

Fuzzy α - ψ *-operator in fuzzy automata orbit structure spaces

M. Rowthri¹* and B. Amudhambigai²

Abstract

In this paper, the notion of fuzzy automata orbit structure spaces is introduced and the concepts of fuzzy automata orbit- α - ψ *-open subsystems and fuzzy automata orbit- α - ψ *-closed subsystems are studied with suitable examples. Also, the notions of fuzzy automata orbit- α - ψ *-co-kernel subsystems, fuzzy automata orbit- α - ψ *-meager* subsystems and fuzzy automata orbit- α - ψ *-comeager* subsystems are introduced and some of their properties are studied.

Keywords

Fuzzy automata orbit structure spaces, $FA\mathscr{O}_{\phi}$ - α - ψ^* -open subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -closed subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -meager* subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-kernel subsystems, $FA\mathscr{O}_{\phi}$ - α - ψ^* -comeager* subsystems and fuzzy automata orbit- α - ψ^* -co-kernel spaces.

AMS Subject Classification

54A40, 03E72.

Article History: Received 12 April 2020; Accepted 14 August 2020

©2020 MJM.

Contents

1	Introduction1222
2	Preliminaries
3	Fuzzy automata orbit structure spaces1223
4	Conclusion1227
	References

1. Introduction

Zadeh [8] initiated fuzzy set in 1965. In 1968, Chang [1] characterized fuzzy topological space. The notion of an automaton was first fuzzified by Wee [7]. Later, the concepts of fuzzy subsystems and strong fuzzy subsystems of a fuzzy finite state machine (briefly, ffsm) were introduced and studied by Malik and Mordeson [4]. The concept of orbit function in general metric space was introduced by Devaney[3]. In this paper, the notion of fuzzy automata orbit structure spaces is introduced. Also, the notions of fuzzy automata orbit- α - ψ *-co-kernel subsystems, fuzzy automata orbit- α - ψ *-meager* subsystems and fuzzy automata orbit- α - ψ *-comeager* subsystems are introduced and some of their properties are studied.

2. Preliminaries

In this section, some basic concepts of fuzzy automaton, fuzzy orbit under the function, etc. have been recalled. Also, related results and propositions are collected from various research articles

Definition 2.1. [8] Let X be a space of points (objects). A fuzzy set A in X is characterized by a membership function $f_A: X \to [0,1]$.

Definition 2.2. [5] A fuzzy automaton is a triple $M = (Q, X, \delta)$, where Q is a set(of states of M), X is a monoid (the input monoid of M), whose identity shall be denoted as e, and δ is a fuzzy subset of $Q \times X \times Q$, i.e., a map δ : $Q \times X \times Q \rightarrow [0, 1]$, such that $\forall q, p \in Q, \forall x, y \in X$.

(i) $\delta(q, e, p) = 1$ or 0, according as q = p or $q \neq p$,

(ii) $\delta(q, xy, p) = \bigvee \{ \delta(q, x, r) \land \delta(r, y, p) : r \in Q \}.$

Notation 2.1. For any non-empty set of states Q, I^Q denotes the collection of all functions from Q into I, where I is the unit interval [0,1].

Definition 2.3. [6] $\lambda \in I^Q$ is called a fuzzy subsystem of (Q, X, δ) if

$$\lambda(q) \ge \lambda(p) \land \delta(p, x, q), \forall p, q \in Q, x \in X.$$

^{1,2} Department of Mathematics, Sri Sarada College for Women, Salem-636016, Tamil Nadu, India.

^{*}Corresponding author: 1 rowth3.m@gmail.com; 2 rbamudha@yahoo.co.in

Proposition 2.1. [6] The function $c:I^Q\to I^Q$ defined as $c(\lambda)(q)=\bigvee\big\{\bigvee\big\{\lambda(p)\land\delta(p,x,q):x\in X\big\}:p\in Q\big\},$ $\forall\lambda\in I^Q, \forall q\in Q.$ is a kuratowski saturated fuzzy closure operator on Q.

Proposition 2.2. [6] $\lambda \in I^Q$ is a fuzzy subsystem of (Q, X, δ) iff $c(\lambda) = \lambda$. (*i.e.*, iff λ is closed with respect to the fuzzy topology induced by c on Q)

Definition 2.4. [2] A fuzzy subset λ of Q is said to be a generating fuzzy set of M if $c(\lambda) = 1$.

Definition 2.5. [3] Orbit of a point x in X under the mapping f is of

$$O_f(x) = \{x, f(x), f^2(x), \dots\}.$$

3. Fuzzy automata orbit structure spaces

In this section, fuzzy automata orbit structure spaces, $FA\mathcal{O}_{\phi}$ - α - ψ^* -co-kernel subsystems, $FA\mathcal{O}_{\phi}$ - α - ψ^* -kernel subsystems, $FA\mathcal{O}_{\phi}$ - α - ψ^* -comeager* subsystems and fuzzy automata orbit α - ψ^* -co-kernel spaces are introduced and some of their properties are discussed. Further, some equivalent statements are established.

Definition 3.1. Let $M = (Q, X, \delta)$ be a fuzzy automaton, where Q is a set (of states of M), X is a monoid (the input monoid of M), whose identity shall be denoted as e, and δ is a fuzzy subset of $Q \times X \times Q$, *i.e.*, a map $\delta : Q \times X \times Q \rightarrow [0,1]$, such that $\forall q, p \in Q, \forall x, y \in X$.

- (i) $\delta(q, e, p) = 1$ or 0, according as q = p or $q \neq p$ respectively.
- (ii) $\delta(q, xy, p) = \bigvee \{ \delta(q, x, r) \land \delta(r, y, p) : r \in Q \}.$

Let $\phi:I^Q\to I^Q$ be any mapping. For any $\lambda\in I^Q$, the fuzzy automata orbit subsystem under the mapping ϕ is denoted by $FA\mathscr{O}_{\phi}(\lambda)$ and defined as $FA\mathscr{O}_{\phi}(\lambda)=\{\lambda\wedge\phi(\lambda)\wedge\phi^2(\lambda)\wedge\ldots\}\in I^Q$. For all $\mu\in I^Q$ and $q\in Q$, $c(\mu)(p)=\vee_{q\in Q}\ \{\vee_{x\in X}\ \{\ (\mu)(q)\wedge\delta(q,x,p)\}\}$ is a Kuratowski saturated fuzzy closure operator on Q. Let $\tau=\{FA\mathscr{O}_{\phi}(\mu)\in I^Q:c(1_Q-FA\mathscr{O}_{\phi}(\mu))=(1_Q-FA\mathscr{O}_{\phi}(\mu)),$ where $(1_Q-FA\mathscr{O}_{\phi}(\mu))$ is the fuzzy complement of $FA\mathscr{O}_{\phi}(\mu)\}$ be the collection of fuzzy subsystems which satisfies the following axioms :

- (i) $0_O, 1_O \in \tau$;
- (ii) If $\gamma_1, \gamma_2 \in I^Q$ and $FA\mathscr{O}_{\phi}(\gamma_1), FA\mathscr{O}_{\phi}(\gamma_2) \in \tau$, then $FA\mathscr{O}_{\phi}(\gamma_1) \wedge FA\mathscr{O}_{\phi}(\gamma_2) \in \tau$;
- (iii) If $\gamma_i \in I^Q$ and $FA\mathscr{O}_{\phi}(\gamma_i) \in \tau$ for each $i \in J$, where J is an indexed set, then $\vee_{i \in J} FA\mathscr{O}_{\phi}(\gamma_i) \in \tau$.

Then, the ordered pair (Q,τ) is said to be a fuzzy automata orbit structure space iff there exists a fuzzy automaton (Q,X,δ) such that τ is a fuzzy topology associated with (Q,X,δ) . Moreover, the members of τ are called the fuzzy automata orbit open subsystems and their fuzzy complements are called the fuzzy automata orbit closed subsystems.

Notation 3.1. Throughout this paper, 0_Q takes the membership value $\mathcal{M}_{0_Q}(q) = 0$, for all $q \in Q$ and 1_Q takes the membership value $\mathcal{M}_{1_Q}(q) = 1$, for all $q \in Q$.

Example 3.1. Let $M = (Q, X, \delta)$ be a fuzzy automaton, where $Q = X = \{0, 1, 2, \dots\}$ and $\delta : Q \times X \times Q \rightarrow [0, 1]$ be given by

$$\delta(q,0,p) = \begin{cases} 1, & \text{if } q = p \\ 0, & \text{if } q \neq p \end{cases}$$

with $\delta(q, x_0, p) = 0.35$, $\delta(q, x_0, q) = 0.75$, $\delta(p, x_0, p) = 0.8$, $\delta(p, x_0, q) = 0.7$ for fixed $x_0 \in X(x_0 \neq 0)$ and for fixed $p, q \in Q$. For other $p, q \in Q$ and $x \in X$, $\delta(p, x, q) = 0$. Let $\lambda, \mu \in I^Q$ be defined as follows: $\lambda(1) = 0.45$, $\lambda(2) = 0.55$, $\mu(1) = 0.33$, $\mu(2) = 0.5$ and for other $r \in Q$, $r \neq 1, 2$, $\lambda(r) = 0$, $\mu(r) = 0$. Let $\phi: I^Q \to I^Q$ be a mapping defined by

$$\eta_{\phi}(x) = \begin{cases}
\eta(2), & \text{if } x = 1, \\
\eta(1), & \text{if } x = 2, \\
0, & \text{otherwise}
\end{cases}$$

for all $\eta \in I^X$. Then $FA\mathscr{O}_\phi(\lambda)(1) = 0.45$, $FA\mathscr{O}_\phi(\lambda)(2) = 0.45$, $FA\mathscr{O}_\phi(\mu)(1) = 0.33$, $FA\mathscr{O}_\phi(\mu)(2) = 0.33$. The Kuratowski saturated fuzzy closure operator $c:I^Q\to I^Q$ on Q is defined as

$$c(\mu)(p) = \bigvee_{q \in Q} \{ \bigvee_{x \in X} \{ (\mu)(q) \land \delta(q, x, p) \} \}.$$

It is clear that
$$\begin{split} c(FA\mathscr{O}_{\phi}(\lambda)) &= FA\mathscr{O}_{\phi}(\lambda),\\ c(FA\mathscr{O}_{\phi}(\mu)) &= FA\mathscr{O}_{\phi}(\mu),\\ c(FA\mathscr{O}_{\phi}(0_Q)) &= FA\mathscr{O}_{\phi}(0_Q) = 0_Q\\ \text{and } c(FA\mathscr{O}_{\phi}(1_Q)) &= FA\mathscr{O}_{\phi}(1_Q) = 1_Q. \end{split}$$

Let $\tau = \{ 0_Q, 1_Q, 1_Q - FA\mathcal{O}_{\phi}(\lambda), 1_Q - FA\mathcal{O}_{\phi}(\mu) \}$. Then τ is a fuzzy automata orbit structure on Q and hence the ordered pair (Q, τ) is a fuzzy automata orbit structure space.

Definition 3.2. Let (Q, τ) be a fuzzy automata orbit structure space. For any $FA\mathscr{O}_{\phi}(\mu)$, $\mu \in I^Q$, the fuzzy automata orbit interior of $FA\mathscr{O}_{\phi}(\mu)$ (briefly, $FA\mathscr{O}_{\phi}int(FA\mathscr{O}_{\phi}(\mu))$) is defined by

 $FA\mathscr{O}_{\phi}int(FA\mathscr{O}_{\phi}(\mu)) = \vee \{\sigma : \sigma \leq FA\mathscr{O}_{\phi}(\mu) \text{ and each } \sigma \in I^{Q} \text{ is a fuzzy automata orbit open subsystem in } (Q, \tau) \}.$

Definition 3.3. Let (Q, τ) be a fuzzy automata orbit structure space. For any $FA\mathcal{O}_{\phi}(\mu)$, $\mu \in I^Q$, the fuzzy automata orbit closure of $FA\mathcal{O}_{\phi}(\mu)$ (briefly, $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}(\mu))$) is defined by

 $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}(\mu)) = \wedge \{\sigma : \sigma \geq FA\mathcal{O}_{\phi}(\mu) \text{ and each } \sigma \in I^{\mathcal{Q}} \text{ is a fuzzy automata orbit closed subsystem in } (\mathcal{Q}, \tau) \}.$

Definition 3.4. Let (Q, τ) be a fuzzy automata orbit structure space. For any $\mu \in I^Q$, $FA\mathcal{O}_{\phi}(\mu)$ is said to be a fuzzy automata orbit- α -open subsystem in (Q, τ) if $FA\mathcal{O}_{\phi}(\mu) \leq FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}(\mu))))$ and the fuzzy complement of fuzzy automata orbit- α -open subsystem is said to be a fuzzy automata orbit- α -closed subsystem.

Notation 3.2. Let (Q, τ) be a fuzzy automata orbit structure space. Then $FA\mathcal{O}_{\phi}$ - $\alpha O(Q, \tau)$ will denote the family of all fuzzy automata orbit- α -open subsystems in (Q, τ) and $FA\mathcal{O}_{\phi}$ - $\alpha C(Q, \tau)$ will denote the family of all fuzzy automata orbit- α -closed subsystems in (Q, τ) .

Definition 3.5. Let (Q, τ) be a fuzzy automata orbit structure space. A function

$$\psi^* : FA \mathcal{O}_{\phi} - \alpha O(O, \tau) \to I^Q$$

is called a fuzzy operator on $FA\mathscr{O}_{\phi}-\alpha O(Q,\tau)$, if for each $FA\mathscr{O}_{\phi}(\mu)\in FA\mathscr{O}_{\phi}-\alpha O(Q,\tau)$, $\mu\in I^Q$ with $FA\mathscr{O}_{\phi}(\mu)\neq 0_Q$, $FA\mathscr{O}_{\phi}int(FA\mathscr{O}_{\phi}(\mu))\leq \psi^*(FA\mathscr{O}_{\phi}(\mu))$ and $\psi^*(FA\mathscr{O}_{\phi}(0_Q))=0_Q$.

Remark 3.1. It is easy to check that some examples of fuzzy operators on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q,\tau)$ are the well known fuzzy operators viz. $FA\mathcal{O}_{\phi}$ int, $FA\mathcal{O}_{\phi}$ int $(FA\mathcal{O}_{\phi}cl)$, $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int)$, $FA\mathcal{O}_{\phi}$ int $(FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int))$ and $FA\mathcal{O}_{\phi}cl(FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}cl))$.

Definition 3.6. Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. Then any fuzzy automata orbit- α -open subsystem $FA\mathscr{O}_{\phi}(\mu) \in I^X$ is called fuzzy automata orbit- α - ψ^* -open if $FA\mathscr{O}_{\phi}(\mu) \leq \psi^*(FA\mathscr{O}_{\phi}(\mu))$. The fuzzy complement of a fuzzy automata orbit- α - ψ^* -open subsystem is said to be a fuzzy automata orbit- α - ψ^* -closed subsystem.

Definition 3.7. Let (Q,τ) be a fuzzy automata orbit structure space and and ψ^* be a fuzzy operator on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q,\tau)$. Let $FA\mathcal{O}_{\phi}(\lambda) \in I^Q$ where $\lambda \in I^Q$. Then the fuzzy automata orbit- α - ψ^* -co-kernel of $FA\mathcal{O}_{\phi}(\lambda)$ is denoted by $FA\mathcal{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathcal{O}_{\phi}(\lambda))$ and defined as $FA\mathcal{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathcal{O}_{\phi}(\lambda))$ = $\vee \{FA\mathcal{O}_{\phi}(\mu) \in I^Q : FA\mathcal{O}_{\phi}(\mu) \text{ is fuzzy automata}$ orbit- α - ψ^* -closed and $FA\mathcal{O}_{\phi}(\mu) \leq FA\mathcal{O}_{\phi}(\lambda)\}$.

Definition 3.8. Let (Q,τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}-\alpha O(Q,\tau)$. Let $FA\mathscr{O}_{\phi}(\lambda) \in I^Q$ where $\lambda \in I^Q$. Then the fuzzy automata orbit- α - ψ^* -kernel of $FA\mathscr{O}_{\phi}(\lambda)$ is denoted by $FA\mathscr{O}_{\phi}-\alpha$ - ψ^* - $ker(FA\mathscr{O}_{\phi}(\lambda))$ and defined as $FA\mathscr{O}_{\phi}-\alpha$ - ψ^* - $ker(FA\mathscr{O}_{\phi}(\lambda)) = \wedge \{FA\mathscr{O}_{\phi}(\mu) \in I^Q : FA\mathscr{O}_{\phi}(\mu) \text{ is fuzzy automata orbit } -\alpha$ - ψ^* -open and $FA\mathscr{O}_{\phi}(\lambda) \leq FA\mathscr{O}_{\phi}(\mu)\}$.

Remark 3.2. Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q, \tau)$. Let $FA\mathcal{O}_{\phi}(\lambda) \in I^X$ be a fuzzy automata orbit subsystem in (Q, τ) .

- (i) $(1_Q FA\mathcal{O}_{\phi} \alpha \psi^* ker(FA\mathcal{O}_{\phi}(\lambda))) = FA\mathcal{O}_{\phi} \alpha \psi^* co-ker(1_Q (FA\mathcal{O}_{\phi}(\lambda))).$
- (ii) $(1_Q FA\mathcal{O}_{\phi} \alpha \psi^* co ker(FA\mathcal{O}_{\phi}(\lambda)))$ = $FA\mathcal{O}_{\phi} - \alpha - \psi^* - ker(1_Q - (FA\mathcal{O}_{\phi}(\lambda))).$
- (iii) $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(0_Q) = 0_Q$ and $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(0_Q) = 0_Q$.

- (iv) $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(1_Q) = 1_Q$ and $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(1_Q) = 1_Q$.
- (v) If $FA\mathcal{O}_{\phi}(\lambda)$ is a fuzzy automata orbit $-\alpha$ - ψ^* -open subsystem then

$$FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}(\lambda))=FA\mathcal{O}_{\phi}(\lambda).$$

(vi) If $FA\mathcal{O}_{\phi}(\lambda)$ is a fuzzy automata orbit $-\alpha$ - ψ^* -closed subsystem then

$$FA\mathcal{O}_{\phi} - \alpha - \psi^* - co - ker(FA\mathcal{O}_{\phi}(\lambda)) = FA\mathcal{O}_{\phi}(\lambda).$$

(vii) $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathcal{O}_{\phi}(\lambda_1) \vee FA\mathcal{O}_{\phi}(\lambda_2))$

$$= \mathit{FAO}_{\phi} \text{-}\alpha \text{-}\psi^* \text{-}\mathit{co-ker}(\mathit{FAO}_{\phi}(\lambda_1)) \vee \mathit{FAO}_{\phi} \text{-}\alpha \text{-}\psi^* \text{-}\mathit{co-ker}(\mathit{FAO}_{\phi}(\lambda_2)).$$

(viii) $FA\mathscr{O}_{\phi}$ - α - ψ *- $ker(FA\mathscr{O}_{\phi}(\lambda_1) \wedge FA\mathscr{O}_{\phi}(\lambda_2))$

$$= FA \mathcal{O}_{\phi} - \alpha - \psi^* - ker(FA \mathcal{O}_{\phi}(\lambda_1)) \wedge FA \mathcal{O}_{\phi} - \alpha - \psi^* - ker(FA \mathcal{O}_{\phi}(\lambda_2)).$$

Proof The proof is simple.

Definition 3.9. Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. Then (Q, τ) is said to be a fuzzy automata orbit - α - ψ^* -co-kernel space if, for any finite collection $\{FA\mathscr{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i=1,2,...,n, \text{ where each } FA\mathscr{O}_{\phi}(\lambda_i) \text{ is a fuzzy automata orbit open subsystem in } (Q,\tau)\}, FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$, i=1,2,...,n and $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(\bigwedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$.

Example 3.2. Let $M = (Q, X, \delta)$ be a fuzzy automaton, where $Q = X = \{0, 1, 2, \ldots\}$ and $\delta : Q \times X \times Q \rightarrow [0, 1]$ be given by

$$\delta(q,0,p) = \left\{ \begin{array}{ll} 1, & \text{if } q = p \\ 0, & \text{if } q \neq p \end{array} \right.$$

with $\delta(q, x_0, p) = 0.83$, $\delta(q, x_0, q) = 0.85$, $\delta(p, x_0, p) = 0.93$, $\delta(p, x_0, q) = 0.9$ for fixed $x_0 \in X(x_0 \neq 0)$ and for fixed $p, q \in Q$. For other $p, q \in Q$ and $x \in X$, $\delta(p, x, q) = 0$. Let $\lambda, \mu \in I^Q$ be defined as follows: $\lambda(1) = 0.77$, $\lambda(2) = 0.8$, $\mu(1) = 0.65$, $\mu(2) = 0.75$ and for other $r \in Q$, $r \neq 1, 2, \lambda(r) = 0$, $\mu(r) = 0$. Let $\phi: I^Q \to I^Q$ be a mapping defined by

$$\eta_{\phi}(x) = \begin{cases} \eta(2), & \text{if } x = 1, \\ \eta(1), & \text{if } x = 2, \\ 0, & \text{otherwise} \end{cases}$$

for all $\eta \in I^X$. Then $FA\mathscr{O}_\phi(\lambda)(1) = 0.77$, $FA\mathscr{O}_\phi(\lambda)(2) = 0.77$, $FA\mathscr{O}_\phi(\mu)(1) = 0.65$, $FA\mathscr{O}_\phi(\mu)(2) = 0.65$ The Kuratowski saturated fuzzy closure operator

$$c(\mu)(p) = \vee_{q \in O} \{ \vee_{x \in X} \{ (\mu)(q) \wedge \delta(q, x, p) \} \}.$$

It is clear that $c(FA\mathcal{O}_{\phi}(\lambda))$ = $FA\mathcal{O}_{\phi}(\lambda)$, $c(FA\mathcal{O}_{\phi}(\mu))$ = $FA\mathcal{O}_{\phi}(\lambda)$, $c(FA\mathcal{O}_{\phi}(\mu))$ = $FA\mathcal{O}_{\phi}(\mu)$, $c(FA\mathcal{O}_{\phi}(0_Q)) = FA\mathcal{O}_{\phi}(0_Q) = 0_Q$ and $c(FA\mathcal{O}_{\phi}(1_Q)) = FA\mathcal{O}_{\phi}(1_Q) = 1_Q$. Let $\tau = \{0_Q, 1_Q, 1_Q - FA\mathcal{O}_{\phi}(\lambda), 1_Q - FA\mathcal{O}_{\phi}(\mu)\}$. Then τ is a fuzzy automata orbit structure on Q and hence the ordered pair (Q,τ) is a fuzzy automata orbit structure space. Thus the collection $\{FA\mathcal{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i = 1,2 \text{ is a fuzzy automata orbit } -\alpha\text{-open subsystems in } (Q,\tau)\}$. Let $\psi^* = FA\mathcal{O}_{\phi}int(FA\mathcal{O}_{\phi}cl)$. Then $FA\mathcal{O}_{\phi}(\lambda_i)$ is a fuzzy automata orbit $-\alpha$ - ψ^* -open subsystems in $(Q,\tau)\}$. Thus

$$FA\mathcal{O}_{\phi}$$
- α - ψ^* - co - $ker(FA\mathcal{O}_{\phi}(\lambda_i)) = 0_Q$

and

$$\mathit{FAO}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co-ker}(\bigwedge_{i=1,2}\mathit{FAO}_{\phi}(\lambda_i))=0_Q.$$

Hence (Q, τ) is a fuzzy automata orbit $-\alpha - \psi^*$ -co-kernel space.

Definition 3.10. Let (Q, τ) be any fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. For any $\mu \in I^Q$, $FA\mathscr{O}_{\phi}(\mu)$ is said to be a fuzzy automata orbit- α - ψ^* - O_{δ} subsystem (briefly, $FA\mathscr{O}_{\phi}$ - α - ψ^* - $O_{\delta}S$) if

$$FA\mathscr{O}_{\phi}(\mu) = \wedge_{i=1}^{n} \{FA\mathscr{O}_{\phi}(\mu_{i}), \mu_{i} \in I^{Q} : \text{each } FA\mathscr{O}_{\phi}(\mu_{i}) \text{ is a fuzzy automata orbit } -\alpha - \psi^{*}\text{-open subsystem } \}.$$

The fuzzy complement of a fuzzy automata orbit- α - ψ^* - O_δ subsystem is fuzzy automata orbit- α - ψ^* - C_σ subsystem (briefly, $FA\mathcal{O}_{\phi}$ - α - ψ^* - $C_\sigma S$).

Proposition 3.1. Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathcal{O}_{\phi}$ - $\alpha O(Q, \tau)$. Then the following statements are equivalent:

- (i) (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space.
- (ii) For any fuzzy automata orbit- α - ψ^* -open subsystem $FA\mathscr{O}_{\phi}(\lambda_i)$ in (Q,τ) where $\lambda_i \in I^Q, i=1,2,...,n$ and for every fuzzy automata orbit $-\alpha$ - ψ^* - O_{δ} subsystem $FA\mathscr{O}_{\phi}(\mu)$ in (Q,τ) where $\mu \in I^Q$, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda_i)) = 0_Q$ and $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\mu)) = 0_Q$.
- (iii) For any fuzzy automata orbit $-\alpha$ - ψ^* -open subsystem $FA\mathscr{O}_{\phi}(\lambda_i)$ in (Q,τ) where $\lambda_i \in I^Q, i=1,2,...,n$ and for every fuzzy automata orbit- α - ψ^* - C_{σ} subsystem $1_Q (FA\mathscr{O}_{\phi}(\mu))$ in (Q,τ) where $\mu \in I^Q$, $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(1_Q FA\mathscr{O}_{\phi}(\lambda_i)) = 1_Q$ and $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(1_Q FA\mathscr{O}_{\phi}(\mu)) = 1_Q$.

Proof. (i) \Rightarrow (ii)

Let (Q, τ) is a fuzzy automata orbit co-kernel space. Then for any finite collection $\{FA\mathscr{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i=1,2,...,n,$ where each $FA\mathscr{O}_{\phi}(\lambda_i)$ is fuzzy automata orbit- α - ψ *-open subsystem in $(Q, \tau)\}$, $FA\mathscr{O}_{\phi}$ - α - ψ *-co- $ker(FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$, i=1,2,...,n and $FA\mathscr{O}_{\phi}$ - α - ψ *-co- $ker(\bigwedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$.

Let $FA\mathscr{O}_{\phi}(\mu) \in I^{Q}$ be a $FA\mathscr{O}_{\phi}$ - α - ψ^{*} - $O_{\delta}S$. By Definition 3.10.

$$FA\mathscr{O}_{\phi}(\mu)$$

$$= \bigwedge_{i=1}^{n} FA\mathscr{O}_{\phi}(\lambda_{i}), \lambda_{i} \in I^{Q}$$

$$FA\mathscr{O}_{\phi} - \alpha - \psi^{*} - co - ker(FA\mathscr{O}_{\phi}(\mu))$$

$$= FA\mathscr{O}_{\phi} - \alpha - \psi^{*} - co - ker(\wedge_{i=1}^{n} FA\mathscr{O}_{\phi}(\lambda_{i}))$$

Since (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(\wedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i)) = 0_Q$. Then $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathscr{O}_{\phi}(\mu)) = 0_Q$. (ii) \Rightarrow (iii)

For $\lambda_i \in I^Q$, $i \in J$, let $FA\mathscr{O}_{\phi}(\lambda_i)$ be any fuzzy automata orbit- α - ψ^* -open subsystem in (Q,τ) with $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(1_Q-FA\mathscr{O}_{\phi}(\lambda_i))=1_Q$. Thus $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda_i))=0_Q$. By (ii), for every fuzzy automata orbit $-\alpha$ - ψ^* - O_{δ} subsystem $FA\mathscr{O}_{\phi}(\mu)$ in (Q,τ) where $(\mu \in I^Q)$, $FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\mu))=0_Q$. Then

$$\begin{aligned} \mathbf{1}_{Q} - \mathit{FA}\mathcal{O}_{\phi} - \alpha - \psi^{*} - \mathit{co-ker}(\mathit{FA}\mathcal{O}_{\phi}(\mu)) &= \mathbf{1}_{Q} \\ \mathit{FA}\mathcal{O}_{\phi} - \alpha - \psi^{*} - \mathit{ker}(\mathbf{1}_{Q} - \mathit{FA}\mathcal{O}_{\phi}(\mu)) &= \mathbf{1}_{Q} \end{aligned}$$

 $(iii) \Rightarrow (i)$

Let $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(1_Q - FA\mathcal{O}_{\phi}(\lambda_i)) = 1_Q$, $\lambda_i \in I^Q$, i = 1, 2, ..., n. This implies that,

$$FA\mathcal{O}_{\phi}co-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}(\lambda_i))=0_O. \tag{3.1}$$

Let $FA\mathscr{O}_{\phi}(\mu)$ be $FA\mathscr{O}_{\phi}-\alpha-\psi^*-O_{\delta}S$. Then $FA\mathscr{O}_{\phi}(\mu)=\wedge_{i=1}^nFA\mathscr{O}_{\phi}(\lambda_i)$, where each $FA\mathscr{O}_{\phi}(\lambda_i)$ is a fuzzy automata orbit- $\alpha-\psi^*$ -open subsystem in (Q,τ) . Thus $1_Q-FA\mathscr{O}_{\phi}(\mu)$) is $FA\mathscr{O}_{\phi}-\alpha-\psi^*-C_{\sigma}S$. By (iii), $FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(1_Q-FA\mathscr{O}_{\phi}(\mu))=1_Q$. Then $1_Q-(FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(1_Q-FA\mathscr{O}_{\phi}(\mu)))=1_Q-1_Q$. Thus $FA\mathscr{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathscr{O}_{\phi}(\mu))=0_Q$. Hence

$$FA\mathscr{O}_{\phi} - \alpha - \psi^* - co - ker(\wedge_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i)) = 0_O. \tag{3.2}$$

From Equations 3.1 and 3.2, we have (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space.

Proposition 3.2. Let (Q, τ) be a fuzzy automata orbit- α - ψ^* -co-kernel space where ψ^* is a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. For $\mu \in I^Q$, if $FA\mathscr{O}_{\phi}(\mu) \in I^Q$, is $FA\mathscr{O}_{\phi}$ - α - ψ^* - $C_{\sigma}S$, then $FA\mathscr{O}_{\phi}(\mu) \wedge \{1_Q - FA\mathscr{O}_{\phi}(\gamma)\} \neq 0_Q$, for every fuzzy automata orbit- α - ψ^* -open subsystem $FA\mathscr{O}_{\phi}(\gamma) \neq 1_Q$, $\gamma \in I^Q$ of (Q, τ) .

Proof. Let (Q, τ) be a fuzzy automata orbit- α - ψ *-co-kernel space. Then for any finite collection $\{FA\mathscr{O}_{\phi}(\lambda_i): \lambda_i \in I^Q \text{ and } i=1,2,...,n \text{ , where each } FA\mathscr{O}_{\phi}(\lambda_i) \text{ is a fuzzy automata orbit-}\alpha$ - ψ *-open subsystem in (Q,τ) },

 $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(\bigwedge_{i=1}^n FA\mathcal{O}_{\phi}(\lambda_i)) = 0_Q$. Let $FA\mathcal{O}_{\phi}(\mu)$ be $FA\mathcal{O}_{\phi}$ - α - ψ^* - $C_{\sigma}S$. Then by Definition 3.10,

$$\begin{split} \mathit{FA}\mathscr{O}_{\phi}(\mu) &= \vee_{i=1}^{n} \mathit{FA}\mathscr{O}_{\phi}(\lambda_{i}), \lambda_{i} \in \mathit{I}^{\mathcal{Q}} \\ \text{then} \quad \left(1_{\mathcal{Q}} - \mathit{FA}\mathscr{O}_{\phi}(\mu)\right) &= 1_{\mathcal{Q}} - \vee_{i=1}^{n} \mathit{FA}\mathscr{O}_{\phi}(\lambda_{i}) \\ \text{thus} \quad \left(1_{\mathcal{Q}} - \mathit{FA}\mathscr{O}_{\phi}(\mu)\right) &= \wedge_{i=1}^{n} \left(1_{\mathcal{Q}} - \mathit{FA}\mathscr{O}_{\phi}(\lambda_{i})\right) \end{split}$$

Since $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(\wedge_{i=1}^n \{1_Q - FA\mathcal{O}_{\phi}(\lambda_i)\}) = 0_Q$,

$$FA\mathcal{O}_{\phi} - \alpha - \psi^* - co - ker(1_Q - (FA\mathcal{O}_{\phi}(\mu))) = 0_Q$$
 (3.3)

As a contrary, suppose that

$$\begin{split} \mathit{FA}\mathscr{O}_\phi(\mu) \wedge \big\{ \mathbf{1}_Q - \mathit{FA}\mathscr{O}_\phi(\gamma) \big\} &= \mathbf{0}_Q \\ \text{then,} \\ \mathbf{1}_Q - \big(\mathit{FA}\mathscr{O}_\phi(\mu) \wedge (\mathbf{1}_Q - \mathit{FA}\mathscr{O}_\phi(\gamma)) \big) &= (\mathbf{1}_Q - \mathbf{0}_Q) \\ \text{and therefore} \\ (\mathbf{1}_Q - \mathit{FA}\mathscr{O}_\phi(\mu)) \vee \mathit{FA}\mathscr{O}_\phi(\gamma) &= \mathbf{1}_Q. \end{split}$$

 1_Q {by 3.3}; therefore $FA\mathscr{O}_{\phi}-\alpha-\psi^*$ -co-ker $\{FA\mathscr{O}_{\phi}(\gamma)\}=1_Q$. which is not possible as $FA\mathscr{O}_{\phi}(\gamma)\neq 1_Q$. Hence,

$$FA\mathcal{O}_{\phi}(\mu) \wedge \{1_O - FA\mathcal{O}_{\phi}(\gamma)\} \neq 0_O.$$

Definition 3.11. Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. A fuzzy automata orbit subsystem $FA\mathscr{O}_{\phi}(\lambda)$, $\lambda \in I^X$ is said to be a fuzzy automata orbit- α - ψ^* -meager* subsystem if

$$FA\mathscr{O}_{\phi}(\lambda) = \bigvee_{i=1}^{n} FA\mathscr{O}_{\phi}(\lambda_{i}), \lambda_{i} \in I^{Q}$$

with $FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(FA\mathscr{O}_{\phi}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda_i))) = 0_Q$. The fuzzy complement of a fuzzy automata orbit- α - ψ^* -meager* subsystem is a fuzzy automata orbit- α - ψ^* -comeager* subsystem.

Proposition 3.3. Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. If (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space, then for every fuzzy automata orbit- α - ψ^* -meager* subsystem $FA\mathscr{O}_{\phi}(\lambda), \lambda \in I^Q$,

$$FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(FA\mathscr{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathscr{O}_{\phi}(\lambda)))=0_O.$$

Proof. Let $FA\mathcal{O}_{\phi}(\lambda), \lambda \in I^{Q}$ be a fuzzy automata orbit- α - ψ^* -meager* subsystem. By Definition 3.11, $FA\mathcal{O}_{\phi}(\lambda) = \bigvee_{i=1}^{n} (FA\mathcal{O}_{\phi}(\lambda_{i})), \lambda_{i} \in I^{Q}$ with

$$FA\mathscr{O}_{\phi}$$
- α - ψ^* - $ker(FA\mathscr{O}_{\phi}$ - α - ψ^* - co - $ker(FA\mathscr{O}_{\phi}(\lambda_i))) = 0_Q$.

Now,
$$FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathcal{O}_{\phi}(\lambda)))$$

= $FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(\vee_{i=1}^n(FA\mathcal{O}_{\phi}(\lambda_i))))$
= $FA\mathcal{O}_{\phi}-\alpha-\psi^*-ker(0_Q)$
= 0_Q .

Hence for every fuzzy automata orbit- α - ψ^* -meager* subsystem $FA\mathscr{O}_{\phi}(\lambda), \lambda \in I^{\mathcal{Q}}$,

$$\mathit{FAO}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{ker}(\mathit{FAO}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co-ker}(\mathit{FAO}_{\phi}(\lambda))) = 0_{\mathcal{Q}}.$$

Proposition 3.4. Let (Q, τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q, \tau)$. If (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space, then for every fuzzy automata orbit- α - ψ^* -comeager* subsystem $FA\mathscr{O}_{\phi}(\lambda)$,

$$FA\mathscr{O}_{\phi}$$
- α - ψ^* - co - $ker(FA\mathscr{O}_{\phi}$ - α - ψ^* - $ker(FA\mathscr{O}_{\phi}(\lambda))) = 1_O$.

Proof. Proof is similar to the proof of Proposition 3.3.

Proposition 3.5. Let (Q,τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q,\tau)$. Then the

following statements are equivalent:

- (i) (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space.
- (ii) $FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(\vee_{i=1}^nFA\mathscr{O}_{\phi}(\lambda_i))=1_Q$, for every fuzzy automata orbit- $\alpha-\psi^*$ -closed subsystem $FA\mathscr{O}_{\phi}(\lambda_i)$, $\lambda_i\in I^Q$, i=1,2,...,n with $FA\mathscr{O}_{\phi}-\alpha-\psi^*-ker(FA\mathscr{O}_{\phi}(\lambda_i))=1_Q$.

Proof. (i)
$$\Rightarrow$$
 (ii)

Let $\{FA\mathscr{O}_{\phi}(\lambda_i) \in I^Q, \lambda_i \in I^Q, i=1,2,...,n\}$ be the collection of fuzzy automata orbit

- α - ψ^* -closed subsystems with $FA\mathcal{O}_{\phi}$ - α - ψ^* - $ker(FA\mathcal{O}_{\phi}(\lambda_i)) = 1_Q$. Then $\{1_Q - FA\mathcal{O}_{\phi}(\lambda_i), \lambda_i \in I^Q, i = 1, 2, ..., n\}$ is the collection of fuzzy automata orbit- α - ψ^* -open subsystems with $FA\mathcal{O}_{\phi}$ - α - ψ^* -co- $ker(1_Q - FA\mathcal{O}_{\phi}(\lambda_i)) = 0_Q$. Since (Q, τ) is a fuzzy automata orbit- α - ψ^* -co-kernel space,

$$\begin{array}{l} \mathit{FA}\mathcal{O}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co\text{-}ker}(\wedge_{i=1}^n(1_Q-\mathit{FA}\mathcal{O}_{\phi}(\lambda_i)))=0_Q\\ 1_Q-\left\{\mathit{FA}\mathcal{O}_{\phi}\text{-}\alpha\text{-}\psi^*\text{-}\mathit{co\text{-}ker}(\wedge_{i=1}^n(1_Q-\mathit{FA}\mathcal{O}_{\phi}(\lambda_i)))\right\}\\ =(1_Q-0_Q) \end{array}$$

$$FA\mathscr{O}_{\phi}$$
- α - ψ^* - $ker(\vee_{i=1}^n FA\mathscr{O}_{\phi}(\lambda_i)) = 1_Q$. (ii) \Rightarrow (i)

On taking fuzzy complement of (ii), we get (Q, τ) is a fuzzy automata orbit- α - ψ *-co-kernel space.

Proposition 3.6. Let (Q,τ) be a fuzzy automata orbit structure space and ψ^* be a fuzzy operator on $FA\mathscr{O}_{\phi}$ - $\alpha O(Q,\tau)$. Let $\lambda \in I^Q$, $FA\mathscr{O}_{\phi}(\lambda)$ be a fuzzy automata orbit subsystem in (Q,τ) . If $FA\mathscr{O}_{\phi}$ - α - ψ^* -co-ker $(FA\mathscr{O}_{\phi}(\lambda)) = 0_Q$ then $(FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda)) \neq 1_Q$, for every fuzzy automata orbit $-\alpha$ - ψ^* -open subsystem $(FA\mathscr{O}_{\phi}(\gamma), FA\mathscr{O}_{\phi}(\gamma)) \neq 1_Q$, $\gamma \in I^Q$.

Proof. Let $FA\mathscr{O}$ - α - ψ^* -co- $ker(FA\mathscr{O}_{\phi}(\lambda))=0_Q$ and $FA\mathscr{O}_{\phi}(\gamma)\neq 1_Q$, be a fuzzy automata orbit- α - ψ^* -open subsystem. As a contrary assume that,

$$FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda) = 1_{Q},$$


```
for every fuzzy automata orbit-\alpha-\psi^*-open subsystem FA\mathcal{O}_{\phi}(\gamma),
FA\mathcal{O}_{\phi}(\gamma) \neq 1_O. Then,
       FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda) =
implies that
                          1_O - \{FA\mathscr{O}_{\phi}(\gamma) \vee FA\mathscr{O}_{\phi}(\lambda)\}
=1_{Q}-1_{Q},
and so \{1_Q - FA\mathcal{O}_{\phi}(\gamma)\} \wedge \{1_Q - FA\mathcal{O}_{\phi}(\lambda)\} = 0_Q,
thus 1_O - FA \mathcal{O}_{\phi}(\gamma)
\leq 1_Q - \{1_Q - FA\mathscr{O}_{\phi}(\lambda)\},\,
                     1_O - FA \mathcal{O}_{\phi}(\gamma)
therefore
\leq FA\mathscr{O}_{\phi}(\lambda),
                  FA\mathcal{O}_{\phi}-\alpha-\psi*-co-ker(1_O - FA\mathcal{O}_{\phi}(\gamma))
Hence
\leq FA\mathscr{O}_{\phi}-\alpha-\psi^*-co-ker(FA\mathscr{O}_{\phi}(\lambda)).
       By assumption, FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(1_O - FA\mathcal{O}_{\phi}(\gamma)) =
0_O. Since 1_O - FA \mathcal{O}_{\phi}(\gamma) is fuzzy automata orbit-\alpha-\psi^*-closed
subsystem, FA\mathcal{O}_{\phi}-\alpha-\psi^*-co-ker(1_Q - FA\mathcal{O}_{\phi}(\gamma))
=1_Q - FA\mathcal{O}_{\phi}(\gamma). Thus, 1_Q - FA\mathcal{O}_{\phi}(\gamma) = 0_Q. This implies
that, FA\mathcal{O}_{\phi}(\gamma) = 1_Q, which is a contradiction to our assump-
tion. Hence FA\mathcal{O}_{\phi}(\gamma) \vee FA\mathcal{O}_{\phi}(\lambda) \neq 1_{O}.
```

4. Conclusion

In this paper, the concept of fuzzy automata orbit structure spaces is introduced and some of its properties are studied. Also, the concepts of fuzzy automata orbit- α - ψ *-co-kernel subsystems, fuzzy automata orbit- α - ψ *-kernel subsystems, fuzzy automata orbit- α - ψ *-meager* subsystems and fuzzy automata orbit- α - ψ *-comeager* subsystems are introduced. The notion of fuzzy automata orbit- α - ψ *-co-kernel spaces is introduced and some equivalent statements are discussed.

References

- [1] C. L. Chang, Fuzzy topological spaces, *J. Math. Anal. Appl.*, 24(1968), 182–190.
- P. Das, A fuzzy topology associated with a fuzzy finite state machine, *Fuzzy Sets and Systems*, 105(1999), 469–479.
- [3] R. L. Devaney, *Introduction to Chaotic Dynamical Systems*, Redwood City, Calif, Addison-Wesley, 1986.
- [4] D. S. Malik and J. N. Morderson, Algebraic fuzzy automata theory, *Arabian J. Sci. Eng.*, 25(2000), 23–50.
- [5] A. K. Srivastava and S. P. Tiwari, A topology for fuzzy automata, Proc. AFSS International Conference on Fuzzy Systems, Lecture Notes in Artificial Intelligence, Springer-Verlag, 2275 (2002), 485–491.
- [6] A. K. Srivastava and S. P. Tiwari, On relationships among fuzzy approximation operators, fuzzy topology and fuzzy automata, *Fuzzy Sets and Systems*, 138(2003), 197–204.
- [7] W. G. Wee, On Generalizations of Adaptive Algorithm and Application of Fuzzy Sets Concept to Pattern Classification, Ph. D. Thesis, Purdue University, 1967.
- ^[8] L. A. Zadeh, Fuzzy Sets, *Information and Control*, 8(1965), 338–353.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
