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Abstract

In this paper, the notion of fuzzy automata orbit structure spaces is introduced and the concepts of fuzzy
automata orbit-a-y*-open subsystems and fuzzy automata orbit-a-y*-closed subsystems are studied with
suitable examples. Also, the notions of fuzzy automata orbit-a-y*-co-kernel subsystems, fuzzy automata
orbit-a-y*-kernel subsystems, fuzzy automata orbit-a-y*-meager* subsystems and fuzzy automata orbit -oc-y*-
comeager* subsystems are introduced and some of their properties are studied.
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1. Introduction

Zadeh [8] initiated fuzzy set in 1965. In 1968, Chang
[1] characterized fuzzy topological space. The notion of
an automaton was first fuzzified by Wee [7]. Later, the
concepts of fuzzy subsystems and strong fuzzy sub-
systems of a fuzzy finite state machine ( briefly, ffsm )
were introduced and studied by Malik and Mordeson [4].
The concept of orbit function in general metric space was
introduced by Devaney[3]. In this paper, the notion of fuzzy
automata orbit structure spaces is introduced. Also, the no-
tions of fuzzy automata orbit-¢-y™*-co-kernel subsystems,
fuzzy automata orbit-o-y*-kernel subsystems, fuzzy au-
tomata orbit-@-y*-meager® subsystems and fuzzy automata
orbit -ot-y*-comeager® subsystems are introduced and some
of their properties are studied.

2. Preliminaries

In this section, some basic concepts of fuzzy automaton,
fuzzy orbit under the function, etc. have been recalled. Also,
related results and propositions are collected from various
research articles

Definition 2.1. [8] Let X be a space of points ( objects ). A
fuzzy set A in X is characterized by a membership function
fa:X—=10,1].

Definition 2.2. [5] A fuzzy automaton is a triple M =
(Q,X,8), where Q is a set(of states of M), X is a monoid
( the input monoid of M ), whose identity shall be denoted
as e, and 6 is a fuzzy subset of Q x X x Q, i.e., amap 6 :
0 x X x Q — [0,1], such that Vg, p € Q, Vx,y € X.

(i) 8(g,e,p) =1 or 0, according as g = p or g # p,

(i) 8(q,xy, p) = V{8(q,x,r) N6(r,y,p) : 7 € Q}.

Notation 2.1. For any non-empty set of states Q, I¢ denotes
the collection of all functions from Q into I, where [ is the
unit interval [0, 1].

Definition 2.3. [6] A € I? is called a fuzzy subsystem of
(0.X,8)if
A(q) = A(p)N6(p.x,q), Vp.q € Q. x €X.
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Proposition 2.1. [6] The function ¢ : I¢ — 12 defined as
cA)@)=V{V{Ap)AS(px,q):x€X} :peQ},
VA €12,Vq € Q. is a kuratowski saturated fuzzy closure op-
erator on Q.

Proposition 2.2. [6] A € I€ is a fuzzy subsystem of (Q, X, §)
iff c(A) = A. (i.e., iff A is closed with respect to the fuzzy
topology induced by ¢ on Q)

Definition 2.4. [2] A fuzzy subset A of Q is said to be a
generating fuzzy set of M if c(1) = 1.

Definition 2.5. [3] Orbit of a point x in X under the mapping
fisof
Of(x) = {x,f(x),fz(x),...}.
3. Fuzzy automata orbit structure spaces

In this section, fuzzy automata orbit structure spaces,

Notation 3.1. Throughout this paper, Oy takes the member-
ship value .#0,(q) = 0, for all ¢ € O and 1 takes the mem-
bership value .7,(q) = 1, forall g € Q.

Example 3.1. Let M = (Q, X, 6) be a fuzzy automaton, where
0=X={0,1,2,...... }and 6 : O x X x Q — [0,1] be given
by

1, ifg=
5(61,0,17):{ 0 iffﬁéﬁ

with &(g,x0,p) = 0.35, 6(gq,x0,9) = 0.75, 8(p,x0,p) = 0.8,
8(p,x0,q) = 0.7 for fixed xo € X (xp # 0) and for fixed p,q €
Q. For other p,g € Qandx € X, 6(p,x,q) =0. Let A, u €
19 be defined as follows : A(1) = 0.45, A(2) = 0.55,
u(1)=0.33, u(2) =0.5and forother r € Q, r # 1,2, A(r) =
0, u(r)=0.Let ¢ : I — I? be a mapping defined by

2), ifx=1,
FAO,-a-y*-co-kernel subsystems, FAOy-o-y*-kernel sub- . n (1) fy—2
* * X * T]¢(X)— n( )7 rx= bl

systems, FAO,-o-y*-meager” subsystems, FAO-0-y*-comeager 0 otherwise

subsystems and fuzzy automata orbit o-y*-co-kernel spaces
are introduced and some of their properties are discussed.
Further, some equivalent statements are established.

Definition 3.1. Let M = (Q,X,0) be a fuzzy automaton,
where Q is a set ( of states of M ), X is a monoid ( the input
monoid of M ), whose identity shall be denoted as ¢, and 6 is a
fuzzy subset of O x X x Q, i.e.,amap 6 : Q X X x Q — [0,1],
such that Vg, p € O, Vx,y € X.

(i) 8(q,e,p) =1 or0, according as g = p or g # p respec-
tively.

(i) 8(q,xy,p) =V{8(q,x,r)ANS(r,y,p) :re Q}.

Let ¢ : I¢ — I€ be any mapping. For any A € 19, the fuzzy
automata orbit subsystem under the mapping ¢ is denoted by
FAOy(2) and defined as FAG)(A) = {A A (L) A §2(A) A
.} € I9. Forallu €12 and g € Q,

c()(p) = Vaeo { Vaex { (1)(@) A 8(g,x.p)}} is a Kura-
towski saturated fuzzy closure operator on Q. Let

v = {FAG (1) € 12 c(1g — FAGy (1)) = (1o — FAG, ().
where (19— FAC, (1)) is the fuzzy complement of FAC (1) }
be the collection of fuzzy subsystems which satisfies the fol-
lowing axioms :

@) OQ,]Q SN

(i) If i, € I¢ and FAG, (1), FAGy () € t, then
FAﬁ(p(Yl) /\FAﬁq)(}/z) (SIS

(iii) If y € I¢ and FAG,(¥;) € 7 for each i € J,where J is
an indexed set, then Vc;FAO,(Y;) € 7.

Then, the ordered pair (Q,7) is said to be a fuzzy au-
tomata orbit structure space iff there exists a fuzzy automa-
ton (Q, X, 8) such that 7 is a fuzzy topology associated with
(0,X,0). Moreover, the members of 7 are called the fuzzy
automata orbit open subsystems and their fuzzy complements
are called the fuzzy automata orbit closed subsystems.
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forall n € IX. Then FAG,(A)(1) = 0.45, FACy(1)(2) =
0.45, FAGy(u)(1) = 0.33, FAOy(1)(2) = 0.33. The Kura-
towski saturated fuzzy closure operator ¢ : I¢ — I¢ on Q is
defined as

c(u)(p) = Vaeo { Vrex { (W)(q) NS(q.x,p) } }-

It is clear that

c(FAOy(A)) =FACy(A),

c(FAOy (1)) = FAOy (1),

c(FAO(09)) = FAO,(0g) = 0g

and C(FAﬁ(p(lQ)) = FAﬁ(p(lQ) = 1Q.

Lett= { OQ, lQ, lQ —FAﬁQD(}.), 1Q —FAﬁq)(,lJ) } Then 7 is
a fuzzy automata orbit structure on Q and hence the ordered
pair (Q, 7) is a fuzzy automata orbit structure space.

Definition 3.2. Let (Q, 7) be a fuzzy automata orbit structure
space. For any FAO, (1), 1 € 19, the fuzzy automata orbit in-
terior of FAG () ( briefly, FAOyint(FACy (1)) ) is defined
by

FAOyint(FAOy(u)) = V{o : 6 < FAO (1) and each
o € 19 is a fuzzy automata orbit open subsystem in (Q, ) }.

Definition 3.3. Let (Q, 7) be a fuzzy automata orbit structure
space. For any FAC (1), u € 12, the fuzzy automata orbit
closure of FAO (1) (briefly, FAOycl(FAC (1)) ) is defined
by

FAOscl(FACy (1)) = N{0: 6 > FAC, (1) and each ¢ € 19
is a fuzzy automata orbit closed subsystem in (Q,7) }.

Definition 3.4. Let (Q,7) be a fuzzy automata orbit struc-
ture space. For any p € 19, FAO, (1) is said to be a fuzzy
automata orbit-ot-open subsystem in (Q, 7) if FAG,(u) <
FAOyint(FAGycl(FAOyint(FAOy(1)))) and the fuzzy com-
plement of fuzzy automata orbit-o-open subsystem is said to
be a fuzzy automata orbit--closed subsystem.
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Notation 3.2. Let (Q, 1) be a fuzzy automata orbit structure
space. Then FAG,-a0(Q,7) will denote the family of all
fuzzy automata orbit-o-open subsystems in (Q,7) and FAC-
aC(Q, t) will denote the family of all fuzzy automata orbit-
o-closed subsystems in (Q, 7).

Definition 3.5. Let (Q, 7) be a fuzzy automata orbit structure
space. A function

V' 1 FAGy-a0(Q,T) — 12

is called a fuzzy operator on FA0y-aO(Q, 1), if for each
FAOy (1) € FAGy-0.0(Q,7), i € 12 with FAC,(u) # 0g,
FAGint (FAG, (1)) < y* (FAG, (1)) and y* (FAG, (0g)) =
0p.

Remark 3.1. It is easy to check that some examples of fuzzy
operators on FAOy-a0(Q, ) are the well known fuzzy oper-
ators viz. FAOyint, FAOCyint(FAGycl),FAOycl(FAOyint),
FAOyint(FAGycl(FAOint)) and
FAOycl(FAGint(FAOycl)).

Definition 3.6. Let (Q, 7) be a fuzzy automata orbit structure
space and y* be a fuzzy operator on FA0-0.0(Q, 7). Then
any fuzzy automata orbit-0-open subsystem FAC, (1) € IX
is called fuzzy automata orbit-o-y*-open if FAO(u) <
y*(FAOy(u)). The fuzzy complement of a fuzzy automata
orbit-o-y*-open subsystem is said to be a fuzzy automata
orbit--y*-closed subsystem.

Definition 3.7. Let (Q, 7) be a fuzzy automata orbit structure
space and and y* be a fuzzy operator on FAG,-a0(Q, 7).
Let FAO,(A) € 12 where A € I9. Then the fuzzy automata
orbit-a-y*-co-kernel of FAG(A) is denoted by
FAGy-a-y*-co-ker(FACy(A)) and defined as
FAOy-o-y*-co-ker(FAGy (1))

= V{FAO,(u) € I2 : FAC (1) is fuzzy automata
orbit-a-y*-closed and FAC () < FACy(A)}.

Definition 3.8. Let (Q, 7) be a fuzzy automata orbit structure
space and y* be a fuzzy operator on FAOy-aO(Q, 7). Let
FAGs(A) € I2 where A € I9. Then the fuzzy automata orbit-
o-y*-kernel of FAG(A) is denoted by
FACy-o-y*-ker(FAOy(A)) and defined as
FAGy-0-y*-ker(FACy (L)) = N{FAGy (1) € I? : FAC, (1)
is fuzzy automata orbit -@-y*-open and

FAOCy(A) < FAO) (1)}

Remark 3.2. Let (Q,7) be a fuzzy automata orbit structure
space and y* be a fuzzy operator on FAOy-aO(Q, 7). Let
FAOy(2) € I* be a fuzzy automata orbit subsystem in (Q, 7).

(1) (IQ —FA@p-OC-l[I*—ker(FAﬁd, (l))) = FAﬁ¢-a—y/*-co-
ker(lg — (FAO(R))).

(ii) (19 —FAOy-a-y*-co-ker(FACy(1)))
= FAﬁ(p-(X-l[/*-ker‘(lQ - (FAﬁq) (l)))

(iii) FAﬁ(p—OC—l,U*—ker(OQ) =0p and
FACy-o-y*-co-ker(0g) = 0g.
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(iv) FAﬁq)—Ot—l/I*—ker(lQ) =1g
and FAOy-o-y*-co-ker(1g) = 1¢.

(v) If FAO(A) is a fuzzy automata orbit -ct-y*-open sub-
system then

FAGy-a-y*-ker(FAG (1)) = FAG, (7).

(vi) If FAOy(A) is a fuzzy automata orbit -ct-y*-closed
subsystem then

FAGy-a-y*-co-ker(FAGy(A)) = FAO(1.).
(vii) FAﬁ¢—a—W*—C0—ker(FAﬁ¢ (ll) \/FAﬁ¢ (12))

= FAOy-0-y*-co-ker(FAC (A1) V FACy-0-y*-co-
ker(FAﬁq) (A2)).

(viii) FAﬁq)-Ot-l[/*-ker(FAﬁ(p (M) /\FAﬁq, (A2))

= FAﬁ(p-Ot-l[/*-keV(FAﬁ(p (M)A
FAO-a-y*-ker(FACy (7).

Proof The proof is simple.

Definition 3.9. Let (Q, 7) be a fuzzy automata orbit structure
space and y* be a fuzzy operator on FAC,-aO(Q, 7). Then
(Q,7) is said to be a fuzzy automata orbit -a-y*-co-kernel
space if, for any finite collection {FAGO,(A;) : A; € I¢ and
i=1,2,...,n, where each FAG,(A;) is a fuzzy automata orbit
open subsystemin (Q,7)}, FAOy-o-y*-co-ker(FAOy (A;)) =
0g,i=1,2,...,n and

FAO-0-y*-co-ker(\_| FACy(A;)) = Og.

Example 3.2. Let M = (Q, X, 6) be a fuzzy automaton, where
0=X={0,1,2,...... }and 6 : O x X x O — [0,1] be given
by

1 ifg=
6(%07]7){ 0 lf‘q]#i

with 8(g,x0, p) = 0.83, 8(q,x0,9) =0.85, §(p,xp,p) =0.93,
8(p,xo0,q) = 0.9 for fixed xo € X (xp # 0) and for fixed p,q €
Q. For other p,g € Qandx € X, §(p,x,q) =0. Let A, u € I¢
be defined as follows : A(1) =0.77, A(2) =0.8, u(1) = 0.65,
1(2)=0.75 and for other r € Q, r # 1,2, A(r) =0, u(r) =0.
Let ¢ : 12 — 19 be a mapping defined by

n(2), ifx=1,
77¢(x): 77(1)» ifx=2,
0, otherwise

foralln € 1. Then FAC,(A)(1) =0.77, FACy(1)(2) =
0.77, FAGs(u)(1) = 0.65, FACy(u)(2) = 0.65 The Kura-
towski saturated fuzzy closure operator

c()(p) = Vaeo { Vaex { (1)(9) A(q,x,p)}}.
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It is clear that c(FACy(A))

— FAG (1), c(FAG, (1))

= FAﬁqj ([J), C(FAﬁq) (OQ)) = FAﬁq, (OQ) = OQ and
c(FAO(lg)) = FAG,(lg) = 1p.

Lett= { OQ, 1Q, lQ —FA@¢(A)7 lQ —FAﬁq)(‘LL) } Then 7 is
a fuzzy automata orbit structure on Q and hence the ordered
pair (Q,7) is a fuzzy automata orbit structure space. Thus
the collection {FAG(4;) : 4; € I? and i = 1,2 is a fuzzy
automata orbit --open subsystems in (Q,7)}. Let y* =
FAOyint(FAGycl). Then FAO(A;) is a fuzzy automata orbit
-a-y*-open subsystems in (Q,7)}. Thus

FAG-a-y*-co-ker(FAGy(A;)) = 0g

and
FAOy-a-y*-co-ker( /\ FAOy(4;)) = 0p.
i=1,2

Hence (Q, 7) is a fuzzy automata orbit -t-y*-co-kernel space.

Definition 3.10. Let (Q, 7) be any fuzzy automata orbit struc-
ture space and y* be a fuzzy operator on FACy-0.0(Q, 7).
For any u € 12, FAO,(u) is said to be a fuzzy automata
orbit-o-y*-Og subsystem (briefly, FAGy-o-y*-05S) if

FACy (1) = N_ {FAG (W), ; € 12 : each FAG, (1;) is a
fuzzy automata orbit -a-y*-open subsystem }.

The fuzzy complement of a fuzzy automata orbit-o-y*-Og
subsystem is fuzzy automata orbit -c&t-y*-Cy subsystem (briefly,
FAG-a-y*-CsS).

Proposition 3.1. Let (Q, T) be a fuzzy automata orbit struc-
ture space and y* be a fuzzy operator on FACy-0.0(Q, 7).
Then the following statements are equivalent :

(i) (Q,7) is a fuzzy automata orbit-o-y*-co-kernel space.

(i) For any fuzzy automata orbit-a-y*-open subsystem
FAGy(%;) in (Q,7) where A; € 19,i = 1,2,...,n and
for every fuzzy automata orbit -a-y*-Og subsystem
FAO,(u) in (Q,7) where € I¢, FAG-a-y*-co-
ker(FAﬁ’¢ (/1,)) = OQ and
FAOy-o-y*-co-ker(FACy (1)) = Op.

(iii) For any fuzzy automata orbit -a-y*-open subsystem

FAOs(A;)in (Q,7) where 4; € I12,i=1,2,...,n and for

every fuzzy automata orbit-@-y*-Cy subsystem

Io— (FAGy(w)) in (Q.7)

where y € I, FACy-a-y*-ker(1g — FACy (A)) = 1¢

and FAﬁ(p-Ot-l[/*-ker(lQ - FAﬁ(p ([.L)) = 1Q.

Proof. (i) = (ii)

Let (Q, 7) is a fuzzy automata orbit co-kernel space. Then
for any finite collection {FAG(4;) : A; €19 andi=1,2,...,n,
where each FAO(4;) is fuzzy automata orbit-ot-y*-open
subsystem in (Q,7)}, FAOy-o-y*-co-ker(FAO(2;)) = Op,
i=1,2,...,nand FAOy-o-y*-co-ker(\_| FACy(A;)) = Og.
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Let FAOy(u) € I¢ be a FACy-a-y*-05S. By Definition
3.10,

FAG, (1)

= N\FAGy (), A € 12

i=1
FAGy-a-y*-co-ker(FACy (1))
= FAOy-0-y*-co-ker(N_ | FAGy (L))

Since (Q, 7) is a fuzzy automata orbit-ot-y*-co-kernel space,
FAOy-o-y*-co-ker(N_ |[FACy(A;)) = Og.

Then FAC-o-y*-co-ker(FAGy (1)) = Og.

(ii) = (iii)

For A; € I9,i € J, let FAOy(A;) be any fuzzy automata
orbit-or-y*-open subsystem in (Q, ) with FAGy-a-y*-ker(1g —
FAOy(A;)) = 1g. Thus FAGy-a-y*-co-ker(FAGy(A;)) =
0p. By (ii), for every fuzzy automata orbit -¢t-y*-Og sub-
system FAC, (1) in (Q, 7) where (u € 12), FAG-a-y*-co-
ker(FAﬁ¢ (‘U)) = OQ. Then

lg —FAGy-a-y*-co-ker(FAOy (1)) = 1o
FAGy-a-y*-ker(lg —FACy(u)) = 1o

(>iii) = (i)
Let FAﬁ¢-O€-l]/*-k€r(1Q —FAﬁq) (A,)) = 1Q, A€ IQ,i =
1,2,...,n. This implies that,

FAOyco-o-y*-ker(FAO(2;)) = Og. 3.1)
Let FACy (1) be FAOy-a-y*-O5sS.

Then FACy (1) = N_FAOy(A;), where each FACy(A;) is a
fuzzy automata orbit-o-y*-open subsystem in (Q, 7). Thus
lo—FAO(n)) is FAGy-a-y*-CsS.

By (lll), FAﬁ¢-(X-l[/*-k€r(1Q — FAﬁ(p (‘Ll,)) = lQ.

Then 1Q — (FAﬁ¢-a-l//*-ker(lQ—FAﬁ¢ ([J))) = 1Q — IQ. Thus
FAOy-o-y*-co-ker(FAOy (1)) = 0p. Hence

FAG,-0-y*-co-ker (N FAO, (X)) = 0p. (3.2)
From Equations 3.1 and 3.2, we have (Q, 7) is a fuzzy au-
tomata orbit-o-y*-co-kernel space. O

Proposition 3.2. Let (Q, 7) be a fuzzy automata orbit-ot-y*-co-
kernel space where y* is a fuzzy operator on FAC-0tO(Q, 7).
For u €19,if FAG,(u) € 12, is FAGy-0-y*-CS, then
FAGy(u) N{l1g —FAGy(y)} # 0p, for every fuzzy automata
orbit-at-y*-open subsystem FAG, () # 1g, vy € 12 of (Q, 7).

Proof. Let (Q,7) be a fuzzy automata orbit-ot-y*-co-kernel
space. Then for any finite collection {FAG, (L) : A; € 19
andi=1,2,...,n, where each FAGy(A;) is a fuzzy automata
orbit-a-y*-open subsystem in (Q,7)},
FA@¢—(X—I//*—CO—]€€V(FA6’¢ (QL,)) = OQ and
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FA6”¢—a—y/*—co—ker( " FAﬁ¢ (l,)) =0p. Let FAﬁ¢ (1) be
FAOy-a-y*-CsS. Then by Definition 3.10,

FACy (1) = VI FACy(A), A € 12
(lg—FAOy (1)) =19 — Vi FAO, ()
(lg—FAG, (1)) = Noi(1g — FAO (X))

then
thus

Since FAﬁ(p—(X—l[/*—CO—ker(/\?zl{lQ —FAO, (A)}) = 09,

FAOy-o-y*-co-ker(1g — (FAOy (1)) = 0g (3.3)

As a contrary, suppose that

FACy(u) N{1g—FAGy(y)} =0¢
then,

lo = (FAOy (1) A(1g —FAG(7))) = (19— 0p)
and therefore
(1o —FAO, (1)) V FAG(7) = 1o

Now, FAGy-a-y*-co-ker{(1g — FAOs(1)) VFAC(7)}
= FAOy-o-y*-co-ker(1gp);
thenFAGy-a-y*-co-ker{1g — FAC, (1)}
V FAOy-0-y*-co-ker{ FAC(7)} = lp;
which implies that 0pVFAOy-o-y*-co-ker{FAC(y)} =
lgp {by 33}
therefore  FAO,-a-y*-co-ker{FAG(y)} = lq.
which is not possible as FAO(y) # 1¢. Hence,

FAG (1) M1g— FAG, (1)} # 0.
O

Definition 3.11. Let (Q,7) be a fuzzy automata orbit struc-
ture space and y* be a fuzzy operator on FAC,-0.0(Q, ). A
fuzzy automata orbit subsystem FAG (1), A € IX is said to
be a fuzzy automata orbit-o-y*-meager* subsystem if

FAGy(A) = VI |FAGy(X;),\; € 12

with FAOy-a-y*-ker(FACy-0-y*-co-ker(FAGy (A;))) = 0g.
The fuzzy complement of a fuzzy automata orbit-@-y*-meager
subsystem is a fuzzy automata orbit-o-y*-comeager® subsys-
tem.

*

Proposition 3.3. Let (Q, T) be a fuzzy automata orbit struc-
ture space and y* be a fuzzy operator on FAC-0.0(Q, 7).
If (Q,7) is a fuzzy automata orbit-a-y*-co-kernel space,
then for every fuzzy automata orbit-o¢-y*-meager® subsystem
FAOy(X), A €19,

FAC-0-y*-ker(FACy-a-y*-co-ker(FAC (1)) = 0p.

Proof. Let FACs(A), A € I2 be a fuzzy automata orbit-o-y*-
meager® subsystem. By Definition 3.11,
FAGs(A) =V"_|(FACy (X)), A € I2 with

FAOy-o-y*-ker(FAOy-a-y*-co-ker(FAOy(A;))) = Og.
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Now, FAGy-a-y*-ker(FAOy-0-y*-co-ker(FACy (1))
= FAGy-a-y*-ker(FAOy-o-y*-co-ker(V}_ | (FAOy(X;))))
=FAG-a-y*-ker(0p)
=0p.

Hence for every fuzzy automata orbit-o-y*-meager* sub-
system FAGy(A),A € 19,

FAOy-0-y*-ker(FAC-a-y*-co-ker(FAOy (1)) = Op.
O

Proposition 3.4. Let (Q, 7) be a fuzzy automata orbit struc-
ture space and y* be a fuzzy operator on FAGy-a0(Q, 7). If
(Q,7) is a fuzzy automata orbit-o-y*-co-kernel space, then
for every fuzzy automata orbit-o-y*-comeager® subsystem
FAOy (1),

FAOy-o-y*-co-ker(FAGy-a-y*-ker(FAOy ())) = 1p.

Proof. Proof is similar to the proof of Proposition 3.3. [

Proposition 3.5. Let (Q, 7) be a fuzzy automata orbit struc-
ture space and y* be a fuzzy operator on FAC-000(Q, 7).
Then the

following statements are equivalent:

(i) (Q,7) is a fuzzy automata orbit-o-y*-co-kernel space.

(il) FAOy-o-y*-ker(V_ | FAO(A;)) = 1¢, for every fuzzy
automata orbit-ot-y*-closed subsystem FAC (A;), A; €
19,i = 1,2,...,n with FACs-a-y*-ker(FAOy(2;)) =
lo.

Proof. (i) = (ii)

Let {FAG,(%;) € 19,4, € I2,i = 1,2,...,n} be the collec-
tion of fuzzy automata orbit
-a-y*-closed subsystems with FAGy-a-y*-ker(FACy (A;)) =
lg. Then {1g — FAGs(X), A € 12,i = 1,2,...,n} is the col-
lection of fuzzy automata orbit-a-y*-open subsystems with
FAOy-o-y*-co-ker(1g — FAO(A;)) = Og. Since (Q,7) is a
fuzzy automata orbit-o-y*-co-kernel space,
FA ﬁ’q)—a—l//*—co—ker(/\?zl (1 o—FAO, (A)) = 0o
lo —{FAOy-o-y*-co-ker(N!_ (19 — FACy (L))}
= (lg—0g)
FAOy-o-y*-ker(VI_ | FAOy(A;)) = 1¢. (ii) = (i)

On taking fuzzy complement of (ii), we get (Q,7) is a
fuzzy automata orbit-o-y*-co-kernel space. O

Proposition 3.6. Let (Q, 7) be a fuzzy automata orbit struc-
ture space and y* be a fuzzy operator on FAO;-0.0(Q, 7).
Let A € I9, FAO(A) be a fuzzy automata orbit subsys-
tem in (Q, 7). If FAGy-a-y*-co-ker(FAOy(A)) = 0p then
(FACy(y)VFAGy(A)) # 1, for every fuzzy automata orbit
-a-y*-open subsystem (FAC, (), FAO(Y)) # 19,7y € I€.

Proof. Let FAG-o-y*-co-ker(FACy(A)) = 0g and
FAO(7) # 19, be a fuzzy automata orbit-o-y*-open subsys-
tem. As a contrary assume that,

FAﬁ‘j,(’}/) \/FAﬁ¢ ()L) =1p,



Fuzzy o-y*-operator in fuzzy automata orbit structure spaces — 1227/1227

for every fuzzy automata orbit-ct-y*-open subsystem FAG (), ok ke ok K ok ok ok &
FAG,(Y) # 1¢. Then, ISSN(P):2319 — 3786

FAOy(Y)VFAGy(A) = Malaya Journal of Matematik
lo, ISSN(0):2321 — 5666
implies that 19 —{FAOy(y)VFAOy(A)} Kok ok kA ok kK
=lo—1lp,

and so {IQ 7FAﬁ¢(’)/)} A {1Q — FAﬁq) L)} = 09,
thus 1o —FAO,(y)

<lg—{lg—FAG;(A)},

therefore 19 —FAO(y)

< FAOy(M),

Hence FAOy-a-y*-co-ker(1g — FAO(Y))

< FAOy-a-y*-co-ker(FAOy(R)).

By assumption, FAOy-o-y*-co-ker(1g — FAG(y)) =
0p. Since 19 — FAU () is fuzzy automata orbit-o-y*-closed
subsystem, FAOy-a-y*-co-ker(1g — FAG (7))
=19 —FAOy(7). Thus, 1o — FAC(y) = 0g. This implies
that, FAO(y) = 1, which is a contradiction to our assump-
tion. Hence FAG(y)V FAGy(A) # 1g.

O

4. Conclusion

In this paper, the concept of fuzzy automata orbit structure
spaces is introduced and some of its properties are studied.
Also, the concepts of fuzzy automata orbit-o-y*-co-kernel
subsystems, fuzzy automata orbit-o-y*-kernel subsystems,
fuzzy automata orbit-a-y*-meager” subsystems and fuzzy
automata orbit-a-y*-comeager® subsystems are introduced.
The notion of fuzzy automata orbit--y*-co-kernel spaces is
introduced and some equivalent statements are discussed.
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