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Abstract
The present study focuses on investigating the approximate analytical solutions of linear and non- linear Fokker-
Planck equations (FPEs) with space- and time-fractional derivatives using an efficient analytical method, namely
the Sumudu transform iterative method (STIM).The fractional derivatives are represented in the terms of Caputo.
Analytical outcomes are obtained in the form of a converging series with easily computable components and are
shown graphically. The results of the study suggest that the approach is simple to implement and very attractive
in terms of computation.
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1. Introduction
Fractional Calculus (FC) is a field of mathematical study

that concerns derivatives and integrals of arbitrary orders.
Over the past decade, FC has been explored in a variety of
fields, such as signal processing, electrochemistry, chemical
physics, electromagnetics, engineering, acoustics, fluid me-
chanics, viscoelasticity, biology and other fields of science
[2, 15, 16, 23]. The difficulty of finding accurate and approxi-
mate solutions for fractional differential equations (FDEs) in
physics and mathematics remains a major challenge requir-
ing new approaches. It is therefore necessary to investigate
some effective methods for the solution of FDEs. Integer
order differential equations are generalized to FDEs using a
fractional calculus. As a result, several differential equation

problems have been presented and discussed in the literature
on fractional order derivatives.

The Fokker Plank Equation (FPE) was first discovered by
Fokker and Plank to describe Brownian motion of the particles.
FPE is emerging in various areas of natural science, along with
quantum mechanics, circuit theory, chemical physics, solid
state physics and theoretical biology. For a little utilization
of FPE, reference can be made to works by Xu et al. [27]
, Jumarie [10], He and Wu [9], Kamitani and Matsuba [11],
and Zak [31]. The motion of the concentration field w(ξ , t) of
the single space variable x at the time t for the general FPE
shall be given by [22]

∂w
∂ t

=
[
− ∂

∂ξ
A(ξ )+

∂ 2

∂ξ 2 B(ξ )
]
w(ξ , t) (1.1)

along with initial condition (IC)

w(ξ ,0) = f (ξ ),ξ ∈ R, (1.2)

where A(ξ ) and B(ξ )> 0 are referred to as the coefficient of
drift and the coefficient of diffusion. Drift coefficients and
diffusion coefficients may also depend on time,

i.e.
∂w
∂ t

=
[
− ∂

∂ξ
A(ξ , t)+

∂ 2

∂ξ 2 B(ξ , t)
]
w(ξ , t) (1.3)
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The generalization of FPEs is known as nonlinear FPEs. Non-
linear FPEs play a vital role in a variety of fields such as
surface physics, plasma physics, biophysics, polymer physics,
psychology, marketing, population dynamics, engineering,
neurosciences, laser physics and pattern formation.
The nonlinear FPE shall be written in the subsequent form

∂w
∂ t

=
[
− ∂

∂ξ
A(ξ , t,w)+

∂ 2

∂ξ 2 B(ξ , t,w)
]
w(ξ , t) (1.4)

subject to IC

w(ξ ,0) = f (ξ ), ξ ∈ R (1.5)

Nonlinear space-time fractional FPE may be adapted in the
subsequent general form

∂ α

∂ tα
w(ξ , t)=

[
− ∂ β

∂ξ β
A(ξ , t,w)+

(
∂ β

∂ξ β

)2
B(ξ , t,w)

]
w(ξ , t)

(1.6)

where t > 0,ξ > 0,0 < α,β ≤ 1. It may be derived from the
general FPE by replacing the space and time derivatives with

the fractional derivatives of Caputo
∂ α

∂ tα
and

∂ β

∂ tβ
defined by

eq. (2.2). The function w(ξ , t) is assumed to be a causal
function of time and space, i.e., vanishing for t < 0 and ξ < 0.
Particularly for α = β = 1, the fractional FPE (1.6) reduces
to the classical nonlinear FPE given by (1.4) in the case t >
0,ξ > 0.

A number of analytical or numerical methods have been
developed for the solution of linear and nonlinear space and/or
time fractional Fokker-Planck equations, such as the Optimal
Homotopy Asymptotic Method (OHAM) [30], the iterative
Laplace Transform Method (ILTM) [28], the Adomian De-
composition Method (ADM) [21], the Homotopy Perturbation
Method (HPM) [19], the Homotopy perturbation transform
method (HPTM) [13] etc. In recent time, Wang and Liu
used Sumudu transform (ST) in conjunction with the itera-
tive method and became a well-known approach known as
the Sumudu transform iterative method [STIM] [25] to find
approximate analytical solutions for time-fractional Cauchy
reaction-diffusion equations. Recently, Kumar and Daftardar-
Gejji [12] have successfully implemented the STIM technique
in order to obtain analytical solutions for a variety of time and
space fractional partial differential equations as well as their
systems.
The key advantage of this study is the extension of the work of
STIM technique to derive the approximate analytical solutions
of space-and time-fractional Fokker-Planck equations.

2. Preliminaries and Basic Definitions
In the present portion, we provide some important defini-

tions and properties relating to the FC and Sumudu transform
which are further used in this paper.

Definition 2.1. A fractional integral of Riemann-Liouville’s
order α > 0 of the real value function w(ξ , t) is defined as
[20, 24]

Iα
t w(ξ , t) =

1
Γ(α)

∫ t

0
(t− s)α−1w(ξ ,s)ds, (2.1)

where Γ(.) is known as the Gamma function.

Definition 2.2. The Caputo fractional derivative of function
w(ξ , t) of order α is defined as [6, 17]

∂ α

∂ tα
w(ξ , t) = Im−α

t

[
∂ m

∂ tm w(ξ , t)
]

=



1
Γ(m−α)

∫ t
0

wm(ξ ,τ)

(ξ − τ)α−m+1 dρ,

m−1 < α ≤ m,m ∈ N,

∂ m

∂ tm w(ξ , t) ,α = m.

(2.2)

Definition 2.3. The Sumudu transform over the set of func-
tions A = { f (t)|∃M,ρ1 > 0,ρ2 > 0 such that | f (t)|< Me|t|/ρ j

if t ∈ (−1) j× [0,∞)} is defined as [3, 26]

S[ f (t)] = F(ω) =
∫

∞

0
e−t f (ωt)dt , ω ∈ (−ρ1,ρ2). (2.3)

One of the basic properties of Sumudu transform is

S
[ tα

Γ(α +1)

]
= ω

α , α >−1. (2.4)

inverse Sumudu transforms of ωα is defined as

S−1[ωα ] =
tα

Γ(α +1)
, α >−1. (2.5)

Definition 2.4. The Sumudu transform of Caputo time frac-
tional derivative of w(ξ , t) of order α > 0 is defined as [1, 25]

S[
∂ α w(ξ , t)

∂ tα
] = ω

−α S[w(ξ , t)]

−
m−1

∑
k=0

[
ω
−α+k ∂ kw(ξ ,0)

∂ tk

]
,

m−1 < α ≤ m , m ∈ N. (2.6)

Definition 2.5. The Mittag-Leffler function is defined as [18]

Eα(z) =
∞

∑
n=0

zn

Γ(αn+1)
,α ∈ C,Re(α)> 0. (2.7)

3. The Basic Concept of STIM
In order to demonstrate the key concept of this method

[25], the following general space and time fractional differen-
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tial equation of the form is considered as

∂ α w
∂ tα

=F(ξ ,w,
∂ β w
∂ξ β

, ...,
∂ kβ w
∂ξ kβ

),

l−1 < α ≤ l,m−1 < β ≤ m,k, l,m ∈ N
(3.1)

along with the initial conditions

∂ kw(ξ ,0)
∂ tk = hk(ξ ),k = 0,1,2, ...,n−1, (3.2)

where F(ξ ,w, ∂ β w
∂ξ β

, ..., ∂ lβ w
∂ξ lβ ) is a linear/nonlinear operator and

w = w(ξ , t) is the unknown function and fractional deriva-

tive
∂ lβ w(ξ , t)

∂ξ lβ , l ∈ N is taken as the sequential fractional

derivative [17] i.e.

∂ lβ w
∂ξ lβ =

∂ β

∂ξ β

∂ β

∂ξ β
...

∂ β w
∂ξ β

(l times). (3.3)

Taking the Sumudu transform on the both sides of eq. (3.1),
we get

S
[

∂ α w
∂ tα

]
= S
[
F(ξ ,w,

∂ β w
∂ξ β

, ...,
∂ lβ w
∂ξ lβ )

]
(3.4)

By using eq. (2.6), we have

S[w(ξ , t)] =
m−1

∑
k=0

[
ω

k ∂ kw(ξ ,0)
∂ tk

]
+ω

α S
[
F
(

ξ ,w,
∂ β w
∂ξ β

, ...,
∂ lβ w
∂ξ lβ

)]
. (3.5)

The inverse Sumudu transform of eq. (3.5) leads to

w(ξ , t) = S−1
(m−1

∑
k=0

[
ω

k ∂ kw(ξ ,0)
∂ tk

])
+S−1

[
ω

α S
(

F
(

ξ ,w,
∂ β w
∂ξ β

, ...,
∂ lβ w
∂ξ lβ

))]
.

(3.6)

We can write eq. (3.6) as

w(ξ , t) = f (ξ , t)+N
(

ξ ,w,
∂ β w
∂ξ β

, ...,
∂ lβ w
∂ξ lβ

)
, (3.7)

where

f (ξ , t) = S−1
(m−1

∑
k=0

[
ω

k ∂ kw(ξ ,0)
∂ tk

])
(3.8)

N
(

ξ ,w,
∂ β w
∂ξ β

, ...,
∂ lβ w
∂ξ lβ

)
= S−1

[
ω

α S
(

F
(

ξ ,w,
∂ β w
∂ξ β

, ...,
∂ lβ w
∂ξ lβ

))]
, (3.9)

here N is a linear/nonlinear operator and f is known function .
Further, we apply the iterative technique introduced by

Daftardar-Gejji and Jafari [7], which represents a solution
w(ξ , t) in components of infinite series

w(ξ , t) =
∞

∑
i=0

wi(ξ , t), (3.10)

Decomposing the operator N as

N
(

ξ ,
∞

∑
i=0

wi,
∂ β

∑
∞
i=0 wi

∂ξ β
, ...,

∂ lβ
∑

∞
i=0 wi

∂ξ lβ

)
= N

(
ξ ,w0,

∂ β w0

∂ξ β
, ...,

∂ lβ w0

∂ξ lβ

)
+

∞

∑
i=1

(
N
(

ξ ,
i

∑
j=0

w j,
∂ β

∑
i
j=0 w j

∂ξ β
, ...,

∂ lβ
∑

i
j=0 w j

∂ξ lβ

))
−

∞

∑
i=1

(
N
(

ξ ,
i−1

∑
j=0

w j,
∂ β

∑
i−1
j=0 w j

∂ξ β
, ...,

∂ lβ
∑

i−1
j=0 w j

∂ξ lβ

))
(3.11)

S−1
[
ω

γ S
(

F
(

ξ ,
∞

∑
i=0

wi,
∂ β

∑
∞
i=0 wi

∂ξ β
, ...,

∂ lβ
∑

∞
i=0 wi

∂ξ lβ

))]
= S−1

[
ω

γ S
(

F
(

ξ ,w0,
∂ β w0

∂ξ β
, ...,

∂ lβ w0

∂ξ lβ

))]
+

∞

∑
i=1

S−1
[
ω

γ S
(

F
(

ξ ,
i

∑
j=0

w j,
∂ β

∑
i
j=0 w j

∂ξ β
, ...,

∂ lβ
∑

i
j=0 w j

∂ξ lβ

))]
−

∞

∑
i=1

S−1
[
ω

γ S
(

F
(

ξ ,
i−1

∑
j=0

w j,
∂ β

∑
i−1
j=0 w j

∂ξ β
, ...,

∂ lβ
∑

i−1
j=0 w j

∂ξ lβ

))]
.

(3.12)

Using eqs. (3.10) to (3.12) in eq. (3.7), we get

∞

∑
i=0

wi(ξ , t)

= S−1
(m−1

∑
k=0

[
ω

k ∂ kw(ξ ,0)
∂ tk

])
+S−1

[
ω

γ S
(

F
(

ξ ,w0,
∂ β w0

∂ξ β
, ...,

∂ lβ w0

∂ξ lβ

))]
+

∞

∑
i=1

S−1
[
ω

γ S
(

F
(

ξ ,
i

∑
j=0

w j,
∂ β

∑
i
j=0 w j

∂ξ β
, ...,

∂ lβ
∑

i
j=0 w j

∂ξ lβ

))]
−

∞

∑
i=1

S−1
[
ω

γ S
(

F
(

ξ ,
i−1

∑
j=0

w j,
∂ β

∑
i−1
j=0 w j

∂ξ β
, ...,

∂ lβ
∑

i−1
j=0 w j

∂ξ lβ

))]
(3.13)
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The recurrence relations have been defined as follows

w0(ξ , t) = S−1
(m−1

∑
k=0

[
ω

k ∂ kw(ξ ,0)
∂ tk

])
w1(ξ , t) = S−1

[
ω

γ S
(

F
(

ξ ,w0,
∂ β w0

∂ξ β
, ...,

∂ lβ w0

∂ξ lβ

))]
wr+1(ξ , t)

= S−1
[
ω

γ S
(

F
(

ξ ,
r

∑
i=0

wi,
∂ β

∑
r
i=0 wi

∂ξ β
, ...,

∂ lβ
∑

r
i=0 wi

∂ξ lβ

))]
−S−1

[
ω

γ S
(

F
(

ξ ,
r−1

∑
i=0

wi,
∂ β

∑
r−1
i=0 wi

∂ξ β
, ...,

∂ lβ
∑

r−1
i=0 wi

∂ξ lβ

))]
,

r ≥ 1.


(3.14)

Therefore the approximate analytical solution of eqs. (3.1)
and (3.2) in truncated series form is given by

w(ξ , t)∼= lim
N→∞

N

∑
r=0

wr(ξ , t). (3.15)

In general, the above series solutions converge very rapidly.
The classic approach to convergence of this type of series has
been presented by Daftardar-Gejji and Jafari [7] and Bhalekar
and Daftardar-Gejji [4].

4. Solution of Fractional Fokker-planck
equations

In this portion, the STIM technique is used to solve linear
and nonlinear fractional FPEs.

Example 4.1Consider the following linear space-time frac-
tional Fokker-plank equation [8]

∂ α

∂ tα
w(ξ , t) =

[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
w(ξ , t),

t > 0,ξ > 0,0 < α,β ≤ 1, p,q ∈ R
(4.1)

with initial condition

w(ξ ,0) = ξ
a−1,a≥ 1. (4.2)

Taking the Sumudu transform on the both sides of eq. (4.1),
we get

S
[

∂ α

∂ tα
w(ξ , t)

]
= S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
w(ξ , t)

]
.

(4.3)

By using eq. (2.6), we have

S[w(ξ , t)] = w(ξ ,0)+ω
α S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
w(ξ , t)

]
.

(4.4)

Operating with the inverse Sumudu transform on both sides
of eq. (4.4), gives

w(ξ , t) = S−1[w(ξ ,0)]+S−1
(

ω
α S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
w(ξ , t)

])
. (4.5)

Substituting the results from eqs. (3.10) to (3.12) in the eq.
(4.5) and applying the eq. (3.14), we find out the components
of the STIM solution as follows

w0(ξ , t) = S−1[w(ξ ,0)] = ξ
a−1,

w1(ξ , t) = S−1
(

ω
α S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
(w0)

])
= bξ

a−1 tα

Γ(α +1)
,b = q(a)2β − p(a)β ,

w2(ξ , t) = S−1
(

ω
α S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
(w0 +w1)

])
−S−1

(
ω

α S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
(w0)

])
= ξ

a−1 b2t2α

Γ(2α +1)
, b = q(a)2β − p(a)β ,

w3(ξ , t) = S−1
(

ω
α S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
(w0 +w1 +w2)

])
−S−1

(
ω

α S
[[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
(w0 +w1)

])
= ξ

a−1 b3t3α

Γ(3α +1)
, b = q(a)2β − p(a)β

and so on.
Therefore, the approximate analytical solution can be obtained
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series form as

w(ξ , t) = lim
N→∞

N

∑
r=0

wr(ξ , t)

= ξ
a−1
[
1+

btα

Γ(α +1)
+

(btα)2

Γ(2α +1)
+, ...,

]
= ξ

a−1Eα(btα),b = q(a)2β − p(a)β . (4.6)

Special case 4.1.1. Putting α = 1, eq. (4.1) along with con-
dition (4.2) reduced to linear space fractional Fokker-planck
equation

∂w
∂ t

=
[
− ∂ β

∂ξ β

(
pξ

β

)
+
(

∂ β

∂ξ β

)2(
qξ

2β

)]
w(ξ , t),

t > 0,ξ > 0,0 < β ≤ 1, (4.7)

subject to initial condition

w(ξ , t) = ξ
a−1,a≥ 1 (4.8)

has a solution

w(ξ , t) = ξ
a−1ebt ,b = q(a)2β − p(a)β . (4.9)

Special case 4.1.2. Taking β = 1, eq. (4.1) along with con-
dition (4.2) reduced to linear time fractional Fokker-planck
equation

∂ α w(ξ , t)
∂ tα

=
[
− ∂

∂ξ
(pξ )+

∂ 2

∂ξ 2 (qξ
2)
]
w(ξ , t),

t > 0,ξ > 0,0 < α ≤ 1, (4.10)

subject to initial condition

w(ξ ,0) = ξ
a−1,a≥ 1 (4.11)

and has a solution

w(ξ , t) = ξ
a−1Eα(btα),b = qa2 +a(q− p). (4.12)

Special case 4.1.3. Taking α = β = 1, eq. (4.1) with condi-
tion (4.2) reduced to linear Fokker-planck equation

∂w
∂ t

=
[
− ∂

∂ξ
(pξ )+

∂ 2

∂ξ 2 (qξ
2)
]
w(ξ , t) , t > 0,ξ > 0,

(4.13)

subject to initial condition

w(ξ ,0) = ξ
a−1,a≥ 1 (4.14)

and has a solution

w(ξ , t) = ξ
a−1ebt ,b = qa2 +a(q− p). (4.15)

Special case 4.1.4. Taking α = β = 1,a = 2, p = 1,q = 1/2,
eq. (4.1) along with condition (4.2) reduced to linear Fokker-
planck equation [29]

∂w
∂ t

=
[
− ∂

∂ξ
(ξ )+

∂ 2

∂ξ 2

(
ξ 2

2

)]
w(ξ , t) , t > 0,ξ > 0, (4.16)

(a)

(b)

(c)

(d)
Figure 1. The surface shows the solution w(ξ , t) for example
4.1 : when (a) The exact solution, (b) The approximate
solution for α = 1, (c) The approximate solution for α = 0.5,
(d) The approximate solution for α = 0.25.

subject to initial condition

w(ξ ,0) = ξ (4.17)

has a solution

w(ξ , t) = ξ et . (4.18)
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Special case 4.1.5. Taking α = β = 1,a = 3, p = 1/6,q =
1/12, eq. (4.1) along with condition (4.2) reduced to linear
Fokker-planck equation [29]

∂w
∂ t

=
[
− ∂

∂ξ

(
ξ

6

)
+

∂ 2

∂ξ 2

(
ξ 2

12

)]
w(ξ , t) , t > 0,ξ > 0,

(4.19)

subject to initial condition

w(ξ ,0) = ξ
2 (4.20)

has a solution

w(ξ , t) = ξ
2et/2. (4.21)

Example 4.2.Consider the following linear time – fractional
Fokker-Planck equation [5]

∂ α w
∂ tα

=
∂w
∂ξ

+
∂ 2w
∂ξ 2 , 0 < α ≤ 1,ξ > 0, t > 0 (4.22)

with initial condition

w(ξ ,0) = ξ . (4.23)

Taking the Sumudu transform on the both sides of eq. (4.22),
we get

S
[

∂ α w
∂ tα

]
= S
[

∂w
∂ξ

+
∂ 2w
∂ξ 2

]
. (4.24)

By using eq. (2.6), we have

S[w(ξ , t)] = w(ξ ,0)+ω
α

(
S
[

∂w
∂ξ

+
∂ 2w
∂ξ 2

])
. (4.25)

Operating with the inverse Sumudu transform on both sides
of eq. (4.25), gives

w(ξ , t)= S−1[w(ξ ,0)]+S−1
(

ω
α

(
S
[

∂w
∂ξ

+
∂ 2w
∂ξ 2

]))
. (4.26)

Substituting the results from eqs. (3.10) to (3.12) in the eq.
(4.26) and applying the eq. (3.14), we find out the components
of the STIM solution as follows

w0(ξ , t) = S−1[w(ξ ,0)] = ξ ,

w1(ξ , t) = S−1
(

ω
α

(
S
[

∂w0

∂ξ
+

∂ 2w0

∂ξ 2

]))
=

tα

Γ(α +1)

(a)

(b)

(c)

(d)
Figure 2. The surface shows the solution w(ξ , t) for example
4.2 : when (a) The exact solution, (b) The approximate
solution for α = 1, (c) The approximate solution for α = 0.5,
(d) The approximate solution for α = 0.25.

w2(ξ , t) = S−1
(

ω
α

(
S
[

∂ (w0 +w1)

∂ξ
+

∂ 2(w0 +w1)

∂ξ 2

]))
−S−1

(
ω

α

(
S
[

∂w0

∂ξ
+

∂ 2w0

∂ξ 2

]))
= 0

wn(ξ , t) = 0 ∀n≥ 3
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Therefore, the approximate analytical solution can be obtained
series form as

w(ξ , t) = lim
N→∞

N

∑
r=0

wr(ξ , t)

= ξ +
tα

Γ(α +1)
. (4.27)

Special case 4.2.1. Taking α = 1, eq. (4.22) along with
condition (4.23) reduced to linear Fokker-planck equation

∂w
∂ t

=
∂w
∂ξ

+
∂ 2w
∂ξ 2 , ξ > 0, t > 0, (4.28)

with initial condition

w(ξ ,0) = ξ (4.29)

and has a solution

w(ξ , t) = ξ + t. (4.30)

Example 4.3. Consider the following non-linear time-fractional
Fokker-Planck equation [8]

∂ α

∂ tα
w(ξ , t) =

[
− ∂

∂ξ

(
3w− ξ

2

)
+

∂ 2

∂ξ 2 (wξ )
]
w(ξ , t),

t > 0,ξ > 0,0 < α ≤ 1 (4.31)

subject to initial condition

w(ξ ,0) = ξ . (4.32)

Taking the Sumudu transform on the both sides of eq. (4.31),
we get

S
[

∂ α

∂ tα
w(ξ , t)

]
= S
[[
− ∂

∂ξ

(
3w− ξ

2

)
+

∂ 2

∂ξ 2 (wξ )
]
w(ξ , t)

]
.

(4.33)

By using eq. (2.6), we get

S[w(ξ , t)] = w(ξ ,0)+ω
α S
[[
− ∂

∂ξ

(
3w− ξ

2

)
+

∂ 2

∂ξ 2 (wξ )
]
w(ξ , t)

]
. (4.34)

Operating with the inverse Sumudu transform on both sides
of eq. (4.34), gives

w(ξ , t) = S−1[w(ξ ,0)]+S−1
(

ω
α S
[[
− ∂

∂ξ

(
3w− ξ

2

)
+

∂ 2

∂ξ 2 (wξ )
]
w(ξ , t)

])
. (4.35)

(a)

(b)

(c)

(d)
Figure 3. The surface shows the solution w(ξ , t) for example
4.3 : when (a) The exact solution, (b) The approximate
solution for α = 1, (c) The approximate solution for α = 0.5,
(d) The approximate solution for α = 0.25.

Substituting the results from eqs. (3.10) to (3.12) in the eq.
(4.35) and applying the eq. (3.14), we find out the components
of the STIM solution as follows

w0(ξ , t) = S−1[w(ξ ,0)] = ξ ,
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w1(ξ , t) = S−1
(

ω
α S
[[
− ∂

∂ξ

(
3w0−

ξ

2

)
+

∂ 2

∂ξ 2 (ξ w0)
]
w0

])
= ξ

tα

Γ(α +1)
,

w2(ξ , t) = S−1
(

ω
α S
[[
− ∂

∂x

(
3(w0 +w1)−

ξ

2

)
+

∂ 2

∂ξ 2

(
ξ (w0 +w1)

)]
(w0 +w1)

])
−S−1

(
ω

α S
[[
− ∂

∂ξ

(
3w0−

ξ

2

)
+

∂ 2

∂ξ 2 (ξ w0)
]
w0

])
= ξ

t2α

Γ(2α +1)
,

w3(ξ , t) = ξ
t3α

Γ(3α +1)

and so on.
Therefore, the approximate analytical solution can be obtained
series form as

w(ξ , t) = lim
N→∞

N

∑
r=0

wr(ξ , t)

= ξ

∞

∑
n=0

(tα)n

Γ(nα +1)

= ξ Eα(tα). (4.36)

Special case 4.3.1. Setting α = 1, eq. (4.31) along with
condition (4.32) reduced to non linear Fokker-planck equation

∂w
∂ t

=
[
− ∂

∂ξ

(
3w− ξ

2

)
+

∂ 2

∂ξ 2 (wξ )
]
w(ξ , t) , ξ > 0, t > 0,

(4.37)

subject to initial condition

w(ξ ,0) = ξ (4.38)

and has a solution

w(ξ , t) = ξ et . (4.39)

Example 4.4. In this example, consider the following nonlin-
ear space-time fractional Fokker-Planck equation [14]

∂ α w
∂ tα

=− ∂ β

∂ξ β

(4w2

ξ
− ξ w

3

)
+

∂ 2β

∂ξ 2β
(w2),

ξ > 0, t > 0,0 < α,β ≤ 1 (4.40)

with initial condition

w(ξ ,0) = ξ
2. (4.41)

Taking the Sumudu transform on the both sides of eq. (4.40),
we get

S
[

∂ α w
∂ tα

]
= S
[
− ∂ β

∂ξ β

(4w2

ξ
− wξ

3

)
+

∂ 2β

∂ξ 2β
(w2)

]
. (4.42)

By using eq. (2.6), we get

S[w(ξ , t)] = w(ξ ,0)+ω
α

(
S
[
− ∂ β

∂ξ β

(4w2

ξ
− wξ

3

)
+

∂ 2β

∂ξ 2β
(w2)

])
. (4.43)

Operating with the inverse Sumudu transform on both sides
of eq. (4.43), gives

w(ξ , t) = S−1[w(ξ ,0)]

+S−1
(

ω
α

(
S
[
− ∂ β

∂ξ β

(4w2

ξ
− wξ

3

)
+

∂ 2β

∂ξ 2β
(w2)

]))
. (4.44)

Substituting the results from eqs. (3.10) to (3.12) in the eq.
(4.44) and applying the eq. (3.14), we find out the components
of the STIM solution as follows

w0(ξ , t) = S−1[w(ξ ,0)] = ξ
2,

w1(ξ , t) = S−1
(

ω
α

(
S
[
− ∂ β

∂ξ β

(4w2
0

ξ
− ξ w0

3

)
+

∂ 2β

∂ξ 2β
(w2

0)
]))

=
[
− 22

Γ(4−β )
ξ

3−β +
24

Γ(5−2β )
ξ

4−2β

]
× tα

Γ(1+α)
,

w2(ξ , t) = S−1
(

ω
α

(
S
[
− ∂ β

∂ξ β

(4(w0 +w1)
2

ξ

− ξ (w0 +w1)

3

)
+

∂ 2β

∂ξ 2β
(w0 +w1)

2
]))

−S−1
(

ω
α

(
S
[
− ∂ β

∂ξ β

(4w2
0

ξ
− ξ w0

3

)
+

∂ 2β

∂ξ 2β
(w2

0)
]))
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=
506Γ(5−β ) t2α ξ 4−2β

3Γ(1+2α)Γ(5−2β )Γ(4−β )

+
48Γ(7−2β ) t2α ξ 6−4β

Γ(1+2α)Γ(5−2β )Γ(7−4β )

− 1
Γ(1+2α)Γ(6−3β )

×
[184Γ(6−2β )

Γ(5−2β )
+

44Γ(6−β )

Γ(4−β )

]
t2α

ξ
5−3β

− 1936Γ(1+2α)Γ(6−2β ) t3α ξ 5−3β

Γ2(1+α)Γ(1+3α)Γ(6−3β )Γ2(4−β )

− Γ(1+2α)

Γ2(1+α)Γ(1+3α)Γ(8−5β )Γ(5−2β )

×
[2304Γ(8−4β )

Γ(5−2β )
+

1056Γ(8−3β )

Γ(4−β )

]
t3α

ξ
7−5β

+
Γ(1+2α)

Γ2(1+α)Γ(1+3α)Γ(7−4β )Γ(4−β )

×
[484Γ(7−2β )

Γ(4−β )
+

4224Γ(7−3β )

Γ(5−2β )

]
t3α

ξ
6−4β

+
576Γ(1+2α)Γ(9−4β ) t3α ξ 8−6β

Γ2(1+α)Γ(1+3α)Γ(9−6β )Γ2(5−2β )

and so on.

Therefore, the approximate analytical solution can be obtained
series form as

w(ξ , t) = lim
N→∞

N

∑
r=0

wr(ξ , t)

= ξ
2 +
[
− 22

Γ(4−β )
ξ

3−β

+
24

Γ(5−2β )
ξ

4−2β

] tα

Γ(1+α)

+
506Γ(5−β ) t2α ξ 4−2β

3Γ(1+2α)Γ(5−2β )Γ(4−β )

+
48Γ(7−2β ) t2α ξ 6−4β

Γ(1+2α)Γ(5−2β )Γ(7−4β )

− 1
Γ(1+2α)Γ(6−3β )

×
[184Γ(6−2β )

Γ(5−2β )
+

44Γ(6−β )

Γ(4−β )

]
t2α

ξ
5−3β

− 1936Γ(1+2α)Γ(6−2β ) t3α ξ 5−3β

Γ2(1+α)Γ(1+3α)Γ(6−3β )Γ2(4−β )

− Γ(1+2α) t3α ξ 7−5β

Γ2(1+α)Γ(1+3α)Γ(8−5β )Γ(5−2β )

×
[2304Γ(8−4β )

Γ(5−2β )
+

1056Γ(8−3β )

Γ(4−β )

]
+

Γ(1+2α)

Γ2(1+α)Γ(1+3α)Γ(7−4β )Γ(4−β )

×
[484Γ(7−2β )

Γ(4−β )
+

4224Γ(7−3β )

Γ(5−2β )

]
t3α

ξ
6−4β

+
576Γ(1+2α)Γ(9−4β ) t3α ξ 8−6β

Γ2(1+α)Γ(1+3α)Γ(9−6β )Γ2(5−2β )

(a)

(b)

(c)

(d)
Figure 4. The surface shows the solution w(ξ , t) for example
4.4 : when (a) The exact solution, (b) The approximate
solution for α = 1, (c) The approximate solution for α = 0.5,
(d) The approximate solution for α = 0.25.
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Special case 4.4.1. Setting α = β = 1, eq. (4.40) along with
condition (4.41) reduced to linear Fokker-planck equation

∂w
∂ t

=− ∂

∂ξ

(4w2

ξ
− wξ

3

)
+

∂ 2

∂ξ 2 (w
2), ξ > 0, t > 0, (4.45)

subject to initial condition

w(ξ ,0) = ξ
2 (4.46)

and has a solution

w(ξ , t) = ξ
2et . (4.47)

5. Conclusion
The Sumudu transform iterative method has been used in

this study to obtain approximate analytical solutions for linear
and nonlinear, space and time fractional Fokker-Planck equa-
tions within the fractional Caputo derivatives. The graphical
representation reveals a close relationship between approxi-
mate solutions and the exact solution. Furthermore, the pro-
posed approach needed fewer calculations and can be applied
to solve other problems of fractional order.
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