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1. Introduction

Fractional inequalities play major role in the development
of fractional differential, integral equations and other fields
of sciences and technology. Recently, a number of mathe-
matician have studied different results about fractional inte-
grals such as Riemann-Liouville, Hadamard, Saigo, Erdeyi-
Kober, g-fractional integral and some other operators, see
[1,2,5,6,8-12, 15-18, 20-22]. In [7], authors have studied
inequalities using Saigo fractional integral.

Theorem 1.1. Let f, h be two positive continuous functions
on [0,0) and f < h on [0,). If% is decreasing, f is increas-
ing on [0,0) and for any convex function ¢, ¢$(0) = 0, then
Sfort >0, a>max{0,—B}, B <1, B—1<n<0, we have
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(1.1)

and
Theorem 1.2. Let f, h be two positive continuous functions
on [0,e0) and f < h on [0,e0). If% is decreasing, f is increas-
ing on [0,00) and for any convex function ¢, ¢(0) =0, then
we have inequality
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where for all t >0, ot > max{0,—B}, y >max{0,—-0}, B <
Lp—-1<n<08<1,6-1<{<0.

In the literature, some fractional inequalities are obtain by
using Generalized k-fractional integral operator, see [3, 4, 13,
14,17, 19, 21]. Motivated by above work in this paper we have
obtain some new inequalities using generalized k-fractional
integral (in terms of Gauss hypergeometric function) operator
for convex functions.

2. Preliminaries

Here, we devoted to basic concepts of Generalized k-fractional
integral.

Definition 2.1. Two function x and y are said to synchronous
(asynchronous) on [a,b), if

((x(s) = x(2)) (v(s) — ¥(2))) = (£)O0,
for all s,t € [0,0).
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Definition 2.2. [14, 23] The function x(s), for all s > 0 is
said to be in the L, ;[0,), if

([ k v
w) = </0 |x(s)|7s ds) 2.2)

<ol < p<oo k>0l

Lp,k[oa“) ={x: ||x||Lp.k[0

Definition 2.3. [14, 23, 24] Let f € Ly x[0,0),. The general-
ized Riemann-Liouville fractional integral 1%* f(x) of order
a,k > 0 is defined by

(k41)1-¢

) = g

/Ox(xk+1_tk+1)oc k(). (2.3)

Definition 2.4. [14, 23] Letk > 0,a >0u > —1and B,n €

R. The generalized k-fractional integral I, ’ﬁ T (in terms of
the Gauss hypergeometric function)of order a for real-valued
continuous function f(t) is defined by

. ket 1)EHBH (- B2
1) = S

t
/ kD (] _ gt lyast
0

Gy f(yds
(2.4)
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where, the function »F; (—) in the right-hand side of (2.4)
is the Gaussian hypergeometric function defined by

=

Fi(a,b;c;t) Jnl 2.5
2Fi(a,bsc; ; O nl’ 2.5
and (a), is the Pochhammer symbol
r
(@) = a(a+1)..(a+n—1)= (F“(Z)”), (a)o =1

Consider the function

(k+ 1)u+ﬁ+l,(k+l)(fafﬁf2u)
()

— e R4+ B+ u, -1 —

kD

(1) =

(tk+l

T k1
)

_§ et B,

= T(a+n)n!
tk+l( o— ﬁ72ufn),c(k+1)u(tk+1
7Tk+1)a—1(k+1)ﬂ+ﬁ+l
(e~ B+ 20)0 (@)

_ ,Ck+1)a71+n(k+ 1)H+ﬁ+l

T(k-&-l)u (tk+1

T(k+1)u(tk+1 k+l) (k+1)“+5+1(a+/3+u)( )+
(e +B+2u+ D (a+1)
T(k+l)/.1(tk+l _ ,L.k+l)a+l
X
tk+1
(k+ )P (@t B (et Brp+ DEm(ntl)
(0 +B+2u+1) o +2)2!

(2.6)

It is clear that F(¢,7) is positive because for all 7 € (0,7) ,
(t > 0), since each term of the (2.6) is positive.

3. Fractional integral inequalities
involving convex functions

In this section, we prove some fractional integral inequali-
ties involving convex function using generalized k-fractional
integral (in terms of Gauss hypergeometric function) operator.

Theorem 3.1. Let p, r be two positive continuous functions on
[0,00) and p < r on [0,0). If £ is decreasing, p is increasing
on [0,e0) and for any convex function ®, ®(0) =0, then for all
k>0,1>0,r>max{0,-@0—v},O<1l,v>-1,0-1<
0 <0, we have,

7] 17 e (r0)
57V 0)] IRV ()]

3.

Proof:- If the function ® is convex with ®(0) = 0, then

(1
the function 22 is increasing. Since p is increasing, then

t
% is also increasing. Clearly (()) is decreasing, for all

T,p € [0,0), and
@(p(7)) _2(p(p))\ (pPlP) _p(7)
-5 ) (g -7 20 62
which implies that
2(p(7) p(p) | ®(p(p)) p(1)
p@ ) plp) D .
_2p(7) p(r) _ 2(p(p)) P(P) '
p(r) r(r)  plp) rlp) ~
Multiplying equation (3.3) by r(7)r(p), we have
@(p(7)) @(p(p))
(1) p(p)r(t)+ 200) p(t)r(p) "
_ P(p(1) (p(p)) '
(1) (7)r(p) »(0) p(p)r(t) =0

Multiplying both sides of (3.4) by F(¢,7) which is positive,
and integrating obtained result with respect to 7 from O to ¢,
we have

poe o [ 2ED )| +

o [ 2B | -

PP [r(1)] > 0.
3.5)

Multiplying both sides of (3.5) by F (¢, p) which is positive,
and integrating obtained result with respect to 7 from O to t,

1260
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we have

HZ’].{G)‘,B,V [p([)] HZ},{(D,B,V |:(I)§)[(7£;)) r(l‘):|

r(rﬂ 589 [p(r)]

rigpov [20)

p(t) (3.6)

> 157 ()] 15 P%))pw]

T,0,0,v D(p(1)) n,0,0,v
wamer [ 200 | oo .

It follows that

,0,0,v 7,0,0,v (I)(p(t))
e ol (8]

waoy o mmaw [PU) G-
> 0 pol e |2 o)
7O i) T[] 68)

T,0,0,v Z ©,@,0,v [ @(p(1)) .
POV 0] e[S ]

D(1)

Since p < ron [0,0) and function =~

T,p € [0,00), we have

is increasing, then for

P(p(7)) _ P(r(7)
P = @) G2
Multiplying (3.9) by F(¢,7)r(7) which is positive, we obtain
P(p(1)) P(r(7))
3(t,7) (1) <3t 1) T (3.10)

integrating equation (3.10) on both side with respective T from

Otot, we get
,0,0,v |:<I)(P(t))r(t):| < H:f],(ai,e,v {q)’(”(’t(;))

o p(t)
Hence, from (3.8) and (3.11) we obtain required inequality
(3.1).

r(t)} . 3.11)

Theorem 3.2. Let p, r be two positive continuous functions on
[0,00) and f < ron [0,00). If £ is decreasing, p is increasing
on [0,0) and for any convex function ®, ®(0) = 0, then for
all k>0,t>0, 7 > max{0,—® — v}, > max{0,—6 — v}
0,6<1l,0,v>—-1,0-1<0<0,6—1< <0, wehave,

7OV pO) T [ (r(e)] + 170 [p ()] 5O [@(r (1))

IOV (]2 P [@(p(0)] + 1SV () 572 [@(p(1))]
Z la
(3.12)

1261

Proof:- If function ® is convex with ®(0) = 0, then @
is increasing. Si is i ing. then 220 i5 also i i
g. Since p is increasing, then =75~ is also increas

p(t)

ing. Clearly o) is decreasing, for all 7,p € [0,¢) t > 0. Mul-

k+1)v+5+lt(k+l)(—y—6—2u)
I(y)

(= ITR (r 4840, ~ Ll = (D)) (0 € (0,0),

t > 0), which remains positive from (2.4). Now integrating

obtained result with respect to p from O to 7, we have

o),

tiplying equation (3.5) by ( p kDY ¢

0,8, ,0,
I[Zk N [p(l‘)] H;‘C],((D' o,v |:

p(t)
i HZ}{&C,U {(1);12[(;)) r(t)] H:},{CD’,B,V p(0)]

> TP [r(0)] 1247 [@(p (1)
+ IE7 OV [@(p(e)] T4 [r(1)].

(3.13)

D(r)

Since p < r on [0,) and as function —~

T,p € [0,1) t > 0, we have
S(p(1) _ 2(r(1))
p(7) r(7)
Multiplying both sides of (3.14) by §(z,7)r(7) positive, and

integrating obtained result with respect to 7 from O to 7, we
have
T,0,0,v q)(p(t))
t,k r(t)
p(t)

Hence, using (3.13) and (3.15), we obtain required inequality
(3.12).

is increasing, for

(3.14)

<P @(p(r))].  (3.15)

Remark 3.3. Ifweputn=y, @ =06and 0 = andv="0
in Theorem 3.2 it reduces to the Theorem 3.1.

Now, we prove our main result.

Theorem 3.4. Let p, r and q be three positive continuous
functions on [0,00) and p < r on [0,0). If £ is decreasing, p
and q are increasing functions on [0,0), and for any convex
Sunction ¢ such that ¢(0) = 0, then for allk > 0,t > 0, >
max{0,—@—v}, o<1, v>-1,0-1<0<0,0—-1<
0 <0, we have,

IEEY )] I [0(p())q (1))

> , (3.16)
O] T Tl )a()]
Proof: Since p < ron [0, ) and function @ is increas-
ing, then for 7,p € [0,¢), t > 0, we have
0(p() _ $(r(2)) o
p(7) r(7)

Multiplying both sides of (3.17) by §(z,7)r(7) positive, and
integrating obtained result with respect to 7 from O to 7, we
have

Hn,w,e,v |:¢(p(t))

R S GO0

0]
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On the other hand, since the fact that the function ¢ is convex
with ¢(0) = 0. Then the function q;() is increasing. Since p
$(p(®) -

is increasing, 0]

is also increasing. Clearly we can say

that p(<>) is decreasing, for all 7,p € [0,¢) 7 >0

¢(p(p))

o(p(7))
——q(1) -
< r(p)

p(7)
(3.19)

which implies that

¢(p(7))q(7)
p(7)
_0(p(7))q(7)

oo

2D p)a(p) 15 [p()
—r

)
PIEE Y [0(p(1))q (1))

- S b (p)a(p) 150 )] 2 0,

(3.21)

with the same argument as before, we have

e ()]

I ()

20V 10(p(1)q(1)]
e[

(3.22)
()

Hence, using equation (3.18) and (3.22), we obtain (3.16).

Now, we give generalization of Theorem 3.3.

Theorem 3.5. Let p, r and q be three positive continuous
functions on [0,00) and p < r on [0,00). If £ is decreasing, p
and q are increasing functions on [0,0), and for any convex
Sunction ¢ such that $(0) = 0, then we have

57O [V [0 (r(0)q(0) + 1105 (O] T57* [0 (r())g (1))
L7 O]V 19 (p(0)g(0)] + TS [r (] TV [0 (p(e)g(0)] - (3:23)
>1,

q<p>) (p(p)r(1) - p()r(p)) 20,

t > 0), which remains positive . Then integrate the resulting
identity with respect to p from O to ¢, we have

HZ}CS.C,D [p(t)] [o@0.v [‘P(P(t))Q(I) r(t):|

1k p(1)
w0 i),

> IOV (0] 105V 190 (p(1))g (1))
+ IRV [0 (p(1)g(0)] TS [r (o)),

and since p < r on [0,e0) and use the fact that 2(0e(t) ) W is in-
creasing, we obtain

e |20 )] < g0 oo 629
and
e [ K0 )| < 525 oo 629

Hence, from equation (3.24), (3.25) and (3.26), we obtain
(3.23).

Remark 3.6. [fweputn =y, @=06and 0 = andv="0
in Theorem 3.4 it reduces to the Theorem 3.3.

4. Other fractional integral inequalities

In [10], authors have proved the inequalities using Riemann-
Liouville fractional integral. Now, we prove the similar results
using generalized k-fractional integral (in terms of Gauss
hypergeometric function) operator.

Theorem 4.1. Let p, q be two positive and continuous func-
tions on [0,00) such that p is decreasing and q is increasing
on [0,). Then for all k> 0,1t >0, © > max{0,—® — v},
O<l,v>—-1,0-1<06<0,l>m>0,andn >0 we
have

I8 [pl ()] 7"p'(t)]
Y ()] IR [grpm(e)])

n,0,0,v
]Iz,k [

A.1)

Proof:- Consider p,7 € (0,7), we have
(¢"(p) = 4"(®)) (P'(2)p" () " ()P () ) 2 0,
which implies that

q (p)f( )P (p) +4"(7)p" ()P (p) 42

)P" ()P (p) + 4" (1)p" (P)P'(7),

where for allk > 0,1 >0, © > max{0, —®@ —v},7 > max{0, —8 —Multiplying both sides of (4.2) by J(t,7) which is positive,

V@<, v,v>—-1,0-1<6<0,6-1<{<0,

Proof:- Multiplying equation (3.21) by
(k+1)v+5+lt(k+l)(—y—5—2u) (k+1)1)
m o P
(tk+1 _pk+l)72/* F1(1/+5—|-1)

—Cy 1= (B (p €(0,1),

1262

and integrating obtained result with respect to 7 from O to ¢,
we have

q" (p)pm(p)]l:fl,(wﬁ.v [pl (I)] +pl (p)]lf,l’cwﬁ v[qnpm (t)]
> (0)f G O]+ P L [ 1)
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(4.3)

Now, multiplying both side of (4.3) by F(¢, p) which is posi-
tive from (2.4). Now integrating obtained result with respect
to p from O to ¢, we have

IOV [ p (OISO [ (1)

(4.4)
> 1570 (g p (O [p" (1),

which gives the inequality 4.1.

Theorem 4.2. Let p, g be two positive and continuous func-
tions on [0,00) such that p is decreasing and q is increas-
ing on [0,00). Then for all k >0,t >0, T > max{0,—® —
viy>max{0,—6—-v}@,6<1l,v,v>—-1,0—-1<0<0,
0—1<¢<0,l>m>0,andn >0 we have

6,C, n.om 0,C, ,0,0, n.m
2OV [ OSSP g p (0] + 1005 [P () I g7 p (1))

then for all t,p, k> 0,1t >0, T > max{0,—®@ — v}, ® < 1,
v>—1,0—-1<0 <0, we have,

,0,0, 0,0,
157 [pgr(n) | AT
,0,0, ,0,0,
57 [pg(0)] 570 [r(1)]
0, 0,0,
> 157 g1 [pr(n)]

) 4.8)
[P [qr(e)]

n,m,0,v
+ Ht,k

.6, o C(1-@)[(7+v+6+1
where, Afk OV = (k17 w)f<k+])<v+w)%

Proof:- From condition (4.7), for any 7, p, we have

(7)q(v)r(7) + p(1)q(7)r(p)

=
=
)

+p(p)alp)r(t)+plp)a(p)rip) 4.9)
> p(1)q(p)r() + p(p)g(t)r(7) '
+p(p)a(t)r(p) + p(t)q(p)r(p)

,o, .5,., /7 76~,7 m Ihadt A} n 4y
Y [l O+ 10 [ I g (1)

> 1.
(4.5)

Proof:- Multiplying equation (4.3) by
(k+1)v+6+lt(k+1)(—y—5—21}) (k+1)1)
P
(= p Ay + 8+ 0, -Gyl = () (p € (0,1),
¢t > 0), which remains positive. Then integrate the resulting
identity with respect to p from O to ¢, we obtain the result 4.5.

Theorem 4.3. Let p, q be two positive and continuous func-
tions on [0,00) such that p is decreasing and q is increasing
on [0,00), Such that

(7" (314" (p) ~ " (P)4"(2)) (P "(2) = "(2)) 20,
then we have

I [P o)

B0V 0
I [ (o)

570V g pl (1))

= @0, ’
L g ()]

(4.6)

where Then for allk > 0,1 > 0,7 > max{0,—® — v}, @ < 1,
v>—-1,0-1<0<0,0-1<06<0,l>m>0,n>0.

Proof:- Consider 7,p € (0,¢), we get

(P"(D)"(p) = " (P)g"(2)) (P"(P)P' () ~ " ()1 (p) ) 2 0.

and using the same arguments as in Theorem [4.1], we obtain
the result.

Theorem 4.4. Let p, g and r be three function on [0,0) such
that

(p(7) = P(P))(4(7) = 4(p)) (r(7) +r(p)) 4.7

1263

Multiplying both side of equation (4.9) by (¢, 7) which
s positive, and integrating obtained result with respect to T
from O to ¢, we have

T,0,0,v ,0,0,v
Ht,k [ ]It.k [

par(t)]+r(p) 2(0)

+ p(P)a(P)I TV [r(6)] + p(p)alp)r(p) AT
> q(p) 157 [pr(0)] + £ (p) IV gr(n)]
+p(P)r(P) I [a(®)] + a(p)r(p) T [p(2)]

(4.10)

Again, multiplying both side of equation (4.10) F(¢,p) which
is positive, and integrating obtained result with respect to p
from O to ¢, we have

ATV pgr )] + 57 g1 (o)

+ 57OV O [pg ()] + AT VT [pgr(1)]

> 570 [pr] 57 [ (0)] + 157V lar ) 5 [p(0)]

+ 57V O™ ()] + 57 [p] TV gr(0)].
4.11)

This compete the proof of inequality (4.8).

Theorem 4.5. Let p, g and r be three function on [0,0) such
that

(p(7) = p(p))(q(1) +4(p))(r(7) +r(p)) 20 (4.12)

then for all T,p, k> 0,1 >0, 7 > max{0,—@ — v}, © < 1,
v>—-1,0—-1<60 <0, we have,

,0,0 ,0,0 ,0,0, 0,0,
I O™ Y ar())+ T )15V g(0)]

> 157V lgrO) T Y p@)] + 157V @] 157 [pa (1)
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Proof:- From condition (4.12), for any 7, p, we have

P(Da(0)r(2) + p(T)g()r(p)
 p(Da(p)r(@) + p(T)a(p)r(p)
> p(p)a(2)r(1) + p(p)a(t)r(p) 19
p(p)q(p)r(t) +p(p)alp)r(p).

Multiplying both side of equation (4.14)by §(¢,7) which is
positive, and integrating obtained result with respect to T from
0 to ¢, we have

I [par(n)] + r(p) I [pa (1))

+ ()T [pr(e)] + q(p)r(p) T [p(1)]

> r(p) 57O [gr()] +r(p) 177V [pq 1))
+p(P)a(P) I [r(p)] + p(p)a(p)r(p) AT Y.

With the same argument in inequality (4.11), we obtain

(4.15)

AFEOVTEEOY [par(n)] + T2 [pgO) 5TV [r(0)]

+ I OV Ta(0] + T3 [p O] 57 [qr(0)]
> 10O O (0] + TS0 )] 0 (0)

+ IOV OIS [pa ()] + AT OV IO [pgr(r)].
(4.16)

where, AT 9V is as in theorem 4.4. This compete the proof

of inequality (4.13).

5. Concluding Remarks

In this study, we presented generalized k-fractional in-
tegral operator operators. We established some fractional
integral inequalities involving convex functions by consid-
ering generalized k-fractional integral operator. Here, we
briefly consider some implication of our main results. The
inequalities proposed in this paper give some contribution in
the fields of fractional calculus and Generalized k-fractional
integral operators. Moreover, they are expected to led to some
application for finding uniqueness of solutions in fractional
differential equations.
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