

https://doi.org/10.26637/MJM0803/0090

A study on fuzzy semi-stratifiable and fuzzy stratifiable spaces

M.S. Jisha^{1*} and R. Sreekumar²

Abstract

The notion of stratifiable space and semi-stratifiable space were studied by Gary Gruenhage [4]. Alexander P. Sostak extended the concept of stratifiable space to the fuzzy case [1]. In this paper we investigate some properties of fuzzy closure-preserving collection, fuzzy stratifiable space and fuzzy semi-stratifiable space.

Keywords

Fuzzy closure-preserving collection, fuzzy stratifiable space, fuzzy semi-stratifiable space and fuzzy M_1 - space.

AMS Subject Classification

54A40, 54E35, 03E72.

¹Department of Mathematics, M.S.M. College, Kayamkulam-690502, Kerala, India.

² Department of Mathematics, S.D.College, Alappuzha-688003, Kerala, India.

*Corresponding author: ¹ jishamkrishnan@gmail.com; ²dr.r.sreekumar@gmail.com

Article History: Received 03 April 2020; Accepted 12 July 2020

©2020 MJM.

Contents

1	Introduction
2	Preliminaries 1240
3	Fuzzy closure-preserving collection 1240
4	Fuzzy semi-stratifiable and fuzzy stratifiable spaces 1241
	References1242

1. Introduction

The concepts like stratifiable space and semi-stratifiable space were extensively studied by Gary Gruenhage.For a detailed discussion reference may be made of [4]. The class of stratifiable spaces does not differ too much from the class of metrizable spaces. Alexander P. Sostak extended the concept of stratifiable space to the fuzzy case [1].In this paper we establish some properties of fuzzy closure-preserving collection, fuzzy stratifiable space and fuzzy semi-stratifiable space.

2. Preliminaries

We use the term fuzzy topological space in Chang's sense [2]. A fuzzy point x_{α} is a fuzzy set which takes every element in X to 0 except one element $x \in X$ and its value at x is α where $(0 < \alpha \le 1)$. $\underline{0}$ is the fuzzy set which maps all element in X to 0 and $\underline{1}$ is the fuzzy set which maps every element in X to 1. The closure of a fuzzy set U in a fuzzy topological space

is denoted by \overline{U} . In this paper each fuzzy topological space is assumed to be T_1 and regular. \mathbb{N} denotes set of all natural numbers. We list some of the definitions which we are using in this paper.

Definition 2.1. [11] A collection \mathscr{A} of fuzzy subsets of a fuzzy topological space (X, F) is called discrete if for each fuzzy point x_{α} , there is a $G \in F$ with $x_{\alpha} \leq G$ and $G \wedge A \neq \underline{0}$ holds for at most one element A of \mathscr{A} .

Definition 2.2. [9] Let \mathscr{A} be a cover of a fuzzy topological space (X, F). For $\alpha \in (0, 1]$ and a fuzzy point x_{α} , $st(x_{\alpha}, \mathscr{A}) =$ $\lor \{B : B \in \mathscr{A}, B(x) \ge \alpha\}$ and for a fuzzy set G, $st(G, \mathscr{A}) =$ $\lor \{B : B \in \mathscr{A} \text{ and } B \land G \neq \underline{0}\}$

Definition 2.3. [9] Let (X, F) be a fuzzy topological space.A fuzzy point $x_{\alpha}, \alpha \in (0, 1]$ is called a cluster point of the set $\{(x_n)_{\alpha} : n \in \mathbb{N}\}$, where $(x_n)_{\alpha}$ is a fuzzy set with support x_n and value α , if for each fuzzy set $G \in F$ such that $x_{\alpha} \leq G$, there exists $n_0 \in \mathbb{N}$ with $x_{n_0} \neq x$ and $(x_{n_0})_{\alpha} \leq G$.

Definition 2.4. [7] Let (X, F) be a fuzzy topological space and let $F_0 \subset F$. Then F_0 is called a fuzzy base of F if $F = \{ \lor \mathscr{A} : \mathscr{A} \subset F_0 \}$.

3. Fuzzy closure-preserving collection

In this section we define fuzzy closure-preserving collection and fuzzy σ -closure-preserving collection.

Definition 3.1. A collection \mathcal{H} of fuzzy subsets of a fuzzy topological space (X, F) is called fuzzy closure-preserving if $\overline{\forall \mathcal{H}'} = \forall \{\overline{H} : H \in \mathcal{H}'\}$ for each $\mathcal{H}' \subset \mathcal{H}$. If $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$ where each \mathcal{H}_n is fuzzy closure-preserving, then \mathcal{H} is called a fuzzy σ -closure-preserving.

Theorem 3.2. Fuzzy locally finite collections are fuzzy closurepreserving.

Proof. Let \mathscr{A} be a fuzzy locally finite collection of fuzzy subsets of X. Let $\mathscr{A}' \subset \mathscr{A}$. Let $A' \in \mathscr{A}'$. Now $A' \leq \vee \{A' : A' \in \mathscr{A}'\}$ which implies $\overline{A'} \leq \overline{\vee \{A' : A' \in \mathscr{A}'\}}$. That is $\overline{A'} \leq \overline{\vee \mathscr{A}'}$ for each $A' \in \mathscr{A}'$. So $\vee \{\overline{A'} : A' \in \mathscr{A}'\} \leq \overline{\vee \mathscr{A}'}$. Thus we need to prove the other side. Clearly, $\vee \{A' : A' \in \mathscr{A}'\} \leq \vee \{\overline{A'} : A' \in \mathscr{A}'\}$. If $\vee \{\overline{A'} : A' \in \mathscr{A}'\}$ is closed, then $\overline{\vee \{A' : A' \in \mathscr{A}'\}} \leq \vee \{\overline{A'} : A' \in \mathscr{A}'\}$ is closed, then $\overline{\vee \{A' : A' \in \mathscr{A}'\}} \leq \vee \{\overline{A'} : A' \in \mathscr{A}'\}$. So it suffices to prove that, $\vee \{\overline{A'} : A' \in \mathscr{A}'\}$ is closed.

Let $x_{\alpha} \leq (\vee \{\overline{A'} : A' \in \mathscr{A'}\})^c$. Since \mathscr{A} is locally finite collection, $\mathscr{A'}$ is also locally finite collection and hence so is $\{\overline{A'} : A' \in \mathscr{A'}\}$. Let G be a fuzzy open set with $x_{\alpha} \leq G$ and $G \wedge \overline{A'_i} \neq 0$ holds for finitelymany $A'_i \in \mathscr{A'}$, say $1 \leq i \leq n$. Then $x_{\alpha} \leq G \wedge \wedge_{i=1}^n \overline{A'_i}^c$ and $(G \wedge \wedge_{i=1}^n \overline{A'_i}^c) \wedge (\vee \{\overline{A'} : A' \in \mathscr{A'}\}) = 0$. Therefore for every fuzzy point $x_{\alpha} \leq (\vee \{\overline{A'} : A' \in \mathscr{A'}\})^c$, there exists a fuzzy open set $G \wedge \wedge_{i=1}^n \overline{A'_i}^c$ with $x_{\alpha} \leq G \wedge \wedge_{i=1}^n \overline{A'_i}^c$ and $G \wedge \wedge_{i=1}^n \overline{A'_i}^c \leq (\vee \{\overline{A'} : A' \in \mathscr{A'}\})^c$. Therefore $(\vee \{\overline{A'} : A' \in \mathscr{A'}\})^c$ is open and hence $\vee \{\overline{A'} : A' \in \mathscr{A'}\}$ is closed. \Box

4. Fuzzy semi-stratifiable and fuzzy stratifiable spaces

Definition 4.1. [1] A fuzzy topological space (X, F) is called stratifiable if to every $U \in F$, one can assign a sequence of fuzzy sets $U_n \in F$ such that $(1)\overline{U_n} \leq U$ for all $n \in \mathbb{N}$

 $(2) \lor_n U_n = U$ (3) $U \le V(V \in F)$ implies $U_n \le V_n$ for all $n \in \mathbb{N}$

When studying the properties of fuzzy stratifiable spaces it is convinient to use the following dual characterization.

Theorem 4.2. A fuzzy topological space (X, F) is fuzzy stratifiable if there is a function G which assigns to each $n \in \mathbb{N}$ and fuzzy-closed subset H of X, a fuzzy-open set G(n,H) with $H \leq G(n,H)$ such that $(1)H = \wedge_n G(n,H)$ $(2)H \leq K \Longrightarrow G(n,H) \leq G(n,K)$ $(3)H = \wedge_n \overline{G(n,H)}$

Remark 4.3. we can assume the following condition satisfies: $(4)G(n+1,H) \leq G(n,H)$ for each $n \in \mathbb{N}$.

Definition 4.4. A fuzzy topological space (X,F) is called fuzzy semi-stratifiable if there is a function *G* which assigns to each $n \in \mathbb{N}$ and fuzzy closed subset *H* of *X*, a fuzzy open set

 $G(n,H) with H \le G(n,H) such that$ $(1)H = \wedge_n G(n,H)$ $(2)H \le K \implies G(n,H) \le G(n,K)$

Definition 4.5. [10] A sequence (\mathscr{A}_n) of fuzzy open covers of a fuzzy topological space (X, F) is called a fuzzy development for X, if for $\alpha \in (0, 1]$, a fuzzy point x_α , the set $\{st(x_\alpha, \mathscr{A}_n) : n \in \mathbb{N}\}$ is a base at x_α . A fuzzy topological space (X, F) is fuzzy developable if it has a fuzzy development.

Theorem 4.6. *Every fuzzy developable space is fuzzy semistratifiable.*

Proof. Suppose (X, F) is a fuzzy developable space. Let (\mathscr{A}_n) be a fuzzy development for X. Let $n \in \mathbb{N}$ and H be a fuzzy closed subset of X. Let $G(n, H) = st(H, \mathscr{A}_n)$. Clearly $H \leq st(H, \mathscr{A}_n) = G(n, H)$ and $H = \wedge_n st(H, \mathscr{A}_n) = \wedge_n G(n, H)$. If $H \leq K$ then $st(H, \mathscr{A}_n) \leq st(K, \mathscr{A}_n)$. Therefore (X, F) is fuzzy semi-stratifiable.

Definition 4.7. A fuzzy topological space (X, F) is called a fuzzy M_1 -space if X has a fuzzy σ -closure preserving base.

Theorem 4.8. Every fuzzy M₁-space is fuzzy stratifiable.

Proof. Suppose (X, F) is a fuzzy M_1 -space.Let $\mathscr{B} = \bigcup_n \mathscr{B}_n$ be a fuzzy σ -closure preserving base for X. Let H be a fuzzy closed subset of X and let $n \in \mathbb{N}$.Let $G(n, H) = (\bigvee_n \{\overline{B} : B \in \mathscr{B}_n, \overline{B} \land H = \underline{0}\})^c$. Then $H \leq G(n, H)$. Clearly $H = \land_n G(n, H) = \land_n \overline{G(n, H)}$. Also $H \leq K \Longrightarrow G(n, H) \leq G(n, K)$. Therefore (X, F) is fuzzy stratifiable. \Box

Theorem 4.9. A fuzzy topological space (X, F) is fuzzy semistratifiable if and only if for each fixed $\alpha \in (0, 1]$ there is a function $g : \mathbb{N} \times \{x_{\alpha} : x \in X\} \to F$ such that (i) $x_{\alpha} = \wedge_n g(n, x_{\alpha})$ (ii) $y_{\alpha} \leq g(n, (x_n)_{\alpha}) \Longrightarrow (x_n)_{\alpha} \to y_{\alpha}$ (X, F) is fuzzy stratifiable is we can also obtain (iii) if $y_{\alpha} \leq H$, where H is fuzzy-closed subset, then $y_{\alpha} \leq \sqrt{\{g(n, x_{\alpha}) : x_{\alpha} \leq H\}}$ for some $n \in \mathbb{N}$.

Proof. Suppose (X, F) is fuzzy semi-stratifiable. Fix $\alpha \in (0, 1]$. Let $g(n, x_{\alpha}) = G(n, x_{\alpha})$, where G satisfies definition 4.4, with $G(n + 1, H) \leq G(n, H)$ for each n. Since $H = \wedge_n G(n, H), x_{\alpha} = \wedge_n G(n, x_{\alpha}) = \wedge_n g(n, x_{\alpha})$. Therefore (i) holds true. To see (ii), assume that $y_{\alpha} \leq g(n, (x_n)_{\alpha})$ and $(x_n)_{\alpha} \rightarrow y_{\alpha}$. Then there is an infinite subset $A \subset \mathbb{N}$ with $y_{\alpha} \leq \overline{\vee}\{(x_n)_{\alpha} : n \in A\}$. Then $y_{\alpha} \leq G(m, \overline{\vee}\{(x_n)_{\alpha} : n \in A\})$ for some $m \in \mathbb{N}$. Choose $n \in A$ with $n \geq m$. Then $y_{\alpha} \leq g(n, (x_n)_{\alpha}) = G(n, (x_n)_{\alpha}) \leq G(n, \overline{\vee}\{(x_n)_{\alpha} : n \in A\})$ since $n \geq m$. This is a contradiction. Therefore $(x_n)_{\alpha} \rightarrow y_{\alpha}$.

Suppose (X, F) is fuzzy stratifiable. To check (iii), assume that $y_{\alpha} \nleq H$ where H is a closed fuzzy subset. Since $H = \wedge_n \overline{G(n,H)}$, there exists $n \in \mathbb{N}$ with $y_{\alpha} \nleq \overline{G(n,H)}$. But $\vee_{x_{\alpha} \le H} G(n,x_{\alpha}) \le G(n,H)$. So $y_{\alpha} \nleq \vee_{x_{\alpha} \le H} G(n,x_{\alpha})$ and hence $y_{\alpha} \nleq \overline{\vee \{g(n, x_{\alpha}) : x_{\alpha} \leq H\}}.$

Conversely, assume that there is a function g satisfying the conditions of theorem. Let $n \in \mathbb{N}$ and H be a closed fuzzy subset. Let $G(n,H) = \bigvee_{\alpha = H(x)} g(n,x_{\alpha})$. Clearly $H \leq G(n,H)$. Then $\wedge_n G(n,H) = \wedge_n \vee_{\alpha = H(x)} g(n,x_{\alpha}) = \vee_{\alpha = H(x)} (\wedge_n g(n,x_{\alpha})) = \vee_{\alpha = H(x)} x_{\alpha} = H$. Suppose $H \leq K$ where K is a closed fuzzy subset. Then $G(n,H) = \bigvee_{\alpha = H(x)} g(n,x_{\alpha}) \leq \bigvee_{\alpha = K(x)} g(n,x_{\alpha}) = G(n,K)$.Therefore (X,F) is fuzzy semi-stratifiable. Clearly $\wedge_n \overline{G(n,H)} =$ $\wedge_n \overline{\vee_{\alpha = H(x)} g(n,x_{\alpha})} = H$ by (iii). Hence (X,F) is fuzzy stratifiable.

Acknowledgment

The author is thankful to the reviewers for their valuable suggestions and comments to improve the quality of the paper.

References

- ^[1] Alexander P. Sostak, On stratifiable fuzzy topological spaces, *Mathematica Bohemica*, 117(2)(1992), 169–184.
- [2] Chang C.L, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- [3] Ganesan Balasubramanian, Maximal Fuzzy Topologies, *Kybernetika*, 31(5)(1995), 459–464.
- [4] Gary-Gruenhage, Generalized Metric Space-Hand book of Set-Theoretic Topology, edited by K.Kunen and J.F.Vaughan, Elsevier Publishers, (1984), 423–500.
- [5] Jisha M.S. and R. Sreekumar, Some Aspects On Fuzzy Countably Compact Space, Science & Society. Journal of Nirmala Academic and Research Publications, 16(1)(2018), 59–64.
- [6] Jisha M.S. and R. Sreekumar, A study on fuzzy Σ-space and fuzzy strong Σ-space, *International Review of Fuzzy Mathematics*, 14(1)(2019), 9–16.
- [7] Liu Ying-Ming and Luo Mao Kang, *Fuzzy Topology: Advances in Fuzzy Systems-Applications and Theory*, Vol.9, World Scientific Publishing Co., 1997.
- [8] Luo Maokang, Paracompactness in Fuzzy Topological spaces, J.Math. Anal. Appl. 130(1988), 55–77.
- [9] R. Sreekumar, On Fuzzy Submetrizability, *Journal of Fuzzy Mathematics*, 10(2)(2000), 1–10.
- [10] R. Sreekumar, On Fuzzy Moore Spaces, Science & Society, Nirmala Academic and Research Publications, 2(2)(2004), 31–37.
- [11] R. Sreekumar, Fuzzy σ-space, Bulletin of Kerala Mathematical Association, 5(1)(2009), 89–94.

******* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

