

https://doi.org/10.26637/MJM0803/0093

Note on fractional integral inequalities using generalized k-fractional integral operator

Asha B. Nale ^{1*}, Satish K. Panchal ² and Vaijanath L. Chinchane ³

Abstract

The aim of this paper is to obtain several fractional integral inequalities involving convex functions by using generalized k-fractional integral operator.

Keywords

Generalized k-fractional integral, convex functions and inequalities.

AMS Subject Classification 26A99, 26D10.

1,2*Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, India.* ³*Department of Mathematics, Deogiri Institute of Engineering and Management Studies, Aurangabad-431004, India.* ***Corresponding author**: ¹ ashabnale@gmail.com; ²drskpanchal@gmail.com and ³ chinchane85@gmail.com **Article History**: Received **16** March **2020**; Accepted **23** July **2020** ©2020 MJM.

Contents

1. Introduction

————————————————————

Fractional inequalities play major role in the development of fractional differential, integral equations and other fields of sciences and technology. Recently, a number of mathematician have studied different results about fractional integrals such as Riemann-Liouville, Hadamard, Saigo, Erdeyi-Kober, q-fractional integral and some other operators, see [\[1,](#page-5-2) [2,](#page-5-3) [5,](#page-5-4) [6,](#page-5-5) [8–](#page-5-6)[12,](#page-5-7) [15–](#page-5-8)[18,](#page-5-9) [20–](#page-5-10)[22\]](#page-6-0). In [\[7\]](#page-5-11), authors have studied inequalities using Saigo fractional integral.

Theorem 1.1. *Let f , h be two positive continuous functions on* $[0, \infty)$ *and* $f \leq h$ *on* $[0, \infty)$ *.* If $\frac{f}{h}$ *is decreasing,* f *is increasing on* $[0, \infty)$ *and for any convex function* ϕ *,* $\phi(0) = 0$ *, then for t* > 0*,* α > *max*{0,−β}*,* β < 1*,* β −1 < η < 0*, we have*

$$
\frac{I_{0,t}^{\alpha,\beta,\eta}[f(t)]}{I_{0,t}^{\alpha,\beta,\eta}[h(t)]} \ge \frac{I_{0,t}^{\alpha,\beta,\eta}[\phi(f(t))]}{I_{0,t}^{\alpha,\beta,\eta}[\phi(h(t))]}.
$$
\n(1.1)

and

Theorem 1.2. *Let f , h be two positive continuous functions on* $[0, \infty)$ *and* $f \leq h$ *on* $[0, \infty)$ *.* If $\frac{f}{h}$ *is decreasing,* f *is increasing on* $[0, \infty)$ *and for any convex function* ϕ , $\phi(0) = 0$ *, then we have inequality*

$$
I_{0,t}^{\alpha,\beta,\eta}[f(t)]I_{0,t}^{\psi,\delta,\zeta}[\phi(h(t))] + I_{0,t}^{\psi,\delta,\zeta}[f(t)]I_{0,t}^{\alpha,\beta,\eta}[\phi(h(t))]
$$

$$
I_{0,t}^{\alpha,\beta,\eta}[h(t)]I_{0,t}^{\psi,\delta,\zeta}[\phi(f(t))] + I_{0,t}^{\psi,\delta,\zeta}[h(t)]I_{0,t}^{\alpha,\beta,\eta}[\phi(f(t))]
$$

(1.2)

where for all t > 0*,* α > *max*{0,−β}*,* ψ > *max*{0,−δ}*,* β < 1*,* β − 1 < η < 0*,* δ < 1*,* δ − 1 < ζ < 0*.*

In the literature, some fractional inequalities are obtain by using Generalized k-fractional integral operator, see [\[3,](#page-5-12) [4,](#page-5-13) [13,](#page-5-14) [14,](#page-5-15) [17,](#page-5-16) [19,](#page-5-17) [21\]](#page-5-18). Motivated by above work in this paper we have obtain some new inequalities using generalized k-fractional integral (in terms of Gauss hypergeometric function) operator for convex functions.

2. Preliminaries

Here, we devoted to basic concepts of Generalized k-fractional integral.

Definition 2.1. *Two function x and y are said to synchronous (asynchronous) on* [*a*,*b*], *if*

$$
((x(s) - x(t))(y(s) - y(t))) \ge (\le)0,
$$
\n(2.1)

for all $s, t \in [0, \infty)$ *.*

Definition 2.2. [\[14,](#page-5-15) [23\]](#page-6-2) The function $x(s)$, for all $s > 0$ is *said to be in the* $L_{p,k}[0,\infty)$, *if*

$$
L_{p,k}[0,\infty) = \{x : ||x||_{L_{p,k}[0,\infty)} = \left(\int_0^\infty |x(s)|^p s^k ds\right)^{\frac{1}{p}} \quad (2.2)
$$

< ∞ 1 $\leq p < \infty$, $k \geq 0$ },

Definition 2.3. [\[14,](#page-5-15) [23,](#page-6-2) [24\]](#page-6-3) Let $f \in L_{1,k}[0, \infty)$, The general*ized Riemann-Liouville fractional integral* I α,*k f*(*x*) *of order* $\alpha, k \geq 0$ *is defined by*

$$
\mathbb{I}^{\alpha,k} f(x) = \frac{(k+1)^{1-\alpha}}{\Gamma(\alpha)} \int_0^x (x^{k+1} - t^{k+1})^{\alpha-1} t^k f(t) dt. \tag{2.3}
$$

Definition 2.4. *[\[14,](#page-5-15) [23\]](#page-6-2) Let* $k ≥ 0, α > 0μ > −1$ *and* $β, η ∈$ $R.$ *The generalized k-fractional integral* $\mathbb{I}_{t,k}^{\alpha,\beta,\eta,\mu}$ (*in terms of the Gauss hypergeometric function)of order* α *for real-valued continuous function f*(*t*) *is defined by*

$$
\mathbb{I}_{t,k}^{\alpha,\beta,\eta,\mu}[f(t)] = \frac{(k+1)^{\mu+\beta+1}t^{(k+1)(-\alpha-\beta-2\mu)}}{\Gamma(\alpha)} \n\int_0^t \tau^{(k+1)\mu}(t^{k+1}-\tau^{k+1})^{\alpha-1} \times \n\quad 2F_1(\alpha+\beta+\mu,-\eta;\alpha;1-(\frac{\tau}{t})^{k+1})\tau^k f(\tau)d\tau.
$$
\n(2.4)

where, the function $_2F_1(-)$ in the right-hand side of (2.4) is the Gaussian hypergeometric function defined by

$$
{}_2F_1(a,b;c;t) = \sum_{n=0}^{\infty} \frac{(a)_n(b)_n}{(c)_n} \frac{t^n}{n!},
$$
\n(2.5)

and $(a)_n$ is the Pochhammer symbol

$$
(a)n = a(a+1)...(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, (a)0 = 1.
$$

Consider the function

$$
\mathfrak{F}(t,\tau) = \frac{(k+1)^{\mu+\beta+1}t^{(k+1)(-\alpha-\beta-2\mu)}}{\Gamma(\alpha)}\tau^{(k+1)\mu}
$$
\n
$$
(t^{k+1}-\tau^{k+1})^{\alpha-1} \times {}_{2}F_{1}(\alpha+\beta+\mu,-\eta;\alpha;1-(\frac{\tau}{t})^{k+1})
$$
\n
$$
= \sum_{n=0}^{\infty} \frac{(\alpha+\beta+\mu)_{n}(-n)_{n}}{\Gamma(\alpha+n)n!} \times
$$
\n
$$
t^{(k+1)(-\alpha-\beta-2\mu-\eta)}\tau^{(k+1)\mu}(t^{k+1}-\tau^{k+1})^{\alpha-1+n}(k+1)^{\mu+\beta+1}
$$

$$
= \frac{\tau^{(k+1)\mu} (t^{k+1} - \tau^{k+1})^{\alpha-1} (k+1)^{\mu+\beta+1}}{t^{k+1} (\alpha+\beta+2\mu) \Gamma(\alpha)} +
$$

$$
\frac{\tau^{(k+1)\mu} (t^{k+1} - \tau^{k+1})^{\alpha} (k+1)^{\mu+\beta+1} (\alpha+\beta+\mu)(-n)}{t^{k+1} (\alpha+\beta+2\mu+1) \Gamma(\alpha+1)} +
$$

$$
\frac{\tau^{(k+1)\mu} (t^{k+1} - \tau^{k+1})^{\alpha+1}}{t^{k+1}} \times
$$

$$
\frac{(k+1)^{\mu+\beta+1} (\alpha+\beta+\mu)(\alpha+\beta+\mu+1)(-n)(-n+1)}{(\alpha+\beta+2\mu+1) \Gamma(\alpha+2) 2!} + ...
$$

It is clear that $F(t, \tau)$ is positive because for all $\tau \in (0,t)$, $(t > 0)$, since each term of the (2.6) is positive.

(2.6)

3. Fractional integral inequalities involving convex functions

In this section, we prove some fractional integral inequalities involving convex function using generalized k-fractional integral (in terms of Gauss hypergeometric function) operator.

Theorem 3.1. *Let p, r be two positive continuous functions on* $[0,∞)$ *and* $p \le r$ *on* $[0,∞)$ *. If* $\frac{p}{r}$ *is decreasing, p is increasing on* $[0, \infty)$ *and for any convex function* Φ , $\Phi(0) = 0$ *, then for all* $k \geq 0, t > 0, \pi > max\{0, -\overline{\omega} - v\}, \overline{\omega} < 1, v > -1, \overline{\omega} - 1$ θ < 0, we have,

$$
\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\Phi(p(t))]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\Phi(r(t))]}.
$$
\n(3.1)

Proof:- If the function Φ is convex with $\Phi(0) = 0$, then the function $\frac{\Phi(t)}{t}$ is increasing. Since *p* is increasing, then $\frac{\Phi(p(t))}{r(t)}$ is also increasing. Clearly $\frac{p(t)}{r(t)}$ is decreasing, for all $\tau, \rho \in [0, \infty)$, and

$$
\left(\frac{\Phi(p(\tau))}{p(\tau)} - \frac{\Phi(p(\rho))}{p(\rho)}\right) \left(\frac{p(\rho)}{r(\rho)} - \frac{p(\tau)}{r(\tau)}\right) \ge 0, \quad (3.2)
$$

which implies that

$$
\frac{\Phi(p(\tau))}{p(\tau)} \frac{p(\rho)}{r(\rho)} + \frac{\Phi(p(\rho))}{p(\rho)} \frac{p(\tau)}{r(\tau)} \n- \frac{\Phi(p(\tau))}{p(\tau)} \frac{p(\tau)}{r(\tau)} - \frac{\Phi(p(\rho))}{p(\rho)} \frac{p(\rho)}{r(\rho)} \ge 0.
$$
\n(3.3)

Multiplying equation (3.3) by $r(\tau)r(\rho)$, we have

$$
\frac{\Phi(p(\tau))}{p(\tau)} p(\rho)r(\tau) + \frac{\Phi(p(\rho))}{p(\rho)} p(\tau)r(\rho) \n- \frac{\Phi(p(\tau))}{p(\tau)} p(\tau)r(\rho) - \frac{\Phi(p(\rho))}{p(\rho)} p(\rho)r(\tau) \ge 0.
$$
\n(3.4)

Multiplying both sides of (3.4) by $\mathfrak{F}(t, \tau)$ which is positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$
p(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\frac{\Phi(p(t))}{p(x)}r(t)\right] + \frac{\Phi(p(\rho))}{p(\rho)}r(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}[p(t)]-r(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}p(t)\right] - \frac{\Phi(p(\rho))}{p(\rho)}p(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}[r(t)] \ge 0.
$$
\n(3.5)

Multiplying both sides of (3.5) by $\mathfrak{F}(t,\rho)$ which is positive, and integrating obtained result with respect to τ from 0 to *t*,

we have

$$
\begin{split}\n\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} \left[p(t) \right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} \left[\frac{\Phi(p(t))}{p(t)} r(t) \right] \\
+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} \left[\frac{\Phi(p(t))}{p(t)} r(t) \right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} \left[p(t) \right] \\
\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} \left[r(t) \right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu} \left[\frac{\Phi(p(t))}{p(t)} p(t) \right] \\
+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu} \left[\frac{\Phi(p(t))}{p(t)} p(t) \right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu} \left[r(t) \right].\n\end{split} \tag{3.6}
$$

It follows that

$$
\begin{split} &\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[p(t)\right]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)r(t)}\right] \\ &\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[r(t)\right]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(f(t))}{p(t)}p(t)\right],\end{split} \tag{3.7}
$$

$$
\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[p(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[r(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}\left[\frac{\Phi(p(t))}{p(t)}p(t)\right]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right]}.
$$
\n(3.8)

Since $p \le r$ on $[0, \infty)$ and function $\frac{\Phi(t)}{t}$ is increasing, then for $\tau, \rho \in [0, \infty)$, we have

$$
\frac{\Phi(p(\tau))}{p(\tau)} \le \frac{\Phi(r(\tau))}{r(\tau)}.
$$
\n(3.9)

Multiplying (3.9) by $\mathfrak{F}(t, \tau) r(\tau)$ which is positive, we obtain

$$
\mathfrak{F}(t,\tau)\frac{\Phi(p(\tau))}{p(\tau)} \leq \mathfrak{F}(t,\tau)\frac{\Phi(r(\tau))}{r(\tau)},\tag{3.10}
$$

integrating equation (3.10) on both side with respective τ from 0 to *t*, we get

$$
\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right] \leq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(r(t))}{r(t)}r(t)\right].
$$
 (3.11)

Hence, from (3.8) and (3.11) we obtain required inequality (3.1).

Theorem 3.2. *Let p, r be two positive continuous functions on* $[0,∞)$ *and* $f \leq r$ *on* $[0,∞)$ *. If* $\frac{p}{r}$ *is decreasing, p is increasing on* $[0, \infty)$ *and for any convex function* Φ , $\Phi(0) = 0$ *, then for all k* ≥ 0, *t* > 0*,* π > *max*{0,−ϖ −ν}*,*γ > *max*{0,−δ −υ} $\overline{\omega}, \delta < 1, v, v > -1, \overline{\omega} - 1 < \theta < 0, \delta - 1 < \zeta < 0$, we have,

$$
\begin{split} &\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\phi(r(t))] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[\Phi(r(t))] \\ &\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[r(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\Phi(p(t))] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[r(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[\Phi(p(t))] \\ &\geq 1, \end{split} \tag{3.12}
$$

Proof:- If function Φ is convex with $\Phi(0) = 0$, then $\frac{\Phi(t)}{t}$ is increasing. Since *p* is increasing, then $\frac{\Phi(p(t))}{p(t)}$ is also increasing. Clearly $\frac{p(t)}{r(t)}$ is decreasing, for all $\tau, \rho \in [0, t)$ *t* > 0. Multiplying equation (3.5) by $\frac{(k+1)^{v+\delta+1}t^{(k+1)(-\gamma-\delta-2v)}}{\Gamma(\gamma)}$ $\frac{f^{(k+1)(-f-0-2\upsilon)}}{\Gamma(\gamma)}\rho^{(k+1)\upsilon}\times$ $(t^{k+1} - \rho^{k+1})_2^{\gamma-1} F_1(\gamma + \delta + \upsilon, -\zeta; \gamma; 1 - (\frac{\rho}{t})^{k+1}) \; (\rho \in (0, t)),$ $t > 0$), which remains positive from (2.4). Now integrating obtained result with respect to ρ from 0 to *t*, we have

$$
\begin{split}\n\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon} \left[\frac{\Phi(f(t))}{p(t)} r(t) \right] \\
&+ \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon} \left[\frac{\Phi(p(t))}{p(t)} r(t) \right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon} [p(t)] \\
&\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[r(t)] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon} [\Phi(p(t))] \\
&+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon} [\Phi(p(t))] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon} [r(t)].\n\end{split} \tag{3.13}
$$

Since $p \le r$ on $[0, \infty)$ and as function $\frac{\Phi(t)}{t}$ is increasing, for $\tau, \rho \in [0, t]$ $t > 0$, we have

$$
\frac{\Phi(p(\tau))}{p(\tau)} \le \frac{\Phi(r(\tau))}{r(\tau)}.\tag{3.14}
$$

Multiplying both sides of (3.14) by $\mathfrak{F}(t, \tau) r(\tau)$ positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$
\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right] \leq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}\left[\Phi(p(t))\right].\tag{3.15}
$$

Hence, using (3.13) and (3.15), we obtain required inequality (3.12).

Remark 3.3. *If we put* $\pi = \gamma$, $\overline{\omega} = \delta$ *and* $\theta = \zeta$ *and* $v = v$ *in Theorem 3.2 it reduces to the Theorem 3.1.*

Now, we prove our main result.

Theorem 3.4. *Let p, r and q be three positive continuous functions on* $[0, \infty)$ *and* $p \le r$ *on* $[0, \infty)$ *. If* $\frac{p}{r}$ *is decreasing,* p *and q are increasing functions on* [0,∞)*, and for any convex function* ϕ *such that* $\phi(0) = 0$ *, then for all* $k \geq 0, t > 0, \pi > 0$ $max\{0, -\overline{\omega} - v\}, \overline{\omega} < 1, v > -1, \overline{\omega} - 1 < \theta < 0, \overline{\omega} - 1 <$ θ < 0, we have,

$$
\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[p(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[r(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[\phi(p(t))q(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[\phi(r(t))q(t)]},
$$
\n(3.16)

Proof: Since $p \le r$ on $[0, \infty)$ and function $\frac{\phi(t)}{t}$ is increasing, then for $\tau, \rho \in [0, t)$, $t > 0$, we have

$$
\frac{\phi(p(\tau))}{p(\tau)} \le \frac{\phi(r(\tau))}{r(\tau)}.\tag{3.17}
$$

Multiplying both sides of (3.17) by $\mathfrak{F}(t, \tau) r(\tau)$ positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$
\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\phi(p(t))}{p(t)}r(t)q(t)\right] \leq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\phi(r(t))q(t)\right]. \tag{3.18}
$$

On the other hand, since the fact that the function ϕ is convex with $\phi(0) = 0$. Then the function $\frac{\phi(t)}{t}$ is increasing. Since *p* is increasing, $\frac{\phi(p(t))}{p(t)}$ is also increasing. Clearly we can say that $\frac{p(t)}{r(t)}$ is decreasing, for all $\tau, \rho \in [0, t)$ $t > 0$

$$
\left(\frac{\phi(p(\tau))}{p(\tau)}q(\tau)-\frac{\phi(p(\rho))}{p(\rho)}q(\rho)\right)(p(\rho)r(\tau)-p(\tau)r(\rho))\geq 0,
$$
\n(3.19)

which implies that

$$
\frac{\phi(p(\tau))q(\tau)}{p(\tau)}p(\rho)r(\tau)+\frac{\phi(p(\rho))q(\rho)}{p(\rho)}p(\tau)r(\rho)-\frac{\phi(p(\tau))q(\tau)}{p(\tau)}p(\tau)r(\rho)-\frac{\phi(p(\rho))q(\rho)}{p(\rho)}p(\rho)r(\tau)\geq 0.
$$
\n(3.20)

Hence, we can write

$$
p(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\frac{\phi(p(t))}{p(t)}r(t)q(t)\right] + \frac{\phi(p(\rho))}{p(\rho)}r(\rho)q(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}[p(t)] - r(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}[\phi(p(t))q(t)] - \frac{\phi(p(\rho))}{p(\rho)}p(\rho)q(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}[r(t)] \ge 0,
$$
\n(3.21)

with the same argument as before, we have

$$
\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[p(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[r(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[\phi(p(t))q(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}\left[\frac{\phi(p(t))}{p(t)}r(t)q(t)\right]}.
$$
(3.22)

Hence, using equation (3.18) and (3.22) , we obtain (3.16) .

Now, we give generalization of Theorem 3.3.

Theorem 3.5. *Let p, r and q be three positive continuous functions on* $[0, \infty)$ *and* $p \le r$ *on* $[0, \infty)$ *. If* $\frac{p}{r}$ *is decreasing, p and q are increasing functions on* [0,∞)*, and for any convex function* ϕ *such that* $\phi(0) = 0$ *, then we have*

$$
\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\phi(r(t))q(t)] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[\phi(r(t))q(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[r(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\phi(p(t))q(t)] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[r(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[\phi(p(t))q(t)]
$$
\n
$$
\geq 1,
$$
\n(3.23)

where for all $k \ge 0$, $t > 0$, $\pi > max\{0, -\varpi - v\}$, $\gamma > max\{0, -\delta - \text{Multiplying both sides of (4.2) by } \mathfrak{F}(t, \tau)$ which is positive, $v \in \overline{\omega}, \delta < 1, v, v > -1, \overline{\omega} - 1 < \theta < 0, \delta - 1 < \zeta < 0,$

Proof:- Multiplying equation (3.21) by $(k+1)$ ^{*v*+δ+1}*t*</sub>^{(*k*+1)(−γ−δ−2*ν*)} $\frac{f^{(k+1)(-\gamma-\sigma-2\upsilon)}}{\Gamma(\gamma)}\rho^{(k+1)\upsilon}\times$ $(t^{k+1} - \rho^{k+1})_2^{\gamma-1} F_1(\gamma + \delta + \upsilon, -\zeta; \gamma; 1 - (\frac{\rho}{t})^{k+1}) \; (\rho \in (0, t),$ $t > 0$), which remains positive. Then integrate the resulting identity with respect to ρ from 0 to *t*, we have

$$
\begin{split}\n\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[p(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}\left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \\
&+ \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon,\upsilon}\left[p(t)\right] \\
&\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}\left[r(t)\right] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\phi(p(t))q(t)\right] \\
&+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon,\upsilon}\left[\phi(p(t))q(t)\right] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[r(t)\right],\n\end{split} \tag{3.24}
$$

and since $p \le r$ on $[0, \infty)$ and use the fact that $\frac{\phi(t)q(t)}{t}$ is increasing, we obtain

$$
\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \leq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\phi(r(t))q(t)\right],\tag{3.25}
$$

and

$$
\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \leq \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\phi(r(t))q(t)\right].\tag{3.26}
$$

Hence, from equation (3.24) , (3.25) and (3.26) , we obtain (3.23).

Remark 3.6. *If we put* $\pi = \gamma$, $\overline{\omega} = \delta$ *and* $\theta = \zeta$ *and* $v = v$ *in Theorem 3.4 it reduces to the Theorem 3.3.*

4. Other fractional integral inequalities

In [\[10\]](#page-5-19), authors have proved the inequalities using Riemann-Liouville fractional integral. Now, we prove the similar results using generalized k-fractional integral (in terms of Gauss hypergeometric function) operator.

Theorem 4.1. *Let p, q be two positive and continuous functions on* [0,∞) *such that p is decreasing and q is increasing on* [0,∞)*. Then for all* $k \ge 0$ *, t* > 0*,* π > *max*{0*,*−**ω** − *v*}*,* $\bar{\omega}$ < 1, *v* > −1, $\bar{\omega}$ −1 < θ < 0, *l* ≥ *m* > 0, *and n* > 0 *we have*

$$
\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathcal{V}}[p^l(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathcal{V}}[p^m(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathcal{V}}[q^np^l(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathcal{V}}[q^np^m(t)]}.
$$
\n(4.1)

Proof:- Consider $\rho, \tau \in (0,t)$, we have

$$
(q^n(\rho)-q^n(\tau))\left(p^l(\tau)p^m(\rho)-p^m(\tau)p^l(\rho)\right)\geq 0,
$$

which implies that

$$
q^{n}(\rho)p^{l}(\tau)p^{m}(\rho)+q^{m}(\tau)p^{m}(\tau)p^{l}(\rho)
$$

\n
$$
\geq q^{m}(\rho)p^{m}(\tau)p^{l}(\rho)+q^{m}(\tau)p^{m}(\rho)p^{l}(\tau),
$$
\n(4.2)

and integrating obtained result with respect to τ from 0 to *t*, we have

$$
q^{n}(\rho)p^{m}(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^{l}(t)] + p^{l}(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^{n}p^{m}(t)]
$$

\n
$$
\geq g^{r}(\rho)f^{p}(\rho)I_{t,k}^{\alpha,\beta,\eta,\mu}[f^{q}(t)] + p^{m}(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^{n}p^{l}(t)].
$$

$$
(4.3)
$$

Now, multiplying both side of (4.3) by $\mathfrak{F}(t,\rho)$ which is positive from (2.4). Now integrating obtained result with respect to ρ from 0 to *t*, we have

$$
\begin{split} \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^n p^m(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^l(t)] \\ \geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^n p^l(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^m(t)], \end{split} \tag{4.4}
$$

which gives the inequality 4.1.

Theorem 4.2. *Let p, q be two positive and continuous functions on* $[0, \infty)$ *such that p is decreasing and q is increasing on* [0,∞)*. Then for all* $k \ge 0$, $t > 0$, $\pi > max\{0, -\overline{\omega}$ v *}*, γ > $max\{0, -\delta - v\}$ $\varpi, \delta < 1, v, v > -1, \varpi - 1 < \theta < 0$, $\delta - 1 < \zeta < 0, l \ge m > 0$, and $n > 0$ we have

$$
\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^{l}(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[q^{n}p^{m}(t)]+\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p^{l}(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[q^{n}p^{m}(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[p^{m}(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[q^{n}p^{m}(t)]+\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p^{m}(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\upsilon}[q^{n}p^{m}(t)]}\geq 1.
$$

$$
(4.5)
$$

Proof: Multiplying equation (4.3) by\n
$$
\frac{(k+1)^{v+\delta+1}t^{(k+1)(-\gamma-\delta-2v)}}{\Gamma(\gamma)} \rho^{(k+1)v} \times
$$
\n
$$
(t^{k+1} - \rho^{k+1})_2^{\gamma-1} F_1(\gamma + \delta + v, -\zeta; \gamma; 1 - (\frac{\rho}{t})^{k+1}) (\rho \in (0, t),
$$
\n $t > 0$), which remains positive. Then integrate the resulting identity with respect to ρ from 0 to t , we obtain the result 4.5.

Theorem 4.3. *Let p, q be two positive and continuous functions on* [0,∞) *such that p is decreasing and q is increasing on* [0,∞)*, Such that*

$$
(p^{n}(\tau)q^{n}(\rho)-p^{n}(\rho)q^{n}(\tau))\left(p^{l-n}(\tau)-p^{l-n}(\tau)\right)\geq 0,
$$

then we have

$$
\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[p^{n+l}(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[p^{n+m}(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[q^{n}p^{l}(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[q^{n}p^{m}(t)]},
$$
\n(4.6)

where Then for all $k \geq 0$, $t > 0$, $\pi > max\{0, -\varpi - \nu\}$, $\varpi < 1$, $v > -1, \, \varpi - 1 < \theta < 0, \, \varpi - 1 < \theta < 0, \, l \ge m > 0, \, n > 0.$

Proof:- Consider $\tau, \rho \in (0, t)$, we get

$$
(p^{n}(\tau)q^{n}(\rho)-p^{n}(\rho)q^{n}(\tau))\left(p^{m}(\rho)p^{l}(\tau)-p^{m}(\tau)p^{l}(\rho)\right)\geq 0.
$$

and using the same arguments as in Theorem [4.1], we obtain the result.

Theorem 4.4. *Let p*, *q and r be three function on* $[0, \infty)$ *such that*

$$
(p(\tau) - p(\rho))(q(\tau) - q(\rho))(r(\tau) + r(\rho)) \tag{4.7}
$$

then for all $\tau, \rho, k \geq 0, t > 0, \pi > max\{0, -\varpi - \nu\}, \varpi < 1,$ $v > -1$, $\overline{\omega} - 1 < \theta < 0$, we have,

$$
\begin{split} \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pqr(t)]\Lambda_{t,k}^{\pi,\varpi,\theta,\nu} \\ + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)] \\ \geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pr(t)] \\ + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[qr(t)] \end{split} \tag{4.8}
$$

where,
$$
\Lambda_{t,k}^{\pi,\varpi,\theta,\nu} = (k+1^{-\nu-\varpi})t^{(k+1)(\nu+\varpi)} \frac{\Gamma(1-\varpi)\Gamma(\pi+\nu+\theta+1)}{\Gamma(1+\nu)\Gamma(1-\varpi+\theta)}
$$

Proof:- From condition (4.7), for any τ , ρ , we have

$$
p(\tau)q(\tau)r(\tau) + p(\tau)q(\tau)r(\rho) + p(\rho)q(\rho)r(\tau) + p(\rho)q(\rho)r(\rho) \geq p(\tau)q(\rho)r(\tau) + p(\rho)q(\tau)r(\tau) + p(\rho)q(\tau)r(\rho) + p(\tau)q(\rho)r(\rho).
$$
\n(4.9)

 $\mathcal{L}(n+1)$ is positive, and integrating obtained result with respect to τ Multiplying both side of equation (4.9) by $\mathfrak{F}(t, \tau)$ which from 0 to *t*, we have

$$
\begin{split} &\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[pqr(t)] + r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[pq(t)] \\ &+ p(\rho)q(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[r(t)] + p(\rho)q(\rho)r(\rho)\Lambda_{t,k}^{\pi,\varpi,\theta,\mathbf{v}} \\ &\geq q(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[pr(t)] + f(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[qr(t)] \\ &+ p(\rho)r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[q(t)] + q(\rho)r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\mathbf{v}}[p(t)] \end{split} \tag{4.10}
$$

Again, multiplying both side of equation (4.10) $\mathfrak{F}(t,\rho)$ which is positive, and integrating obtained result with respect to ρ from 0 to *t*, we have

$$
\Lambda_{t,k}^{\pi,\overline{\omega},\theta,\nu} \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pqr(t)] + \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pq(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [r(t)] \n+ \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [r(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pq(t)] + \Lambda_{t,k}^{\pi,\overline{\omega},\theta,\nu} \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pqr(t)] \n\geq \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pr(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\overline{\omega},\theta,\nu} [q(t)] + \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [qr(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\theta,\nu} [p(t)] \n+ \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [q(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pr(t)] + \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [p(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [qr(t)].
$$
\n(4.11)

This compete the proof of inequality (4.8).

Theorem 4.5. *Let p*, *q and r be three function on* $[0, \infty)$ *such that*

$$
(p(\tau) - p(\rho))(q(\tau) + q(\rho))(r(\tau) + r(\rho)) \ge 0 \quad (4.12)
$$

then for all τ *,* ρ *,* $k \geq 0$ *,* $t > 0$ *,* $\pi > max\{0, -\varpi - v\}$ *,* $\varpi < 1$ *,* $v > -1$, $\overline{\omega} - 1 < \theta < 0$, we have,

$$
\begin{split} &\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[p(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[qr(t)]+\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[pr(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[q(t)]\\ &\geq\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[qr(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[p(t)]+\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[r(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\theta,\nu}[pq(t)]\\ &\qquad \qquad (4.13)\\ &\qquad \qquad \sum_{k=1}^{N_{\text{max}}}\mathbb{I}_{k,k}^{\text{max}}\end{split}
$$

Proof:- From condition (4.12), for any τ , ρ , we have

$$
p(\tau)q(\tau)r(\tau) + p(\tau)q(\tau)r(\rho) + p(\tau)q(\rho)r(\tau) + p(\tau)q(\rho)r(\rho) \geq p(\rho)q(\tau)r(\tau) + p(\rho)q(\tau)r(\rho) + p(\rho)q(\rho)r(\tau) + p(\rho)q(\rho)r(\rho).
$$
\n(4.14)

Multiplying both side of equation (4.14)by $\mathfrak{F}(t, \tau)$ which is positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$
\begin{split} &\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pqr(t)] + r(\rho)\,\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)] \\ &+ g(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pr(t)] + q(\rho)r(\rho)\,\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)] \\ &\geq r(\rho)\,\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[qr(t)] + r(\rho)\,\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)] \\ &+ p(\rho)q(\rho)\,\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(\rho)] + p(\rho)q(\rho)r(\rho)\Lambda_{t,k}^{\pi,\varpi,\theta,\nu}. \end{split} \tag{4.15}
$$

With the same argument in inequality (4.11) , we obtain

$$
\Lambda_{t,k}^{\pi,\overline{\omega},\theta,\nu} \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pqr(t)] + \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pq(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [r(t)] \n+ \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pr(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [q(t)] + \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [p(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [qr(t)] \n\geq \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [qr(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [q(t)] + \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pq(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [r(t)] \n+ \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [r(t)] \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pq(t)] + \Lambda_{t,k}^{\pi,\overline{\omega},\theta,\nu} \mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu} [pqr(t)].
$$
\n(4.16)

where, $\Lambda_{t,k}^{\pi,\varpi,\theta,\nu}$ is as in theorem 4.4. This compete the proof of inequality (4.13).

5. Concluding Remarks

In this study, we presented generalized k-fractional integral operator operators. We established some fractional integral inequalities involving convex functions by considering generalized k-fractional integral operator. Here, we briefly consider some implication of our main results. The inequalities proposed in this paper give some contribution in the fields of fractional calculus and Generalized k-fractional integral operators. Moreover, they are expected to led to some application for finding uniqueness of solutions in fractional differential equations.

References

- [1] S. Belarbi and Z. Dahmani, *On some new fractional integral inequality,* J. Inequal. Pure and Appl. Math. Art.86, 10(3), (2009), 1-5.
- [2] D. Baleanu, S. D. Purohit and J. C. Prajapati, *Integral inequalities involving generalized Erde*´*lyi-Kober fractional integral operators,* Open. Math. 14, (2016), 89-99.
- [3] V. L. Chinchane, *New approach to Minkowski fractional inequalities using generalized K-fractional integral operator,* Journal of the Indian. Math. Soc., 1-2(85),(2018) 32-41.
- [4] V. L. Chinchane, *On Chebyshev type inqualities using generalized K-fractional integral operator,* Progr. Fract. Differ. Appl., 3(3),(2017) 1-8.
- [5] V. L. Chinchane and D. B. Pachpatte, *On some Gruss- ¨ type fractional inequalities using Saigo fractional integral operator,* Journal of Mathematics, Article ID 527910, Vol.2014 (2014), 1-9.
- [6] V. L. Chinchane and D. B. Pachpatte, *New fractional inequalities involving Saigo fractional integral operator,* Math. Sci. Lett., 3(3),(2014) 133-139.
- [7] V. L. Chinchane and D. B. Pachpatte, *Note on fractional integral inequality involving convex function using Saigo fractional integral,* Indian Journal of Mathematics,Vol.1(61),(2019),27-39.
- [8] Z. Dahmani, *A note on some new fractional results involving convex functions,* Acta Math. Univ. Comenianae, 81(2),(2012), 241-246.
- [9] Z. Dahmani, L. Tabharit and S. Taf, *New generalisation of Gruss inequality using Riemann-Liouville fractional integrals,* Bull. Math. Anal. Appl., 2(3), (2012), 92-99.
- [10] Z. Dahmani and N. Bedjaoui, *Some generalized integral inequalities,* J. Advan. Res. Appl. Math, 3(4),(2011), 58- 66.
- [11] Z. Dahmani and H. Metakkel El Ard, *Generalization of some integral inequalities using Riemann-Liouville operator,* Int. J. Open Problem Compt. Math., 4(4), (2011), 40-46.
- [12] A. A. George, *Fractional Differentiation Inequalities,* Springer Publishing Company, New York, 2009.
- [13] M. Houas, *Certain weighted integral inequalities involving the fractional hypergeometric operators,* Scientia, Series A: Mathematical Science, 27(2016), 87-97.
- [14] S. Kilinc and H.Yildirim, *Generalized fractional integral inequalities involving Hypergeometic operators,* Int. J. Pure Appl. Math., 101(1), (2015), 71-82.
- [15] V. Kiryakova, *On two Saigo's fractional integral operator in the class of univalent functions,* Fract. Calc. Appl. Anal., 9(2),(2006).
- [16] A. R. Prabhakaran and K. Srinivasa Rao, *Saigo operator of fractional integration of Hypergeometric functions,* Int. J. Pure Appl. Math., 81(5), (2012), 755-763.
- [17] S. D. Purohit, R. K. Yadav, *On generalized fractional qintegral operator involving the q-Grüss Hypergeometric functions,* Bull. Math. Anal., 2(4), (2010), 35-44.
- [18] S. D. Purohit and R. K. Raina, *Chebyshev type inequalities for the Saigo fractional integral and their q- analogues,* J. Math. Inequal., 7(2),(2013), 239-249.
- [19] S. D. Purohit and R. K. Raina, *Certain fractional integral inequalities involving the Gauss hypergeometric function,* Rev. Tec. Ing. Univ. Zulia 37(2), (2014), 167-175.
- [20] S. D. Purohit, Faruk Ucar and R. K. Yadav, *On fractional integral inequalities and their q-analogues,* Revista Tecnocientifica URU, *N* ⁰6 Enero-Junio., (2014), 53-66.
- [21] R. K. Raina,*Solution of Abel-type integral equation involving the Appell hypergeometric function,* Integral

Transf. Spec. Funct., 21(7), (2010), 515-522.

- [22] M. Saigo, A remark on integral operators involving the Grüss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135-143.
- [23] H. Yildirim and Z. Kirtay, *Ostrowski inequality for generalized fractional integral and related equalities,*Malaya J. Math. 2(3), (2014), 322-329.
- [24] S.G.Somko, A.A.Kilbas and O.I.Marichev, *Fractional Integral and Derivative Theory and Application,* Gordon and Breach, Yverdon, Switzerland, 1993.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

