in I^Q$, $FA\mathscr{O}_{\phi}(\mu)$ is said to be a fuzzy automata orbit- α - ψ^* - O_{δ} subsystem (briefly, $FA\mathscr{O}_{\phi}$ - α - ψ^* - $O_{\delta}S$) if $$FA\mathscr{O}_{\phi}(\mu) = \wedge_{i=1}^{n} \{FA\mathscr{O}_{\phi}(\mu_{i}), \mu_{i} \in I^{Q} : \text{each } FA\mathscr{O}_{\phi}(\mu_{i}) \text{ is a fuzzy automata orbit } -\alpha - \psi^{*}\text{-open subsystem } \}.$$ The fuzzy complement of a fuzzy automata orbit- α - ψ^* - O_δ subsystem is fuzzy automata orbit- α - ψ^* - C_σ subsystem (briefly, $FA\mathcal{O}_{\phi}$ - α - ψ^* - $C_\sigma S$). **Proposition 3.1.** Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q, \tau)$. Then the following statements are equivalent: - (i) (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space. - (ii) For any fuzzy automata orbit- α - ψ^* -open subsystem $FA\mathscr{O}_{\phi}(\lambda_i)$ in (Q,τ) where $\lambda_i \in I^Q, i=1,2,...,n$ and for every fuzzy automata orbit $-\alpha$ - ψ^* - O_{δ} subsystem $FA\mathscr{O}_{\phi}(\mu)$ in (Q,τ) where $\mu \in I^Q$, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda_i)) = 0_Q$ and $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\mu)) = 0_Q$. - (iii) For any fuzzy automata orbit $-\alpha$ - ψ^* -open subsystem $FA\mathscr{O}_{\phi}(\lambda_i)$ in (Q,τ) where $\lambda_i \in I^Q, i=1,2,...,n$ and for every fuzzy automata orbit- α - ψ^* - C_{σ} subsystem $1_Q (FA\mathscr{O}_{\phi}(\mu))$ in (Q,τ) where $\mu \in I^Q$, $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(1_Q FA\mathscr{O}_{\phi}(\lambda_i)) = 1_Q$ and $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(1_Q FA\mathscr{O}_{\phi}(\mu)) = 1_Q$. *Proof.* (i) \Rightarrow (ii) Let (Q, τ) is a fuzzy automata orbit co-kernel space. Then for any finite collection $\{FA\mathscr{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i=1,2,...,n,$ where each $FA\mathscr{O}_{\phi}(\lambda_i)$ is fuzzy automata orbit- α - ψ *-open subsystem in $(Q, \tau)\}$, $FA\mathscr{O}_{\phi}$ - α - ψ *-co- $ker(FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$, i=1,2,...,n and $FA\mathscr{O}_{\phi}$ - α - ψ *-co- $ker(\bigwedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$. Let $FA\mathscr{O}_{\phi}(\mu) \in I^{Q}$ be a $FA\mathscr{O}_{\phi}$ - α - ψ^{*} - $O_{\delta}S$. By Definition 3.10. $$FA\mathscr{O}_{\phi}(\mu)$$ $$= \bigwedge_{i=1}^{n} FA\mathscr{O}_{\phi}(\lambda_{i}), \lambda_{i} \in I^{Q}$$ $$FA\mathscr{O}_{\phi} - \alpha - \psi^{*} - co - ker(FA\mathscr{O}_{\phi}(\mu))$$ $$= FA\mathscr{O}_{\phi} - \alpha - \psi^{*} - co - ker(\wedge_{i=1}^{n} FA\mathscr{O}_{\phi}(\lambda_{i}))$$ Since (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(\wedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i)) = 0_Q$. Then $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathscr{O}_{\phi}(\mu)) = 0_Q$. (ii) \Rightarrow (iii) For $\lambda_i \in I^Q$, $i \in J$, let $FA\mathscr{O}_{\phi}(\lambda_i)$ be any fuzzy automata orbit- α - ψ^* -open subsystem in (Q,τ) with $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(1_Q-FA\mathscr{O}_{\phi}(\lambda_i))=1_Q$. Thus $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$. By (ii), for every fuzzy automata orbit $-\alpha$ - ψ^* - O_{δ} subsystem $FA\mathscr{O}_{\phi}(\mu)$ in (Q,τ) where $(\mu \in I^Q)$, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\mu))=0_Q$. Then $$\begin{aligned} \mathbf{1}_{Q} - \mathit{FA}\mathcal{O}_{\phi} - \alpha - \psi^{*} - \mathit{co-ker}(\mathit{FA}\mathcal{O}_{\phi}(\mu)) &= \mathbf{1}_{Q} \\ \mathit{FA}\mathcal{O}_{\phi} - \alpha - \psi^{*} - \mathit{ker}(\mathbf{1}_{Q} - \mathit{FA}\mathcal{O}_{\phi}(\mu)) &= \mathbf{1}_{Q} \end{aligned}$$ $(iii) \Rightarrow (i)$ Let $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(1_Q - FA\mathcal{O}_{\phi}(\lambda_i)) = 1_Q$, $\lambda_i \in I^Q$, i = 1, 2, ..., n. This implies that, $$FA\mathcal{O}_{\phi}co-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}(\lambda_i))=0_O. \tag{3.1}$$ Let $FA\mathscr{O}_{\phi}(\mu)$ be $FA\mathscr{O}_{\phi}-\alpha-\psi^*-O_{\delta}S$. Then $FA\mathscr{O}_{\phi}(\mu)=\wedge_{i=1}^nFA\mathscr{O}_{\phi}(\lambda_i)$, where each $FA\mathscr{O}_{\phi}(\lambda_i)$ is a fuzzy automata orbit- $\alpha-\psi^*$ -open subsystem in (Q,τ) . Thus $1_Q-FA\mathscr{O}_{\phi}(\mu)$) is $FA\mathscr{O}_{\phi}-\alpha-\psi^*-C_{\sigma}S$. By (iii), $FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(1_Q-FA\mathscr{O}_{\phi}(\mu))=1_Q$. Then $1_Q-(FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(1_Q-FA\mathscr{O}_{\phi}(\mu)))=1_Q-1_Q$. Thus $FA\mathscr{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathscr{O}_{\phi}(\mu))=0_Q$. Hence $$FA\mathscr{O}_{\phi} - \alpha - \psi^* - co - ker(\wedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i)) = 0_O. \tag{3.2}$$ From Equations 3.1 and 3.2, we have (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space. **Proposition 3.2.** Let (Q, τ) be a fuzzy automata orbit- α - ψ^* -co-kernel space where ψ^* is a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. For $\mu \in I^Q$, if $FA\mathscr{O}_{\phi}(\mu) \in I^Q$, is $FA\mathscr{O}_{\phi}$ - α - ψ^* - $C_{\sigma}S$, then $FA\mathscr{O}_{\phi}(\mu) \wedge \{1_Q - FA\mathscr{O}_{\phi}(\gamma)\} \neq 0_Q$, for every fuzzy automata orbit- α - ψ^* -open subsystem $FA\mathscr{O}_{\phi}(\gamma) \neq 1_Q$, $\gamma \in I^Q$ of (Q, τ) . *Proof.* Let (Q, τ) be a fuzzy automata orbit- α - ψ *-co-kernel space. Then for any finite collection $\{FA\mathscr{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i=1,2,...,n \text{ , where each } FA\mathscr{O}_{\phi}(\lambda_i) \text{ is a fuzzy automata orbit-}\alpha$ - ψ *-open subsystem in (Q,τ) }, $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(\bigwedge_{i=1}^n FA\mathcal{O}_{\phi}(\lambda_i)) = 0_Q$. Let $FA\mathcal{O}_{\phi}(\mu)$ be $FA\mathcal{O}_{\phi}$ - α - ψ^* - $C_{\sigma}S$. Then by Definition 3.10, $$\begin{split} \mathit{FA}\mathscr{O}_{\phi}(\mu) &= \vee_{i=1}^{n} \mathit{FA}\mathscr{O}_{\phi}(\lambda_{i}), \lambda_{i} \in \mathit{I}^{\mathcal{Q}} \\ \text{then} \quad \left(1_{\mathcal{Q}} - \mathit{FA}\mathscr{O}_{\phi}(\mu)\right) &= 1_{\mathcal{Q}} - \vee_{i=1}^{n} \mathit{FA}\mathscr{O}_{\phi}(\lambda_{i}) \\ \text{thus} \quad \left(1_{\mathcal{Q}} - \mathit{FA}\mathscr{O}_{\phi}(\mu)\right) &= \wedge_{i=1}^{n} \left(1_{\mathcal{Q}} - \mathit{FA}\mathscr{O}_{\phi}(\lambda_{i})\right) \end{split}$$ Since $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(\wedge_{i=1}^n \{1_Q - FA\mathcal{O}_{\phi}(\lambda_i)\}) = 0_Q$, $$FA\mathcal{O}_{\phi} - \alpha - \psi^* - co - ker(1_Q - (FA\mathcal{O}_{\phi}(\mu))) = 0_Q$$ (3.3) As a contrary, suppose that $$\begin{split} \mathit{FA}\mathscr{O}_\phi(\mu) \wedge \big\{ \mathbf{1}_Q - \mathit{FA}\mathscr{O}_\phi(\gamma) \big\} &= \mathbf{0}_Q \\ \text{then,} \\ \mathbf{1}_Q - \big(\mathit{FA}\mathscr{O}_\phi(\mu) \wedge (\mathbf{1}_Q - \mathit{FA}\mathscr{O}_\phi(\gamma)) \big) &= (\mathbf{1}_Q - \mathbf{0}_Q) \\ \text{and therefore} \\ (\mathbf{1}_Q - \mathit{FA}\mathscr{O}_\phi(\mu)) \vee \mathit{FA}\mathscr{O}_\phi(\gamma) &= \mathbf{1}_Q. \end{split}$$ 1_Q {by 3.3}; therefore $FA\mathscr{O}_{\phi}-\alpha-\psi^*$ -co-ker $\{FA\mathscr{O}_{\phi}(\gamma)\}=1_Q$. which is not possible as $FA\mathscr{O}_{\phi}(\gamma)\neq 1_Q$. Hence, $$FA\mathcal{O}_{\phi}(\mu) \wedge \{1_O - FA\mathcal{O}_{\phi}(\gamma)\} \neq 0_O.$$ **Definition 3.11.** Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. A fuzzy automata orbit subsystem $FA\mathscr{O}_{\phi}(\lambda)$, $\lambda \in I^X$ is said to be a fuzzy automata orbit- α - ψ^* -meager* subsystem if $$FA\mathscr{O}_{\phi}(\lambda) = \bigvee_{i=1}^{n} FA\mathscr{O}_{\phi}(\lambda_{i}), \lambda_{i} \in I^{Q}$$ with $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda_i))) = 0_Q$. The fuzzy complement of a fuzzy automata orbit- α - ψ^* -meager* subsystem is a fuzzy automata orbit- α - ψ^* -comeager* subsystem. **Proposition 3.3.** Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. If (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space, then for every fuzzy automata orbit- α - ψ^* -meager* subsystem $FA\mathscr{O}_{\phi}(\lambda), \lambda \in I^Q$, $$FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(FA\mathscr{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathscr{O}_{\phi}(\lambda)))=0_O.$$ *Proof.* Let $FA\mathcal{O}_{\phi}(\lambda), \lambda \in I^{Q}$ be a fuzzy automata orbit- α - ψ^* -meager* subsystem. By Definition 3.11, $FA\mathcal{O}_{\phi}(\lambda) = \bigvee_{i=1}^{n} (FA\mathcal{O}_{\phi}(\lambda_{i})), \lambda_{i} \in I^{Q}$ with $$FA\mathscr{O}_{\phi}$$ - α - ψ^* - $ker(FA\mathscr{O}_{\phi}$ - α - ψ^* - co - $ker(FA\mathscr{O}_{\phi}(\lambda_i))) = 0_Q$. Now, $$FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathcal{O}_{\phi}(\lambda)))$$ = $FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(\vee_{i=1}^n(FA\mathcal{O}_{\phi}(\lambda_i))))$ = $FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(0_Q)$ = 0_Q . Hence for every fuzzy automata orbit- α - ψ^* -meager* subsystem $FA\mathscr{O}_{\phi}(\lambda), \lambda \in I^{\mathcal{Q}}$, $$\mathit{FAO}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{ker}(\mathit{FAO}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co-ker}(\mathit{FAO}_{\phi}(\lambda))) = 0_{\mathcal{Q}}.$$ **Proposition 3.4.** Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. If (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space, then for every fuzzy automata orbit- α - ψ^* -comeager* subsystem $FA\mathscr{O}_{\phi}(\lambda)$, $$FA\mathscr{O}_{\phi}$$ - α - ψ^* - co - $ker(FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(FA\mathscr{O}_{\phi}(\lambda))) = 1_O$. *Proof.* Proof is similar to the proof of Proposition 3.3. **Proposition 3.5.** Let (Q,τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q,\tau)$. Then the following statements are equivalent: - (i) (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space. - (ii) $FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(\vee_{i=1}^nFA\mathscr{O}_{\phi}(\lambda_i))=1_Q$, for every fuzzy automata orbit- $\alpha-\psi^*$ -closed subsystem $FA\mathscr{O}_{\phi}(\lambda_i)$, $\lambda_i\in I^Q$, i=1,2,...,n with $FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(FA\mathscr{O}_{\phi}(\lambda_i))=1_Q$. *Proof.* (i) $$\Rightarrow$$ (ii) Let $\{FA\mathscr{O}_{\phi}(\lambda_i) \in I^Q, \lambda_i \in I^Q, i=1,2,...,n\}$ be the collection of fuzzy automata orbit - α - ψ^* -closed subsystems with $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(FA\mathcal{O}_{\phi}(\lambda_i)) = 1_Q$. Then $\{1_Q - FA\mathcal{O}_{\phi}(\lambda_i), \lambda_i \in I^Q, i = 1, 2, ..., n\}$ is the collection of fuzzy automata orbit- α - ψ^* -open subsystems with $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(1_Q - FA\mathcal{O}_{\phi}(\lambda_i)) = 0_Q$. Since (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space, $$\begin{array}{l} \mathit{FA}\mathcal{O}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co\text{-}ker}(\wedge_{i=1}^n(1_Q-\mathit{FA}\mathcal{O}_{\phi}(\lambda_i)))=0_Q\\ 1_Q-\left\{\mathit{FA}\mathcal{O}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co\text{-}ker}(\wedge_{i=1}^n(1_Q-\mathit{FA}\mathcal{O}_{\phi}(\lambda_i)))\right\}\\ =(1_Q-0_Q) \end{array}$$ $$FA\mathscr{O}_{\phi}$$ - α - ψ^* - $ker(\vee_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i)) = 1_Q$. (ii) \Rightarrow (i) On taking fuzzy complement of (ii), we get (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space. **Proposition 3.6.** Let (Q,τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q,\tau)$. Let $\lambda \in I^Q$, $FA\mathscr{O}_{\phi}(\lambda)$ be a fuzzy automata orbit subsystem in (Q,τ) . If $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathscr{O}_{\phi}(\lambda)) = 0_Q$ then $(FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda)) \neq 1_Q$, for every fuzzy automata orbit $-\alpha$ - ψ^* -open subsystem $(FA\mathscr{O}_{\phi}(\gamma), FA\mathscr{O}_{\phi}(\gamma)) \neq 1_Q$, $\gamma \in I^Q$. *Proof.* Let $FA\mathscr{O}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda))=0_Q$ and $FA\mathscr{O}_{\phi}(\gamma)\neq 1_Q$, be a fuzzy automata orbit- α - ψ^* -open subsystem. As a contrary assume that, $$FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda) = 1_{Q},$$ ``` for every fuzzy automata orbit-\alpha-\psi^*-open subsystem FA\mathcal{O}_{\phi}(\gamma), FA\mathcal{O}_{\phi}(\gamma) \neq 1_O. Then, FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda) = implies that 1_O - \{FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda)\} =1_{Q}-1_{Q}, and so \{1_Q - FA\mathcal{O}_{\phi}(\gamma)\} \wedge \{1_Q - FA\mathcal{O}_{\phi}(\lambda)\} = 0_Q, thus 1_O - FA \mathcal{O}_{\phi}(\gamma) \leq 1_Q - \{1_Q - FA\mathscr{O}_{\phi}(\lambda)\},\, 1_O - FA \mathcal{O}_{\phi}(\gamma) therefore \leq FA\mathscr{O}_{\phi}(\lambda), FA\mathcal{O}_{\phi}-\alpha-\psi*-co-ker(1_O - FA\mathcal{O}_{\phi}(\gamma)) Hence \leq FA\mathscr{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathscr{O}_{\phi}(\lambda)). By assumption, FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(1_O - FA\mathcal{O}_{\phi}(\gamma)) = 0_O. Since 1_O - FA \mathcal{O}_{\phi}(\gamma) is fuzzy automata orbit-\alpha-\psi^*-closed subsystem, FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(1_Q - FA\mathcal{O}_{\phi}(\gamma)) =1_Q - FA\mathcal{O}_{\phi}(\gamma). Thus, 1_Q - FA\mathcal{O}_{\phi}(\gamma) = 0_Q. This implies that, FA\mathcal{O}_{\phi}(\gamma) = 1_Q, which is a contradiction to our assump- tion. Hence FA\mathcal{O}_{\phi}(\gamma) \vee FA\mathcal{O}_{\phi}(\lambda) \neq 1_{O}. ``` # 4. Conclusion In this paper, the concept of fuzzy automata orbit structure spaces is introduced and some of its properties are studied. Also, the concepts of fuzzy automata orbit- α - ψ *-co-kernel subsystems, fuzzy automata orbit- α - ψ *-kernel subsystems, fuzzy automata orbit- α - ψ *-meager* subsystems and fuzzy automata orbit- α - ψ *-comeager* subsystems are introduced. The notion of fuzzy automata orbit- α - ψ *-co-kernel spaces is introduced and some equivalent statements are discussed. #### References - [1] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, 24(1968), 182–190. - P. Das, A fuzzy topology associated with a fuzzy finite state machine, *Fuzzy Sets and Systems*, 105(1999), 469–479. - [3] R. L. Devaney, *Introduction to Chaotic Dynamical Systems*, Redwood City, Calif, Addison-Wesley, 1986. - [4] D. S. Malik and J. N. Morderson, Algebraic fuzzy automata theory, *Arabian J. Sci. Eng.*, 25(2000), 23–50. - [5] A. K. Srivastava and S. P. Tiwari, A topology for fuzzy automata, Proc. AFSS International Conference on Fuzzy Systems, Lecture Notes in Artificial Intelligence, Springer-Verlag, 2275 (2002), 485–491. - [6] A. K. Srivastava and S. P. Tiwari, On relationships among fuzzy approximation operators, fuzzy topology and fuzzy automata, *Fuzzy Sets and Systems*, 138(2003), 197–204. - [7] W. G. Wee, On Generalizations of Adaptive Algorithm and Application of Fuzzy Sets Concept to Pattern Classification, Ph. D. Thesis, Purdue University, 1967. - ^[8] L. A. Zadeh, Fuzzy Sets, *Information and Control*, 8(1965), 338–353. ******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********