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Ball convergence of a novel bi-parametric iterative
scheme for solving equations
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Abstract

The aim of this article is to establish a ball convergence result for a bi-parametric iterative scheme for solving
equations involving Banach space valued operators. In contrast to earlier approaches in the less general setting
of the k-dimensional Euclidean space where hypotheses on the seventh derivative are used, we only use
hypotheses on the first derivative. Hence, we extend the applicability of the method. Moreover, the radius of
convergence as well as error bounds on the distances are given based on Lipschitz-type functions. Numerical
examples are given to test our conditions. These examples show that earlier convergence conditions are not
satisfied but ours are satisfied.
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1. Introduction +8G' (yn)IG' (n) ™' G(zn),

Let X,Y stand for Banach spaces, D C X be a nonempty  where xo € D is a given initial point, M,, =1 — G’ (x,,) "' G' (),

convex and open set and let .Z'(X,Y) stand for the space of g e R f = %’7 §= 275;3 and y € R — {—1}. The ball con-

bounded linear operators from X into Y. vergence of iterative scheme (1.2) was given in [5] when
Numerous problems in mathematics, sciences and engi- X =Y = R/ (j a natural number). The motivation, devel-
neering are written in a form like opment and advantages of this iterative scheme over other

competing scheme be also found in [5]. Using hypotheses on
the Fréchet-derivatives reaching the seventh order as well as
Taylor series expansions, the sixth convergence order of the
method was established. However, the high order derivatives
restrict the applicability of method (1.2) to cases when G is at
least seven times Fréchet-differentiable. As an academic and
motivational example, consider function G on D = [—1, 3] by

G(x) =0, (1.1)

where G : D — Y stands for a differentiable operator in the
sense of Fréchet. Iterative schemes are used to generate a
sequence approximating a solution x, of equation (1.1), which
is unique in a neighborhood of x,. This is done, since closed
type or analytic type solutions are usually hard to find.

A great effort is made recently to develop high conver- Bl +x° —x*,  x#0
gence order iterative schemes [1-22]. In particular, we define Glx) = { 0, x=0.
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We have that x* = 1,
G'(x) = 3x%Inx® 4 5x* — 4x® 4242,

G (x) = 6xlnx® +-20x> — 12x* 4 10x

and
G" (x) = 6lnx® + 60x> — 24x 4 22.

Function G"(x) is unbounded on D. Moreover, the radius
of convergence or computable error bounds on the distances
|lx» — xx]| or uniqueness of the solution result of how close
xo should be to x, for convergence are not given in [5]. In
our article, we address these concerns. First of all, we only
use hypotheses on the first Fréchet-derivative. The radius of
convergence, upper error bounds on ||x, — x.|| and uniqueness
results are given using Lipschitz-type constants. Moreover,
the convergence order is computed using computational order
of convergence (COC) or approximate computational order
of convergence (ACOC) [1-3], which do not utilize higher
than one Fréchet derivatives. It is worth mentioning that
ball convergence results provide the degree of difficulty for
choosing initial points, so they are very useful.

The rest of the article is structured: Section 2 deals with
the Ball convergence of iterative scheme (1.2). The numerical
examples can be found in Section 3 that completes this article.

2. Ball convergence

We base the ball convergence of method (1.2) on some
parameters and scalar functions. Suppose that equation

Ao(t) =1

has at least one positive root. Denote by py the smallest
such root, where A : [0,400) — [0,+o0) is a continuous
and increasing function with 49(0) = 0. Let A : [0,pp) —
[0,+00), 1t : [0,p0) — [0,+o0) be also continuous and in-
creasing functions with A (0) = 0. Define functions ¢; and y;
on the interval [0, pg) by

2.1

_ JoA(1—6)1)d6 + 5§ fy u(61)d6
a 1—2o(t)

@1(t)

and
vit) =ei(r) - 1.
Suppose that

1(0) < 3. 2.2)

We have y;(0) <0 and y;(t) — +ooast — p, . By the
intermediate value theorem (IVT) equation v (¢) = 0 has at
least one positive root. Denote by | the smallest such root.
By IVT equation

§‘a|%(t) +do(@i (1))
4 1= 2(1)

=1 2.3)
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has at least one positive root in (0, pg). Denote by p; the small-
est such root. Define functions p,g@2, w» on [0, min{py, p; }),
by

p() =614 3] +3la| [ u(00i()0)ra0

q(t) =p(t)—1,
(M(z)%«m(r)x))z Jo u(61)de
3 T—Jo(1) T—20(0)

and

Suppose that equation

pt)=1

has at least one positive root. Denote by p, the smallest
such root. We get again y(0) < 0 and y,(t) — +oo as
t — min{py, p1 } ~. Denote by r, the smallest positive root
of equation y, (r) = 0. Notice that  +7 # 0. By IVT equation

Bl Ao (1) + [0 (@1 (1)1)
1B+

has at least one positive root in (0,pp). Denote by ps, the
smallest such root. Define functions pi,q1, @3, Y3 on

[0,min{po, p1,P2,p3}) by

_ 1B12o(1) + 1120 (@1 (1))
1B+l

q1(t) =p1(t) -1,

(2.4)

=1

pi(t)

)

B () + 8| p(@i()1)) Jo 1(O@(1)1)dB
P = T OB )| 0
and

Ys(t) = pa(r) — 1
Suppose that
(1418))u(0)* u(0)
(” Bty ) 3 <! @

We obtain y3(0) < 0 and y3(¢) — oo as

t — min{po, p1, P2, P3}. Denote by r3 the smallest positive
root of equation y3(7) = 0. Define the radius of convergence
r by

r=min{r;}, i=1,2,3. (2.6)
Then, it follows that for each ¢ € [0, r)

0 < ()<l 2.7)

0 < p)<l (2.8)

0 < pi(n)<l1 2.9)
and

0<g < 1. (2.10)

Denote by B(u,a),B(u,a), respectively the open and closed
balls in X with center u € X and radius a > 0.
We consider the conditions (H):
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(hl) G: D C X — Y is continuously Fréchet differentiable
and there exists x, € D such that G(x.) = 0 and
G'(x.) ' e 2(v,X).

(h2) There exists function Ag : [0, +00) — [0, +o0) contin-

uous and increasing with A(0) = 0 such that for each
xeD

16" (x)~1(G'(x) = G’ (x)) | < Ao(flx = x.]))-
Set Dy = DN B(x«,po), where py is defined in (2.1).

(h3) There exist functions A : [0, p9) — [0, +o0),
U :[0,p0) — [0,4o0) such that for each x,y € Dy

IG'(x) ™1 (G () = G' (D < A(lly =)

and
16" (x) 7' G ()| < (| —x. )

(h4) B(x,,r) C D, (2.2) and (2.5) hold where r is defined in
2.6).

(h5) There exist r, > r such that

/Olao(er*)de <1

Set D1 = DN B(xy,rs).

THEOREM 2.1. Under the conditions (H), further suppose
that xo € B(X.,7+) — {x«}. Then, the following hold
limy,—; oo Xp = Xy, {xn} - B(x*ar*)7

I3 =2 < @1 (I =) 3 = < [l =] < 7 2.11)

2 =l < @2(ltm =)o = < ota —x,]| 2.12)
and
21 = X || < @3([lvn — X ]) [lvn — x| < oo — x| (2.13)

for each n = 0,1,2,..., where functions ¢;,i = 1,2,3 are
given previously and r is defined in (2.6). Moreover, x, is
the only solution of equation G(x) = 0 in the set D;.

Proof. Let x € B(x.,r) — {x.}. By (h2), we have in turn that

I1G' () ™1 (G' (x) = G (x)) | < Ao([lx—x:[l) < Ao(r) < 1,
(2.14)

which together with the Banach perturbation Lemma [14]
gives G'(x) ! € £(7,X),

160976 )l < 7

_— 2.15
EyW(EEEA) @13

and yy is well defined by the first substep of method (1.2). Let
us write using (h1) that

G() = G(x) - Gle) = [ G (1 +00e—x))d0(c—x.).
(2.16)

Then, by the second hypothesis in (h3)

1
I6/6)7'66) = || [ Gl +0(r—r))d0c—x.)

(2.17)

IN

1 (e = x][) [l = x|
We also have by the second hypothesis in (h3), (h1) and (2.15)

X0 —x. — G'(x0) "' G(x0)

1G (x0) ' G (x.) |

1G (x.) ™" (G (x0) (x0 — x.) — G(x0)) |

Jo A((1—8)[lxo —x.))d8]|xo — x. |
1= 2o ([[xo —x«]) '

Using (2.6), (2.10) (for i = 1), (2.15), (2.17) (for x = x¢) and
(2.18), we get

A

(2.18)

[1yo = x|l
= [I(vo —x. — G'(x0) "' G(x0))

+36(50) 1 Glo)|

< lxo—x — G'(x0) ' G(xo)|
+%||G'(xo)_1G/(X*)|| IG (x.) "' G(xo)|
< Jo A((1=0)lxo — x.[)dO + Jy 1 (8]lx0 — x.])dO

1= 20 ([0 —x:[])
X|lx0 — x|
= @1(llxo = xul) o — x|

< o —xl <n (2.19)

s0 (2.11) holds for n = 0 and yy € B(xp,x.). We need an
estimate on My which is well defined by (2.15), so

1Mol I = G'(x0)~'G (yo)

< G (x0) ' G ()G (x) (G (x0) — G (30))
< 16 (x0) G (x)[IG' (x) (G (x0) = G (x.))
+[1G" (x.) "1 (G (v0) = G’ (x)]]
< Jollbro—x]l) + Ao(llyo — x<[)
- 1—2o(flxo —x:]1)
Ao ([Ixo = x[[) + Ao (@1 ([[x0 — x«[1) 150 — x4 ]])
- 1= 2o([[x0 — x«|]) '
(2.20)

We shall show that (I +6(4I —3aMy))~! € £ (¥,X). Using

0020
XYW

0,7 42
50827
“,

)
AW

1230
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(2.6), (2.8), (2.15) and (2.17), we get in turn that

l6(41 —3aMy) |
= 6||(4—30)1+3aF (x0) "' F'(yo) |
< 6[14—3q
+3|(X|f01,u(9(p1(||x0 — x| ||xo — x.[|d 6| x0 —x*H]
1—2o(Ilxo —x«|)
< pllxo—x)) < p(r) <1, (2.21)
SO
[[(1+6(41 = 3aMy)) || (2.22)

S -
1= p([lxo —x.[])

and zo is well defined by second substep of method (1.2).
Using (2.6), (2.10) (for i = 2), (2.15), (2.17), (2.18), (2.19),
(2.20) and (2.22), we get in turn by the second substep of
method (1.2).

llz0 — x|
o —2x — G (x0) " G(xo) |

IN

42 Mo P+ 6(41 — 3aMo)) |
<16 (20) G ()]G (x) Gl |

[@1 (floeo — x|

Ao ([x0 =~ )+ A0 (91 (xo—e ) [z0 —xel]) \ >
L3 ( o[0T )

3 = p(lxo—x)

S (6]xo—x.])de
1= Zo(lr—x.1)

= @00~ < o~ < 1, 2:23)

IA

J[lxo — x|

s0 (2.12) holds for n = 0 and zg € B(x.,r). Next, we show
that (BG'(x0) + YG'(y0)) ™' € Z(Y,X). Using (2.6), (2.9),
(h2) and (2.19), we have in turn that

I(BG' (x.) +7G' (x.)) ™!
< (BG'(x0) +7vG (yo) = (B+ G (x. )

71 '(x,) (G (x0) — G’ (x
S Bry PG ) (G (x0) = G
+HAIG (x) (G (v0) — G (x.0)]]
1
S By HR (ko =)

+[7120(@1 ([lxo = x.[[)[1x0 — x.1)]

= pillo—x) <pi(r) <1, (2.24)

SO

1(BG' (x0)+7YG' (v0)) ' G'(x.) (2.25)

L
S =)
and x; is defined by the third substep of method (1.2). Then,
using (2.6), (2.10) (for i = 3), (2.15) (for x = xgp), (2.17) (for
X =20), (2.19), (2.23), (2.25) and the third substep of method

1231

(1.2):

[l = x|

IN

20 = x|

+I(BG' (x0) +7¥G'(v0)) ™G’ (x.)|

x[|G' (x) (G (x0) +8G' ()

|G’ (x0) ™' G (x| G () "' G0
Igi

< 1+
(1= pi(llxo —x))IB + vI(1 = Ao(llxo —x«[))
X @ ([[x0 — x|} [|xo — x|
= @3([lxo —x:[)llxo — x| < [lxo — x|l <, (2.26)
where
I = [u(flxo —xl) +[8]p (1 ([lx0 — xi[])[[xo —x.]])]

1
< [ @allio =[x —x. )de.

so (2.3) holds and x; € B(x,,r). Substitute xo,y0,20,%1 by
Xm,Ym>Zm>Xm+1 10 the preceding estimates to terminate the
mathematical induction for estimates (2.11)—(2.13). Then,
using the estimation

[26m+1 =Xl < sllvm — x| <775 = @3(||xo —x:]|) €0, 1)
(2.27)

we conclude that limy,— eXy; = X« and X1 € B(xy,r).
The uniqueness part, is shown by considering y, € Dy with
F(y.) =0and setting T = fol G (x4 6(y« —x.))d0 to obtain
by (h2) and (h5) that

1
IG'(x) (T =G (x))|| < /0).0(6||x*—y*H)d9
1
< /Ozﬂ(er*)dea
(2.28)

so T~! € Z(Y,X). Finally, from the identity

0=G(y«) — G(xs) =T (ys — X4), (2.29)

we deduce that x, = y,.
O

REMARK 2.2. (a) Let Ay(t) = Lot, A(t) = Lt. The radius
A= ﬁ was obtained by Argyros as the convergence
radius for Newton’s method under condition (hl)-(h3).
Notice that the convergence radius for Newton’s method
given independently by Rheinboldt [20] and Traub [21]
is given by

2

p=i<rA.

Let f(x) =e*—1. Then x* =0. Set Q = B(0,1).

1
Then, we have that Lo = e—1 < L =el0, 50 p =
0.24252961 < p; = 0.3827.
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Moreover, the new error bounds [2-7] are:

L

k2
,L()”xn ||x" X H ’

e

—x*||
whereas the old ones [20, 21]

1 = < i

L
1—L|x, —
Clearly, the new error bounds are more precise, if Ly <
L. Clearly, the radius of convergence of method (1.2)
given by p* is smaller than p; .

(b)

Method (1.2) stays the same if we use the new instead
of the old conditions [5]. We can use the computational
order of convergence (COC)[1-3]

[12-+-2 =1
5_ Hanrl —xn||
[t =l
Hxn_xn 1”

foreachn=1,2,...

or the approximate computational order of convergence
(ACOC)[1-3]

Hxn+27X*”
[lxn01—x*|
In I3 =%
[loen —x*]]

Er = foreach n=0,1,2,....

(c) Using (h2) and

IG' (")~ G ()|
IG' ()71 (G'(x) = G'(x*)) + 1]
1+ (G () =G ()|
1+ go(flx—x"[1)

IN A

the second condition in (h3) can be replaced by

() =14 Ao(t)
w(t) =1+ (po).

Notice that if in particular, Ay(t)
choose u(t) =2, since t € [0, ﬁ)

= Lot, then, we can

3. Numerical examples

The numerical examples are presented in this section for
a:%andﬁ:}/:S:l.

EXAMPLE 3.1. Let %,
Define function F on Q for u = (x,y,z)" by

—1

e
Flu)=(e'=1,—— Y42

Then, the Fréchet-derivative is given by

e* 0 0
FFwy=1 0 (e=1)y+1 0
0 0 1

1232

=% :R379':U(07 1)7)6* = (O,O,O)T.

Notice that using the (2.8)-(2.12), conditions, we get Ay(t) =
(e— Dt A(t) = e 11, u(r) = e 1.
Then using the definition of r, we have that
r1 = 0.15440695135715407082521721804369
r, =0.022891367094531062803541843209132
=0.021455242177788026725071546252366 = r.

EXAMPLE 3.2. Let #) = %, = C[0,1], the space of con-
tinuous functions defined on [0, 1] and be equipped with the
max norm. Let Q = U (0, 1). Define function F on Q by

75/01x9(p(6)3d9
x)715/01x9(p(9)2§

Then, we get that x* =0, Ay(t) = 7.5t,A(¢) = 15¢, u(t) =
This way, we have that
r1 = 0.022222222222222222222222222222222
=0.013998246548730894703305160930995 = r
= 0.019957165953580074946316358364129.

F(o)(x) = G.D

We have that

Fl(p(&))(x)=¢ 0)d0, foreach & € Q.

EXAMPLE 3.3. Let us return back to the motivational ex-
ample. Then, we gert that Ay(t) = A(t) = 147¢,u(t) = 2. So,
we obtain
r1 =0.0015117157974300831443688586545729

= 0.00097050808874623369516126958345126 = r
r3 = 0.0049435619795227554035266237519863.

EXAMPLE 34. Let %) = %, = C[0,1],Q =U(x*,1) and
consider the nonlinear integral equation of the mixed Hammerstein-
type [1, 2, 69, 12] defined by

02 4 x(1)?

/th >

where the kernel G is the Green’s function defined on the
interval [0,1] x [0,1] by

=),

(I—s5)t, t<s
s(l—1), s<t.

G(s,t) = {

The solution x*(s) = 0 is the same as the solution of equation

(1.1), where F : C[0,1] — C[0,1]) is defined by
132 x(1)?

Fx £)(
/GS 2

Notice that

—)dt.

1 1
||/ Gls,0)dt| < ~.
0 8

Then, we have that
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so since F'(x*(s)) =1,

IF" () 1 F () = F ()] <

1

Gl =yl + [l = y11).

NSYRON}

~8
Then, we get that Ao(t) = A(t) = £ (3¢ +1),u(r) = 1+

Ao(t). So, we obtain

= 1.4154,

ry = 0.0010070574734927378608012604743749,

r3 = 0.00048321696805947146830320648724921 = r.
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