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Ball convergence of a novel bi-parametric iterative
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Abstract
The aim of this article is to establish a ball convergence result for a bi-parametric iterative scheme for solving
equations involving Banach space valued operators. In contrast to earlier approaches in the less general setting
of the k-dimensional Euclidean space where hypotheses on the seventh derivative are used, we only use
hypotheses on the first derivative. Hence, we extend the applicability of the method. Moreover, the radius of
convergence as well as error bounds on the distances are given based on Lipschitz-type functions. Numerical
examples are given to test our conditions. These examples show that earlier convergence conditions are not
satisfied but ours are satisfied.
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1. Introduction
Let X ,Y stand for Banach spaces, D⊆ X be a nonempty

convex and open set and let L (X ,Y ) stand for the space of
bounded linear operators from X into Y.

Numerous problems in mathematics, sciences and engi-
neering are written in a form like

G(x) = 0, (1.1)

where G : D−→ Y stands for a differentiable operator in the
sense of Fréchet. Iterative schemes are used to generate a
sequence approximating a solution x∗ of equation (1.1), which
is unique in a neighborhood of x∗. This is done, since closed
type or analytic type solutions are usually hard to find.

A great effort is made recently to develop high conver-
gence order iterative schemes [1–22]. In particular, we define

for each n = 0,1,2, . . . the three-step iterative scheme [5]

yn = xn−
2
3

G′(xn)
−1G(xn)

zn = xn− [I +
3
4

Mn(I +6(4I−3αMn)
−1Mn]

×G′(xn)
−1G(xn)

xn+1 = zn− [(βG′(xn)+ γG′(yn))
−1(G′(xn) (1.2)

+δG′(yn))]G′(xn)
−1G(zn),

where x0 ∈D is a given initial point, Mn = I−G′(xn)
−1G′(yn),

α ∈ R β = 2−3γ

5 , δ = 2γ−3
5 and γ ∈ R−{−1}. The ball con-

vergence of iterative scheme (1.2) was given in [5] when
X = Y = R j ( j a natural number). The motivation, devel-
opment and advantages of this iterative scheme over other
competing scheme be also found in [5]. Using hypotheses on
the Fréchet-derivatives reaching the seventh order as well as
Taylor series expansions, the sixth convergence order of the
method was established. However, the high order derivatives
restrict the applicability of method (1.2) to cases when G is at
least seven times Fréchet-differentiable. As an academic and
motivational example, consider function G on D = [− 1

2 ,
5
2 ] by

G(x) =
{

x3lnx2 + x5− x4, x 6= 0
0, x = 0.
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We have that x∗ = 1,

G′(x) = 3x2lnx2 +5x4−4x3 +2x2,

G′′(x) = 6xlnx2 +20x3−12x2 +10x

and
G′′′(x) = 6lnx2 +60x2−24x+22.

Function G′′′(x) is unbounded on D. Moreover, the radius
of convergence or computable error bounds on the distances
‖xn− x∗‖ or uniqueness of the solution result of how close
x0 should be to x∗ for convergence are not given in [5]. In
our article, we address these concerns. First of all, we only
use hypotheses on the first Fréchet-derivative. The radius of
convergence, upper error bounds on ‖xn−x∗‖ and uniqueness
results are given using Lipschitz-type constants. Moreover,
the convergence order is computed using computational order
of convergence (COC) or approximate computational order
of convergence (ACOC) [1–3], which do not utilize higher
than one Fréchet derivatives. It is worth mentioning that
ball convergence results provide the degree of difficulty for
choosing initial points, so they are very useful.

The rest of the article is structured: Section 2 deals with
the Ball convergence of iterative scheme (1.2). The numerical
examples can be found in Section 3 that completes this article.

2. Ball convergence

We base the ball convergence of method (1.2) on some
parameters and scalar functions. Suppose that equation

λ0(t) = 1 (2.1)

has at least one positive root. Denote by ρ0 the smallest
such root, where λ0 : [0,+∞) −→ [0,+∞) is a continuous
and increasing function with λ0(0) = 0. Let λ : [0,ρ0) −→
[0,+∞), µ : [0,ρ0) −→ [0,+∞) be also continuous and in-
creasing functions with λ (0) = 0. Define functions ϕ1 and ψ1
on the interval [0,ρ0) by

ϕ1(t) =

∫ 1
0 λ ((1−θ)t)dθ + 1

3
∫ 1

0 µ(θ t)dθ

1−λ0(t)

and
ψ1(t) = ϕ1(t)−1.

Suppose that

µ(0)< 3. (2.2)

We have ψ1(0) < 0 and ψ1(t) −→ +∞ as t −→ ρ
−
0 . By the

intermediate value theorem (IVT) equation ψ1(t) = 0 has at
least one positive root. Denote by r1 the smallest such root.
By IVT equation

3
4
|α|λ0(t)+λ0(ϕ1(t)t)

1−λ0(t)
= 1 (2.3)

has at least one positive root in (0,ρ0). Denote by ρ1 the small-
est such root. Define functions p,qϕ2,ψ2 on [0,min{ρ0,ρ1}),
by

p(t) = 6[|4−3α|+3|α|
∫ 1

0
µ(θϕ1(t)t)tdθ ]

q(t) = p(t)−1,

ϕ2(t) = ϕ1(t)+
3
4

(
λ0(t)+λ0(ϕ1(t)t)

1−λ0(t)

)2
( ∫ 1

0 µ(θ t)dθ

1−λ0(t)

)
1− p(t)

and
ψ2(t) = ϕ2(t)−1.

Suppose that equation

p(t) = 1 (2.4)

has at least one positive root. Denote by ρ2 the smallest
such root. We get again ψ2(0) < 0 and ψ2(t) −→ +∞ as
t −→min{ρ0,ρ1}−. Denote by r2 the smallest positive root
of equation ψ2(t) = 0. Notice that β +γ 6= 0. By IVT equation

|β |λ0(t)+ |γ|λ0(ϕ1(t)t)
|β + γ|

= 1

has at least one positive root in (0,ρ0). Denote by ρ2, the
smallest such root. Define functions p1,q1,ϕ3,ψ3 on
[0,min{ρ0,ρ1,ρ2,ρ3}) by

p1(t) =
|β |λ0(t)+ |γ|λ0(ϕ1(t)t)

|β + γ|
,

q1(t) = p1(t)−1,

ϕ3(t) =

[
1+

(µ(t)+ |δ |µ(ϕ1(t)t))
∫ 1

0 µ(θϕ2(t)t)dθ

(1− p1(t))|β + γ|(1−λ0(t))

]
ϕ2(t)

and
ψ3(t) = ϕ3(t)−1.

Suppose that(
1+

(1+ |δ |)µ(0)2

|β + γ|

)
µ(0)

3
< 1 (2.5)

We obtain ψ3(0)< 0 and ψ3(t)−→+∞ as
t −→min{ρ0,ρ1,ρ2,ρ3}. Denote by r3 the smallest positive
root of equation ψ3(t) = 0. Define the radius of convergence
r by

r = min{ri}, i = 1,2,3. (2.6)

Then, it follows that for each t ∈ [0,r)

0 ≤ λ0(t)< 1 (2.7)
0 ≤ p(t)< 1 (2.8)
0 ≤ p1(t)< 1 (2.9)

and

0≤ ϕi < 1. (2.10)

Denote by B(u,a), B̄(u,a), respectively the open and closed
balls in X with center u ∈ X and radius a > 0.

We consider the conditions (H):
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(h1) G : D⊆ X −→ Y is continuously Fréchet differentiable
and there exists x∗ ∈ D such that G(x∗) = 0 and
G′(x∗)−1 ∈L (Y,X).

(h2) There exists function λ0 : [0,+∞)−→ [0,+∞) contin-
uous and increasing with λ0(0) = 0 such that for each
x ∈ D

‖G′(x∗)−1(G′(x)−G′(x∗))‖ ≤ λ0(‖x− x∗‖).

Set D0 = D∩B(x∗,ρ0), where ρ0 is defined in (2.1).

(h3) There exist functions λ : [0,ρ0)−→ [0,+∞),
µ : [0,ρ0)−→ [0,+∞) such that for each x,y ∈ D0

‖G′(x∗)−1(G′(y)−G′(x))‖ ≤ λ (‖y− x‖)

and
‖G′(x∗)−1G′(x)‖ ≤ µ(‖x− x∗‖).

(h4) B̄(x∗,r)⊆ D, (2.2) and (2.5) hold where r is defined in
(2.6).

(h5) There exist r∗ ≥ r such that∫ 1

0
λ0(θr∗)dθ < 1.

Set D1 = D∩ B̄(x∗,r∗).

THEOREM 2.1. Under the conditions (H), further suppose
that x0 ∈ B(x∗,r∗)−{x∗}. Then, the following hold
limn−→+∞ xn = x∗, {xn} ⊆ B(x∗,r∗),

‖yn−x∗‖≤ ϕ1(‖xn−x∗‖)‖xn−x∗‖≤ ‖xn−x∗‖< r, (2.11)

‖zn−x∗‖ ≤ ϕ2(‖xn−x∗‖)‖xn−x∗‖ ≤ ‖xn−x∗‖ (2.12)

and

‖xn+1−x∗‖ ≤ ϕ3(‖xn−x∗‖)‖xn−x∗‖ ≤ ‖xn−x∗‖ (2.13)

for each n = 0,1,2, . . . , where functions ϕi, i = 1,2,3 are
given previously and r is defined in (2.6). Moreover, x∗ is
the only solution of equation G(x) = 0 in the set D1.

Proof. Let x ∈ B(x∗,r)−{x∗}. By (h2), we have in turn that

‖G′(x∗)−1(G′(x)−G′(x∗))‖ ≤ λ0(‖x−x∗‖)≤ λ0(r)< 1,
(2.14)

which together with the Banach perturbation Lemma [14]
gives G′(x)−1 ∈L (Y,X),

‖G′(x)−1G′(x∗)‖ ≤
1

1−λ0(‖x− x∗‖)
(2.15)

and y0 is well defined by the first substep of method (1.2). Let
us write using (h1) that

G(x) = G(x)−G(x∗) =
∫ 1

0
G′(x∗+θ(x−x∗))dθ(x−x∗).

(2.16)

Then, by the second hypothesis in (h3)

‖G′(x∗)−1G(x) = ‖
∫ 1

0
G′(x∗+θ(x− x∗))dθ(x− x∗)‖

≤ µ(‖x− x∗‖)‖x− x∗‖. (2.17)

We also have by the second hypothesis in (h3), (h1) and (2.15)

‖x0− x∗−G′(x0)
−1G(x0)‖

≤ ‖G′(x0)
−1G′(x∗)‖

‖G′(x∗)−1(G′(x0)(x0− x∗)−G(x0))‖

≤
∫ 1

0 λ ((1−θ)‖x0− x∗‖)dθ‖x0− x∗‖
1−λ0(‖x0− x∗‖)

. (2.18)

Using (2.6), (2.10) (for i = 1), (2.15), (2.17) (for x = x0) and
(2.18), we get

‖y0− x∗‖
= ‖(x0− x∗−G′(x0)

−1G(x0))

+
1
3

G′(x0)
−1G(x0)‖

≤ ‖x0− x∗−G′(x0)
−1G(x0)‖

+
1
3
‖G′(x0)

−1G′(x∗)‖‖G′(x∗)−1G(x0)‖

≤
∫ 1

0 λ ((1−θ)‖x0− x∗‖)dθ +
∫ 1

0 µ(θ‖x0− x∗‖)dθ

1−λ0(‖x0− x∗‖)
×‖x0− x∗‖

= ϕ1(‖x0− x∗‖)‖x0− x∗‖
≤ ‖x0− x∗‖< r, (2.19)

so (2.11) holds for n = 0 and y0 ∈ B(x0,x∗). We need an
estimate on M0 which is well defined by (2.15), so

‖M0‖ = ‖I−G′(x0)
−1G′(y0)‖

≤ ‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1(G′(x0)−G′(y0))‖

≤ ‖G′(x0)
−1G′(x∗)‖[‖G′(x∗)−1(G′(x0)−G′(x∗))‖

+‖G′(x∗)−1(G′(y0)−G′(x∗))‖]

≤ λ0(‖x0− x∗‖)+λ0(‖y0− x∗‖)
1−λ0(‖x0− x∗‖)

≤ λ0(‖x0− x∗‖)+λ0(ϕ1(‖x0− x∗‖)‖x0− x∗‖)
1−λ0(‖x0− x∗‖)

.

(2.20)

We shall show that (I +6(4I−3αM0))
−1 ∈L (Y,X). Using
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(2.6), (2.8), (2.15) and (2.17), we get in turn that

‖6(4I−3αM0)‖
= 6‖(4−3α)I +3αF ′(x0)

−1F ′(y0)‖
≤ 6[|4−3α|

+
3|α|

∫ 1
0 µ(θϕ1(‖x0− x∗‖)‖x0− x∗‖dθ‖x0− x∗‖

1−λ0(‖x0− x∗‖)
]

≤ p(‖x0− x∗‖)≤ p(r)< 1, (2.21)

so

‖(I +6(4I−3αM0))
−1‖ ≤ 1

1− p(‖x0− x∗‖)
(2.22)

and z0 is well defined by second substep of method (1.2).
Using (2.6), (2.10) (for i = 2), (2.15), (2.17), (2.18), (2.19),
(2.20) and (2.22), we get in turn by the second substep of
method (1.2).

‖z0− x∗‖
≤ ‖x0− x∗−G′(x0)

−1G(x0)‖

+
3
4
‖M0‖2‖(I +6(4I−3αM0))

−1‖

×‖G′(x0)
−1G′(x∗)‖‖G′(x∗)−1G(x0)‖

≤ [ϕ1(‖x0− x∗‖

+
3
4

(
λ0(‖x0−x∗‖)+λ0(ϕ1(‖x0−x∗‖)‖x0−x∗‖)

1−λ0(‖x0−x∗‖)

)2

1− p(‖x0− x∗‖)

×
∫ 1

0 µ(θ‖x0− x∗‖)dθ

1−λ0(‖x− x∗‖)
]‖x0− x∗‖

= ϕ2(‖x0− x∗‖)‖x0− x∗‖ ≤ ‖x0− x∗‖< r, (2.23)

so (2.12) holds for n = 0 and z0 ∈ B(x∗,r). Next, we show
that (βG′(x0) + γG′(y0))

−1 ∈ L (Y,X). Using (2.6), (2.9),
(h2) and (2.19), we have in turn that

‖(βG′(x∗)+ γG′(x∗))−1

×(βG′(x0)+ γG′(y0)− (β + γ)G′(x∗)]‖

≤ 1
|β + γ|

[|β |‖G′(x∗)−1(G′(x0)−G′(x∗))‖

+|γ|‖G′(x∗)−1(G′(y0)−G′(x∗0)‖]

≤ 1
|β + γ|

[|β |λ0(‖x0− x∗‖)

+|γ|λ0(ϕ1(‖x0− x∗‖)‖x0− x∗‖)]
= p1(‖x0− x∗‖)≤ p1(r)< 1, (2.24)

so

‖(βG′(x0)+γG′(y0))
−1G′(x∗)‖≤

1
1− p1(‖x0− x∗‖)

(2.25)

and x1 is defined by the third substep of method (1.2). Then,
using (2.6), (2.10) (for i = 3), (2.15) (for x = x0), (2.17) (for
x = z0), (2.19), (2.23), (2.25) and the third substep of method

(1.2):

‖x1− x∗‖
≤ ‖z0− x∗‖

+‖(βG′(x0)+ γG′(y0))
−1G′(x∗)‖

×‖G′(x∗)−1(G′(x0)+δG′(y0))‖
×‖G′(x0)

−1G′(x∗)‖‖G′(x∗)−1G(z0)‖

≤
[

1+
Π

(1− p1(‖x0− x∗‖))|β + γ|(1−λ0(‖x0− x∗‖))

]
×ϕ2(‖x0− x∗‖)‖x0− x∗‖

= ϕ3(‖x0− x∗‖)‖x0− x∗‖ ≤ ‖x0− x∗‖< r, (2.26)

where

Π := [µ(‖x0− x∗‖)+ |δ |µ(ϕ1(‖x0− x∗‖)‖x0− x∗‖)]

×
∫ 1

0
µ(ϕ2(‖x0− x∗‖)‖x0− x∗‖)dθ ,

so (2.3) holds and x1 ∈ B(x∗,r). Substitute x0,y0,z0,x1 by
xm,ym,zm,xm+1 in the preceding estimates to terminate the
mathematical induction for estimates (2.11)–(2.13). Then,
using the estimation

‖xm+1−x∗‖ ≤ s‖xm−x∗‖< r, s = ϕ3(‖x0−x∗‖) ∈ [0,1)
(2.27)

we conclude that limm−→+∞ xm = x∗ and xm+1 ∈ B(x∗,r).
The uniqueness part, is shown by considering y∗ ∈ D1 with
F(y∗) = 0 and setting T =

∫ 1
0 G′(x∗+θ(y∗−x∗))dθ to obtain

by (h2) and (h5) that

‖G′(x∗)−1(T −G′(x∗))‖ ≤
∫ 1

0
λ0(θ‖x∗− y∗‖)dθ

≤
∫ 1

0
λ0(θr∗)dθ < 1

(2.28)

so T−1 ∈L (Y,X). Finally, from the identity

0 = G(y∗)−G(x∗) = T (y∗− x∗), (2.29)

we deduce that x∗ = y∗.
�

REMARK 2.2. (a) Let λ0(t) = L0t, λ (t) = Lt. The radius
rA = 2

2L0+L was obtained by Argyros as the convergence
radius for Newton’s method under condition (h1)-(h3).
Notice that the convergence radius for Newton’s method
given independently by Rheinboldt [20] and Traub [21]
is given by

ρ̃ =
2

3L
< rA.

Let f (x) = ex − 1. Then x∗ = 0. Set Ω = B(0,1).

Then, we have that L0 = e− 1 < L = e
1

L0 , so ρ̃ =
0.24252961 < ρ̃1 = 0.3827.

1231



Ball convergence of a novel bi-parametric iterative scheme for solving equations — 1232/1233

Moreover, the new error bounds [2–7] are:

‖xn+1− x∗‖ ≤ L
1−L0‖xn− x∗‖

‖xn− x∗‖2,

whereas the old ones [20, 21]

‖xn+1− x∗‖ ≤ L
1−L‖xn− x∗‖

‖xn− x∗‖2.

Clearly, the new error bounds are more precise, if L0 <
L. Clearly, the radius of convergence of method (1.2)
given by ρ∗ is smaller than ρ̃1.

(b) Method (1.2) stays the same if we use the new instead
of the old conditions [5]. We can use the computational
order of convergence (COC)[1–3]

ξ =
ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 1,2, . . .

or the approximate computational order of convergence
(ACOC)[1–3]

ξ
∗ =

ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 0,1,2, . . . .

(c) Using (h2) and

‖G′(x∗)−1G′(x)‖
= ‖G′(x∗)−1(G′(x)−G′(x∗))+ I‖
≤ 1+‖G′(x∗)−1(G′(x)−G′(x∗))‖
≤ 1+q0(‖x− x∗‖)

the second condition in (h3) can be replaced by

µ(t) = 1+λ0(t)

or
µ(t) = 1+λ0(ρ0).

Notice that if in particular, λ0(t) = L0t, then, we can
choose µ(t) = 2, since t ∈ [0, 1

L0
).

3. Numerical examples
The numerical examples are presented in this section for

α = 4
3 and β = γ = δ = 1.

EXAMPLE 3.1. Let B1 =B2 =R3,Ω= Ū(0,1),x∗=(0,0,0)T .
Define function F on Ω for u = (x,y,z)T by

F(u) = (ex−1,
e−1

2
y2 + y,z)T .

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e−1)y+1 0
0 0 1

 .

Notice that using the (2.8)-(2.12), conditions, we get λ0(t) =
(e−1)t,λ (t) = e

1
e−1 t,µ(t) = e

1
e−1 .

Then using the definition of r, we have that
r1 = 0.15440695135715407082521721804369
r2 = 0.022891367094531062803541843209132
r3 = 0.021455242177788026725071546252366 = r.

EXAMPLE 3.2. Let B1 = B2 = C[0,1], the space of con-
tinuous functions defined on [0,1] and be equipped with the
max norm. Let Ω =U(0,1). Define function F on Ω by

F(ϕ)(x) = ϕ(x)−5
∫ 1

0
xθϕ(θ)3dθ . (3.1)

We have that

F ′(ϕ(ξ ))(x)= ξ (x)−15
∫ 1

0
xθϕ(θ)2

ξ (θ)dθ , for each ξ ∈Ω.

Then, we get that x∗ = 0, λ0(t) = 7.5t,λ (t) = 15t,µ(t) = 2.
This way, we have that
r1 = 0.022222222222222222222222222222222
r2 = 0.013998246548730894703305160930995 = r
r3 = 0.019957165953580074946316358364129.

EXAMPLE 3.3. Let us return back to the motivational ex-
ample. Then, we get that λ0(t) = λ (t) = 147t,µ(t) = 2. So,
we obtain
r1 = 0.0015117157974300831443688586545729
r2 = 0.00097050808874623369516126958345126 = r
r3 = 0.0049435619795227554035266237519863.

EXAMPLE 3.4. Let B1 = B2 = C[0,1],Ω = Ū(x∗,1) and
consider the nonlinear integral equation of the mixed Hammerstein-
type [1, 2, 6–9, 12] defined by

x(s) =
∫ 1

0
G(s, t)(x(t)3/2 +

x(t)2

2
)dt,

where the kernel G is the Green’s function defined on the
interval [0,1]× [0,1] by

G(s, t) =
{

(1− s)t, t ≤ s
s(1− t), s≤ t.

The solution x∗(s) = 0 is the same as the solution of equation
(1.1), where F : C[0,1]−→C[0,1]) is defined by

F(x)(s) = x(s)−
∫ 1

0
G(s, t)(x(t)3/2 +

x(t)2

2
)dt.

Notice that

‖
∫ 1

0
G(s, t)dt‖ ≤ 1

8
.

Then, we have that

F ′(x)y(s) = y(s)−
∫ 1

0
G(s, t)(

3
2

x(t)1/2 + x(t))dt,
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so since F ′(x∗(s)) = I,

‖F ′(x∗)−1(F ′(x)−F ′(y))‖ ≤ 1
8
(

3
2
‖x− y‖1/2 +‖x− y‖).

Then, we get that λ0(t) = λ (t) = 1
8 (

3
2 t1/2 + t),µ(t) = 1+

λ0(t). So, we obtain
r1 = 1.4154,
r2 = 0.0010070574734927378608012604743749,
r3 = 0.00048321696805947146830320648724921 = r.

References
[1] Argyros, I. K., George, S., Magreñán, A. A., Local con-
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