

https://doi.org/10.26637/MJM0803/0093

Note on fractional integral inequalities using generalized k-fractional integral operator

Asha B. Nale ¹*, Satish K. Panchal ² and Vaijanath L. Chinchane ³

Abstract

The aim of this paper is to obtain several fractional integral inequalities involving convex functions by using generalized k-fractional integral operator.

Keywords

Generalized k-fractional integral, convex functions and inequalities.

AMS Subject Classification

26A99, 26D10.

^{1,2} Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad-431004, India.
 ³ Department of Mathematics, Deogiri Institute of Engineering and Management Studies, Aurangabad-431004, India.
 *Corresponding author: ¹ ashabnale@gmail.com; ²drskpanchal@gmail.com and ³ chinchane85@gmail.com
 Article History: Received 16 March 2020; Accepted 23 July 2020

Contents

1	Introduction1259
2	Preliminaries 1259
3	Fractional integral inequalities involving convex func- tions1260
4	Other fractional integral inequalities 1262
5	Concluding Remarks 1264
	References

1. Introduction

Fractional inequalities play major role in the development of fractional differential, integral equations and other fields of sciences and technology. Recently, a number of mathematician have studied different results about fractional integrals such as Riemann-Liouville, Hadamard, Saigo, Erdeyi-Kober, q-fractional integral and some other operators, see [1, 2, 5, 6, 8–12, 15–18, 20–22]. In [7], authors have studied inequalities using Saigo fractional integral.

Theorem 1.1. Let f, h be two positive continuous functions on $[0,\infty)$ and $f \le h$ on $[0,\infty)$. If $\frac{f}{h}$ is decreasing, f is increasing on $[0,\infty)$ and for any convex function ϕ , $\phi(0) = 0$, then for t > 0, $\alpha > \max\{0, -\beta\}$, $\beta < 1$, $\beta - 1 < \eta < 0$, we have

$$\frac{I_{0,t}^{\alpha,\beta,\eta}[f(t)]}{I_{0,t}^{\alpha,\beta,\eta}[h(t)]} \ge \frac{I_{0,t}^{\alpha,\beta,\eta}[\phi(f(t))]}{I_{0,t}^{\alpha,\beta,\eta}[\phi(h(t))]}.$$
(1.1)

and

Theorem 1.2. Let f, h be two positive continuous functions on $[0,\infty)$ and $f \le h$ on $[0,\infty)$. If $\frac{f}{h}$ is decreasing, f is increasing on $[0,\infty)$ and for any convex function ϕ , $\phi(0) = 0$, then we have inequality

$$\frac{I_{0,t}^{\alpha,\beta,\eta}[f(t)]I_{0,t}^{\psi,\delta,\zeta}[\phi(h(t))] + I_{0,t}^{\psi,\delta,\zeta}[f(t)]I_{0,t}^{\alpha,\beta,\eta}[\phi(h(t))]}{I_{0,t}^{\alpha,\beta,\eta}[h(t)]I_{0,t}^{\psi,\delta,\zeta}[\phi(f(t))] + I_{0,t}^{\psi,\delta,\zeta}[h(t)]I_{0,t}^{\alpha,\beta,\eta}[\phi(f(t))]} \ge 1,$$
(1.2)

where for all t > 0, $\alpha > max\{0, -\beta\}$, $\psi > max\{0, -\delta\}$, $\beta < 1$, $\beta - 1 < \eta < 0$, $\delta < 1$, $\delta - 1 < \zeta < 0$.

In the literature, some fractional inequalities are obtain by using Generalized k-fractional integral operator, see [3, 4, 13, 14, 17, 19, 21]. Motivated by above work in this paper we have obtain some new inequalities using generalized k-fractional integral (in terms of Gauss hypergeometric function) operator for convex functions.

2. Preliminaries

Here, we devoted to basic concepts of Generalized k-fractional integral.

Definition 2.1. *Two function x and y are said to synchronous* (*asynchronous*) *on* [a,b]*, if*

$$((x(s) - x(t))(y(s) - y(t))) \ge (\le)0,$$
(2.1)

for all $s, t \in [0, \infty)$.

Definition 2.2. [14, 23] The function x(s), for all s > 0 is said to be in the $L_{p,k}[0,\infty)$, if

$$L_{p,k}[0,\infty) = \{x : ||x||_{L_{p,k}[0,\infty)} = \left(\int_0^\infty |x(s)|^p s^k ds\right)^{\frac{1}{p}} (2.2)$$

< \infty 1 \le p < \infty, k \ge 0 \},

Definition 2.3. [14, 23, 24] Let $f \in L_{1,k}[0,\infty)$, The generalized Riemann-Liouville fractional integral $\mathbb{I}^{\alpha,k}f(x)$ of order $\alpha, k \geq 0$ is defined by

$$\mathbb{I}^{\alpha,k}f(x) = \frac{(k+1)^{1-\alpha}}{\Gamma(\alpha)} \int_0^x (x^{k+1} - t^{k+1})^{\alpha-1} t^k f(t) dt.$$
(2.3)

Definition 2.4. [14, 23] Let $k \ge 0, \alpha > 0\mu > -1$ and $\beta, \eta \in R$. The generalized k-fractional integral $\mathbb{I}_{t,k}^{\alpha,\beta,\eta,\mu}$ (in terms of the Gauss hypergeometric function) of order α for real-valued continuous function f(t) is defined by

$$\mathbb{I}_{t,k}^{\alpha,\beta,\eta,\mu}[f(t)] = \frac{(k+1)^{\mu+\beta+1}t^{(k+1)(-\alpha-\beta-2\mu)}}{\Gamma(\alpha)}$$
$$\int_{0}^{t} \tau^{(k+1)\mu}(t^{k+1} - \tau^{k+1})^{\alpha-1} \times$$
$${}_{2}F_{1}(\alpha+\beta+\mu, -\eta; \alpha; 1 - (\frac{\tau}{t})^{k+1})\tau^{k}f(\tau)d\tau.$$
(2.4)

where, the function $_2F_1(-)$ in the right-hand side of (2.4) is the Gaussian hypergeometric function defined by

$${}_{2}F_{1}(a,b;c;t) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{t^{n}}{n!},$$
(2.5)

and $(a)_n$ is the Pochhammer symbol

$$(a)_n = a(a+1)...(a+n-1) = \frac{\Gamma(a+n)}{\Gamma(a)}, \ (a)_0 = 1.$$

Consider the function

$$\begin{split} \mathfrak{F}(t,\tau) &= \frac{(k+1)^{\mu+\beta+1}t^{(k+1)(-\alpha-\beta-2\mu)}}{\Gamma(\alpha)}\tau^{(k+1)\mu} \\ \mathfrak{F}(t) &= \sum_{n=0}^{\infty} \frac{(\alpha+\beta+\mu)_n(-n)_n}{\Gamma(\alpha+n)n!} \times \\ t^{(k+1)(-\alpha-\beta-2\mu-\eta)}\tau^{(k+1)\mu}(t^{k+1}-\tau^{k+1})^{\alpha-1+n}(k+1)^{\mu+\beta+1} \\ &= \frac{\tau^{(k+1)\mu}(t^{k+1}-\tau^{k+1})^{\alpha-1}(k+1)^{\mu+\beta+1}}{t^{k+1}(\alpha+\beta+2\mu)\Gamma(\alpha)} + \\ \frac{\tau^{(k+1)\mu}(t^{k+1}-\tau^{k+1})^{\alpha}(k+1)^{\mu+\beta+1}(\alpha+\beta+\mu)(-n)}{t^{k+1}(\alpha+\beta+2\mu+1)\Gamma(\alpha+1)} + \\ \frac{\tau^{(k+1)\mu}(t^{k+1}-\tau^{k+1})^{\alpha+1}}{t^{k+1}} \times \\ \frac{(k+1)^{\mu+\beta+1}(\alpha+\beta+\mu)(\alpha+\beta+\mu+1)(-n)(-n+1)}{(\alpha+\beta+2\mu+1)\Gamma(\alpha+2)2!} + \dots \end{split}$$

(2.6)

It is clear that $F(t, \tau)$ is positive because for all $\tau \in (0, t)$, (t > 0), since each term of the (2.6) is positive.

3. Fractional integral inequalities involving convex functions

In this section, we prove some fractional integral inequalities involving convex function using generalized k-fractional integral (in terms of Gauss hypergeometric function) operator.

Theorem 3.1. Let p, r be two positive continuous functions on $[0,\infty)$ and $p \le r$ on $[0,\infty)$. If $\frac{p}{r}$ is decreasing, p is increasing on $[0,\infty)$ and for any convex function Φ , $\Phi(0) = 0$, then for all $k \ge 0$, t > 0, $\pi > max\{0, -\varpi - v\}$, $\varpi < 1$, v > -1, $\varpi - 1 < \theta < 0$, we have,

$$\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\Phi(p(t))]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\Phi(r(t))]}.$$
(3.1)

Proof:- If the function Φ is convex with $\Phi(0) = 0$, then the function $\frac{\Phi(t)}{t}$ is increasing. Since *p* is increasing, then $\frac{\Phi(p(t))}{r(t)}$ is also increasing. Clearly $\frac{p(t)}{r(t)}$ is decreasing, for all $\tau, \rho \in [0, \infty)$, and

$$\left(\frac{\Phi(p(\tau))}{p(\tau)} - \frac{\Phi(p(\rho))}{p(\rho)}\right) \left(\frac{p(\rho)}{r(\rho)} - \frac{p(\tau)}{r(\tau)}\right) \ge 0, \quad (3.2)$$

which implies that

$$\frac{\Phi(p(\tau))}{p(\tau)} \frac{p(\rho)}{r(\rho)} + \frac{\Phi(p(\rho))}{p(\rho)} \frac{p(\tau)}{r(\tau)} - \frac{\Phi(p(\tau))}{p(\tau)} \frac{p(\tau)}{r(\tau)} - \frac{\Phi(p(\rho))}{p(\rho)} \frac{p(\rho)}{r(\rho)} \ge 0.$$
(3.3)

Multiplying equation (3.3) by $r(\tau)r(\rho)$, we have

$$\frac{\Phi(p(\tau))}{p(\tau)}p(\rho)r(\tau) + \frac{\Phi(p(\rho))}{p(\rho)}p(\tau)r(\rho)
- \frac{\Phi(p(\tau))}{p(\tau)}p(\tau)r(\rho) - \frac{\Phi(p(\rho))}{p(\rho)}p(\rho)r(\tau) \ge 0.$$
(3.4)

Multiplying both sides of (3.4) by $\mathfrak{F}(t, \tau)$ which is positive, and integrating obtained result with respect to τ from 0 to t, we have

$$p(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(x)}r(t)\right] + \frac{\Phi(p(\rho))}{p(\rho)}r(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[p(t)\right] - r(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}p(t)\right] - \frac{\Phi(p(\rho))}{p(\rho)}p(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[r(t)\right] \ge 0.$$
(3.5)

Multiplying both sides of (3.5) by $\mathfrak{F}(t,\rho)$ which is positive, and integrating obtained result with respect to τ from 0 to t,

we have

$$\begin{split} \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[p(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right] \\ &+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[p(t)\right] \\ &\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[r(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}p(t)\right] \\ &+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}p(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[r(t)\right]. \end{split}$$
(3.6)

It follows that

$$\begin{bmatrix} \pi, \overline{\sigma}, \theta, \nu \\ t, k \end{bmatrix} \begin{bmatrix} \pi, \overline{\sigma}, \theta, \nu \\ t, k \end{bmatrix} \begin{bmatrix} \Phi(p(t)) \\ p(t)r(t) \end{bmatrix}
 \geq \mathbb{I}_{t,k}^{\pi, \overline{\sigma}, \theta, \nu} [r(t)] \mathbb{I}_{t,k}^{\pi, \overline{\sigma}, \theta, \nu} \left[\frac{\Phi(f(t))}{p(t)} p(t) \right],$$
(3.7)

$$\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[p(t)\right] = \frac{\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}p(t)\right]}{\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[r(t)\right]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right]}{\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right]}.$$
(3.8)

Since $p \le r$ on $[0,\infty)$ and function $\frac{\Phi(t)}{t}$ is increasing, then for $\tau, \rho \in [0,\infty)$, we have

$$\frac{\Phi(p(\tau))}{p(\tau)} \le \frac{\Phi(r(\tau))}{r(\tau)}.$$
(3.9)

Multiplying (3.9) by $\mathfrak{F}(t, \tau)r(\tau)$ which is positive, we obtain

$$\mathfrak{F}(t,\tau)\frac{\Phi(p(\tau))}{p(\tau)} \le \mathfrak{F}(t,\tau)\frac{\Phi(r(\tau))}{r(\tau)},\tag{3.10}$$

integrating equation (3.10) on both side with respective τ from 0 to *t*, we get

$$\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right] \le \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(r(t))}{r(t)}r(t)\right].$$
(3.11)

Hence, from (3.8) and (3.11) we obtain required inequality (3.1).

Theorem 3.2. Let p, r be two positive continuous functions on $[0,\infty)$ and $f \le r$ on $[0,\infty)$. If $\frac{p}{r}$ is decreasing, p is increasing on $[0,\infty)$ and for any convex function Φ , $\Phi(0) = 0$, then for all $k \ge 0$, t > 0, $\pi > max\{0, -\varpi - \nu\}, \gamma > max\{0, -\delta - \nu\}$ $\varpi, \delta < 1, \upsilon, \nu > -1, \varpi - 1 < \theta < 0, \delta - 1 < \zeta < 0$, we have,

$$\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\phi(r(t))] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\Phi(r(t))]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\Phi(p(t))] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[r(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\Phi(p(t))]} \geq 1,$$
(3.12)

Proof:- If function Φ is convex with $\Phi(0) = 0$, then $\frac{\Phi(t)}{t}$ is increasing. Since p is increasing, then $\frac{\Phi(p(t))}{p(t)}$ is also increasing. Clearly $\frac{p(t)}{r(t)}$ is decreasing, for all $\tau, \rho \in [0, t)$ t > 0. Multiplying equation (3.5) by $\frac{(k+1)^{\nu+\delta+1}t^{(k+1)(-\gamma-\delta-2\nu)}}{\Gamma(\gamma)}\rho^{(k+1)\nu} \times (t^{k+1} - \rho^{k+1})_2^{\gamma-1}F_1(\gamma + \delta + \nu, -\zeta; \gamma; 1 - (\frac{\rho}{t})^{k+1})$ ($\rho \in (0, t)$, t > 0), which remains positive from (2.4). Now integrating obtained result with respect to ρ from 0 to t, we have

$$\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[p(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(f(t))}{p(t)}r(t)\right] \\
+ \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[p(t)\right] \\
\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[r(t)\right] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\Phi(p(t))\right] \\
+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\Phi(p(t))\right] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[r(t)\right].$$
(3.13)

Since $p \le r$ on $[0,\infty)$ and as function $\frac{\Phi(t)}{t}$ is increasing, for $\tau, \rho \in [0,t)$ t > 0, we have

$$\frac{\Phi(p(\tau))}{p(\tau)} \le \frac{\Phi(r(\tau))}{r(\tau)}.$$
(3.14)

Multiplying both sides of (3.14) by $\mathfrak{F}(t, \tau)r(\tau)$ positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\Phi(p(t))}{p(t)}r(t)\right] \le \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\Phi(p(t))\right].$$
(3.15)

Hence, using (3.13) and (3.15), we obtain required inequality (3.12).

Remark 3.3. If we put $\pi = \gamma$, $\varpi = \delta$ and $\theta = \zeta$ and v = v in Theorem 3.2 it reduces to the Theorem 3.1.

Now, we prove our main result.

Theorem 3.4. Let p, r and q be three positive continuous functions on $[0,\infty)$ and $p \le r$ on $[0,\infty)$. If $\frac{p}{r}$ is decreasing, p and q are increasing functions on $[0,\infty)$, and for any convex function ϕ such that $\phi(0) = 0$, then for all $k \ge 0$, $t > 0, \pi > \max\{0, -\varpi - \nu\}, \ \varpi < 1, \ \nu > -1, \ \varpi - 1 < \theta < 0, \ \varpi - 1 < \theta < 0, \ \varpi - 1 < \theta < 0, \ we have,$

$$\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\phi(p(t))q(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[\phi(r(t))q(t)]},$$
(3.16)

Proof: Since $p \le r$ on $[0,\infty)$ and function $\frac{\phi(t)}{t}$ is increasing, then for $\tau, \rho \in [0,t), t > 0$, we have

$$\frac{\phi(p(\tau))}{p(\tau)} \le \frac{\phi(r(\tau))}{r(\tau)}.$$
(3.17)

Multiplying both sides of (3.17) by $\mathfrak{F}(t, \tau)r(\tau)$ positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\phi(p(t))}{p(t)}r(t)q(t)\right] \leq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\phi(r(t))q(t)\right].$$
(3.18)

On the other hand, since the fact that the function ϕ is convex with $\phi(0) = 0$. Then the function $\frac{\phi(t)}{t}$ is increasing. Since p is increasing, $\frac{\phi(p(t))}{p(t)}$ is also increasing. Clearly we can say that $\frac{p(t)}{r(t)}$ is decreasing, for all $\tau, \rho \in [0, t)$ t > 0

$$\left(\frac{\phi(p(\tau))}{p(\tau)}q(\tau) - \frac{\phi(p(\rho))}{p(\rho)}q(\rho)\right)(p(\rho)r(\tau) - p(\tau)r(\rho)) \ge 0,$$
(3.19)

which implies that

$$\frac{\phi(p(\tau))q(\tau)}{p(\tau)}p(\rho)r(\tau) + \frac{\phi(p(\rho))q(\rho)}{p(\rho)}p(\tau)r(\rho) - \frac{\phi(p(\tau))q(\tau)}{p(\tau)}p(\tau)r(\rho) - \frac{\phi(p(\rho))q(\rho)}{p(\rho)}p(\rho)r(\tau) \ge 0.$$
(3.20)

Hence, we can write

$$p(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\frac{\phi(p(t))}{p(t)}r(t)q(t)\right] + \frac{\phi(p(\rho))}{p(\rho)}r(\rho)q(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[p(t)\right] - r(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[\phi(p(t))q(t)\right] - \frac{\phi(p(\rho))}{p(\rho)}p(\rho)q(\rho)\mathbb{I}_{t,k}^{\pi,\overline{\omega},\theta,\nu}\left[r(t)\right] \ge 0,$$
(3.21)

with the same argument as before, we have

$$\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[p(t)\right]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[r(t)\right]} \ge \frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\phi(p(t))q(t)\right]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\frac{\phi(p(t))}{p(t)}r(t)q(t)\right]}.$$
(3.22)

Hence, using equation (3.18) and (3.22), we obtain (3.16).

Now, we give generalization of Theorem 3.3.

Theorem 3.5. Let p, r and q be three positive continuous functions on $[0,\infty)$ and $p \leq r$ on $[0,\infty)$. If $\frac{p}{r}$ is decreasing, p and q are increasing functions on $[0,\infty)$, and for any convex function ϕ such that $\phi(0) = 0$, then we have

$$\begin{split} & \mathbb{I}_{t,k}^{\pi,\sigma,\theta,\nu}[p(t)] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\phi(r(t))q(t)] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p(t)] \mathbb{I}_{t,k}^{\pi,\sigma,\theta,\nu}[\phi(r(t))q(t)] \\ & \mathbb{I}_{t,k}^{\pi,\sigma,\theta,\nu}[r(t)] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[\phi(p(t))q(t)] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[r(t)] \mathbb{I}_{t,k}^{\pi,\sigma,\theta,\nu}[\phi(p(t))q(t)] \\ & \geq 1, \end{split}$$
(3.23)

v} ω , $\delta < 1$, v, v > -1, $\omega - 1 < \theta < 0$, $\delta - 1 < \zeta < 0$,

Proof:- Multiplying equation (3.21) by $(k+1)^{\upsilon+\delta+1}t^{(k+1)(-\gamma-\delta-2\upsilon)}$

$$\frac{\Gamma(\gamma)}{(t^{k+1}-\rho^{k+1})_2^{\gamma-1}}F_1(\gamma+\delta+\upsilon,-\zeta;\gamma;1-(\frac{\rho}{t})^{k+1}) \ (\rho\in(0,t),$$

t > 0), which remains positive . Then integrate the resulting identity with respect to ρ from 0 to t, we have

$$\begin{split} \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[p(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} \left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \\ &+ \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon} \left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[p(t)\right] \\ &\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[r(t)\right] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\phi(p(t))q(t)\right] \\ &+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}\left[\phi(p(t))q(t)\right] \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[r(t)\right], \end{split}$$
(3.24)

and since $p \le r$ on $[0,\infty)$ and use the fact that $\frac{\phi(t)q(t)}{t}$ is increasing, we obtain

$$\mathbb{I}_{t,k}^{\pi,\overline{\boldsymbol{\omega}},\theta,\nu}\left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \leq \mathbb{I}_{t,k}^{\pi,\overline{\boldsymbol{\omega}},\theta,\nu}\left[\phi(r(t))q(t)\right], (3.25)$$

and

$$\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\frac{\phi(p(t))q(t)}{p(t)}r(t)\right] \le \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}\left[\phi(r(t))q(t)\right].$$
(3.26)

Hence, from equation (3.24), (3.25) and (3.26), we obtain (3.23).

Remark 3.6. If we put $\pi = \gamma$, $\varpi = \delta$ and $\theta = \zeta$ and v = vin Theorem 3.4 it reduces to the Theorem 3.3.

4. Other fractional integral inequalities

In [10], authors have proved the inequalities using Riemann-Liouville fractional integral. Now, we prove the similar results using generalized k-fractional integral (in terms of Gauss hypergeometric function) operator.

Theorem 4.1. Let p, q be two positive and continuous functions on $[0,\infty)$ such that p is decreasing and q is increasing on $[0,\infty)$. Then for all $k \ge 0$, t > 0, $\pi > max\{0, -\varpi - \nu\}$, $\omega < 1, \nu > -1, \omega - 1 < \theta < 0, l \ge m > 0, and n > 0 we$ have

$$\frac{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\varpi},\boldsymbol{\theta},\boldsymbol{\nu}}[p^{l}(t)]}{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\varpi},\boldsymbol{\theta},\boldsymbol{\nu}}[p^{m}(t)]} \geq \frac{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\varpi},\boldsymbol{\theta},\boldsymbol{\nu}}[q^{n}p^{l}(t)]}{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\varpi},\boldsymbol{\theta},\boldsymbol{\nu}}[q^{n}p^{m}(t)]}.$$
(4.1)

Proof:- Consider $\rho, \tau \in (0, t)$, we have

$$q^n(\boldsymbol{
ho}) - q^n(\tau)) \left(p^l(\tau) p^m(\boldsymbol{
ho}) - p^m(\tau) p^l(\boldsymbol{
ho}) \right) \ge 0,$$

which implies that

(

$$\frac{q^{n}(\rho)p^{l}(\tau)p^{m}(\rho) + q^{m}(\tau)p^{m}(\tau)p^{l}(\rho)}{\geq q^{m}(\rho)p^{m}(\tau)p^{l}(\rho) + q^{m}(\tau)p^{m}(\rho)p^{l}(\tau),}$$
(4.2)

where for all $k \ge 0, t > 0, \pi > max\{0, -\varpi - v\}, \gamma > max\{0, -\delta - Multiplying both sides of (4.2) by \mathfrak{F}(t, \tau) which is positive,$ and integrating obtained result with respect to τ from 0 to t, we have

$$q^{n}(\boldsymbol{\rho})p^{m}(\boldsymbol{\rho})\mathbb{I}_{t,k}^{\pi,\boldsymbol{\varpi},\boldsymbol{\theta},\boldsymbol{\nu}}[p^{l}(t)] + p^{l}(\boldsymbol{\rho})\mathbb{I}_{t,k}^{\pi,\boldsymbol{\varpi},\boldsymbol{\theta},\boldsymbol{\nu}}[q^{n}p^{m}(t)]$$

$$\geq g^{r}(\boldsymbol{\rho})f^{p}(\boldsymbol{\rho})I_{t,k}^{\alpha,\beta,\eta,\mu}[f^{q}(t)] + p^{m}(\boldsymbol{\rho})\mathbb{I}_{t,k}^{\pi,\boldsymbol{\varpi},\boldsymbol{\theta},\boldsymbol{\nu}}[q^{n}p^{l}(t)].$$

Now, multiplying both side of (4.3) by $\mathfrak{F}(t,\rho)$ which is positive from (2.4). Now integrating obtained result with respect to ρ from 0 to t, we have

$$\begin{aligned} & [\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^n p^m(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^l(t)] \\ & \geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^n p^l(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^m(t)], \end{aligned} \tag{4.4}$$

which gives the inequality 4.1.

Theorem 4.2. Let p, q be two positive and continuous functions on $[0,\infty)$ such that p is decreasing and q is increasing on $[0,\infty)$. Then for all $k \ge 0$, t > 0, $\pi > \max\{0, -\varpi - v\}, \gamma > \max\{0, -\delta - v\} \ \varpi, \delta < 1, v, v > -1, \ \varpi - 1 < \theta < 0, \delta - 1 < \zeta < 0, l \ge m > 0$, and n > 0 we have

$$\frac{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^{l}(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[q^{n}p^{m}(t)] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p^{l}(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^{n}p^{m}(t)]}{\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p^{m}(t)]\mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[q^{n}p^{m}(t)] + \mathbb{I}_{t,k}^{\gamma,\delta,\zeta,\upsilon}[p^{m}(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q^{n}p^{m}(t)]} \ge 1.$$

Proof:- Multiplying equation (4.3) by $\frac{(k+1)^{\upsilon+\delta+1}t^{(k+1)(-\gamma-\delta-2\upsilon)}}{\Gamma(\gamma)}\rho^{(k+1)\upsilon} \times (t^{k+1}-\rho^{k+1})_2^{\gamma-1}F_1(\gamma+\delta+\upsilon,-\zeta;\gamma;1-(\frac{\rho}{t})^{k+1}) \ (\rho \in (0,t), t > 0),$ which remains positive. Then integrate the resulting identity with respect to ρ from 0 to t, we obtain the result 4.5.

Theorem 4.3. Let p, q be two positive and continuous functions on $[0,\infty)$ such that p is decreasing and q is increasing on $[0,\infty)$, Such that

$$\left(p^{n}(\tau)q^{n}(\rho)-p^{n}(\rho)q^{n}(\tau)\right)\left(p^{l-n}(\tau)-p^{l-n}(\tau)\right)\geq0,$$

then we have

$$\frac{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\sigma},\boldsymbol{\theta},\boldsymbol{\nu}}[p^{n+l}(t)]}{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\sigma},\boldsymbol{\theta},\boldsymbol{\nu}}[p^{n+m}(t)]} \geq \frac{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\sigma},\boldsymbol{\theta},\boldsymbol{\nu}}[q^np^l(t)]}{\mathbb{I}_{t,k}^{\boldsymbol{\pi},\boldsymbol{\sigma},\boldsymbol{\theta},\boldsymbol{\nu}}[q^np^m(t)]},$$
(4.6)

where Then for all $k \ge 0$, t > 0, $\pi > max\{0, -\boldsymbol{\varpi} - \boldsymbol{v}\}$, $\boldsymbol{\varpi} < 1$, $\boldsymbol{v} > -1$, $\boldsymbol{\varpi} - 1 < \boldsymbol{\theta} < 0$, $\boldsymbol{\varpi} - 1 < \boldsymbol{\theta} < 0$, $l \ge m > 0$, n > 0.

Proof:- Consider $\tau, \rho \in (0, t)$, we get

$$(p^{n}(\tau)q^{n}(\rho)-p^{n}(\rho)q^{n}(\tau))\left(p^{m}(\rho)p^{l}(\tau)-p^{m}(\tau)p^{l}(\rho)\right)\geq0.$$

and using the same arguments as in Theorem [4.1], we obtain the result.

Theorem 4.4. Let p, q and r be three function on $[0, \infty)$ such that

$$(p(\tau) - p(\rho))(q(\tau) - q(\rho))(r(\tau) + r(\rho))$$

$$(4.7)$$

then for all $\tau, \rho, k \ge 0, t > 0, \pi > max\{0, -\varpi - \nu\}, \varpi < 1, \nu > -1, \varpi - 1 < \theta < 0, we have,$

$$\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pqr(t)]\Lambda_{t,k}^{\pi,\varpi,\theta,\nu} \\
+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)] \\
\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pr(t)] \\
+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)]\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[qr(t)]$$
(4.8)

where,
$$\Lambda_{t,k}^{\pi,\varpi,\theta,\nu} = (k+1^{-\nu-\varpi})t^{(k+1)(\nu+\varpi)} \frac{\Gamma(1-\varpi)\Gamma(\pi+\nu+\theta+1)}{\Gamma(1+\nu)\Gamma(1-\varpi+\theta)}$$

Proof:- From condition (4.7), for any τ , ρ , we have

$$p(\tau)q(\tau)r(\tau) + p(\tau)q(\tau)r(\rho) + p(\rho)q(\rho)r(\tau) + p(\rho)q(\rho)r(\rho) \geq p(\tau)q(\rho)r(\tau) + p(\rho)q(\tau)r(\tau) + p(\rho)q(\tau)r(\rho) + p(\tau)q(\rho)r(\rho).$$

$$(4.9)$$

Multiplying both side of equation (4.9) by $\mathfrak{F}(t, \tau)$ which is positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$\begin{aligned} & \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pqr(t)] + r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)] \\ &+ p(\rho)q(\rho)\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)] + p(\rho)q(\rho)r(\rho)\Lambda_{t,k}^{\pi,\varpi,\theta,\nu} \\ &\geq q(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pr(t)] + f(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[qr(t)] \\ &+ p(\rho)r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q(t)] + q(\rho)r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)] \end{aligned} \tag{4.10}$$

Again, multiplying both side of equation (4.10) $\mathfrak{F}(t,\rho)$ which is positive, and integrating obtained result with respect to ρ from 0 to *t*, we have

$$\begin{split} &\Lambda_{t,k}^{\pi,\varpi,\theta,\nu} \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pqr(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pq(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [r(t)] \\ &+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [r(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pq(t)] + \Lambda_{t,k}^{\pi,\varpi,\theta,\nu} \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pqr(t)] \\ &\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pr(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [q(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [qr(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [p(t)] \\ &+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [q(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pr(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [p(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [qr(t)] . \end{split}$$

This compete the proof of inequality (4.8).

Theorem 4.5. Let p, q and r be three function on $[0, \infty)$ such that

$$(p(\tau) - p(\rho))(q(\tau) + q(\rho))(r(\tau) + r(\rho)) \ge 0$$
 (4.12)

then for all $\tau, \rho, k \ge 0, t > 0, \pi > max\{0, -\varpi - \nu\}, \ \varpi < 1, \nu > -1, \ \varpi - 1 < \theta < 0, we have,$

$$\mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[qr(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pr(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[q(t)] \\
\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[qr(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)]$$
(4.13)

Proof:- From condition (4.12), for any τ , ρ , we have

$$p(\tau)q(\tau)r(\tau) + p(\tau)q(\tau)r(\rho) + p(\tau)q(\rho)r(\tau) + p(\tau)q(\rho)r(\rho) \geq p(\rho)q(\tau)r(\tau) + p(\rho)q(\tau)r(\rho) + p(\rho)q(\rho)r(\tau) + p(\rho)q(\rho)r(\rho).$$

$$(4.14)$$

Multiplying both side of equation (4.14)by $\mathfrak{F}(t,\tau)$ which is positive, and integrating obtained result with respect to τ from 0 to *t*, we have

$$\begin{split} & \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pqr(t)] + r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)] \\ &+ g(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pr(t)] + q(\rho)r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[p(t)] \\ &\geq r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[qr(t)] + r(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[pq(t)] \\ &+ p(\rho)q(\rho) \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu}[r(\rho)] + p(\rho)q(\rho)r(\rho)\Lambda_{t,k}^{\pi,\varpi,\theta,\nu}. \end{split}$$
(4.15)

With the same argument in inequality (4.11), we obtain

$$\begin{split} &\Lambda_{t,k}^{\pi,\varpi,\theta,\nu} \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pqr(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pq(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [r(t)] \\ &+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pr(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [q(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [p(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [qr(t)] \\ &\geq \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [qr(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [q(t)] + \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pq(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [r(t)] \\ &+ \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [r(t)] \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pq(t)] + \Lambda_{t,k}^{\pi,\varpi,\theta,\nu} \mathbb{I}_{t,k}^{\pi,\varpi,\theta,\nu} [pqr(t)]. \end{split}$$

$$(4.16)$$

where, $\Lambda_{t,k}^{\pi,\varpi,\theta,\nu}$ is as in theorem 4.4. This compete the proof of inequality (4.13).

5. Concluding Remarks

In this study, we presented generalized k-fractional integral operator operators. We established some fractional integral inequalities involving convex functions by considering generalized k-fractional integral operator. Here, we briefly consider some implication of our main results. The inequalities proposed in this paper give some contribution in the fields of fractional calculus and Generalized k-fractional integral operators. Moreover, they are expected to led to some application for finding uniqueness of solutions in fractional differential equations.

References

- S. Belarbi and Z. Dahmani, *On some new fractional integral inequality*, J. Inequal. Pure and Appl. Math. Art.86, 10(3), (2009), 1-5.
- [2] D. Baleanu, S. D. Purohit and J. C. Prajapati, *Integral inequalities involving generalized Erdélyi-Kober fractional integral operators*, Open. Math. 14, (2016), 89-99.
- V. L. Chinchane, New approach to Minkowski fractional inequalities using generalized K-fractional integral operator, Journal of the Indian. Math. Soc., 1-2(85),(2018) 32-41.

- V. L. Chinchane, On Chebyshev type inqualities using generalized K-fractional integral operator, Progr. Fract. Differ. Appl., 3(3),(2017) 1-8.
- ^[5] V. L. Chinchane and D. B. Pachpatte, On some Grüsstype fractional inequalities using Saigo fractional integral operator, Journal of Mathematics, Article ID 527910, Vol.2014 (2014), 1-9.
- [6] V. L. Chinchane and D. B. Pachpatte, New fractional inequalities involving Saigo fractional integral operator, Math. Sci. Lett., 3(3),(2014) 133-139.
- [7] V. L. Chinchane and D. B. Pachpatte, Note on fractional integral inequality involving convex function using Saigo fractional integral, Indian Journal of Mathematics, Vol.1(61), (2019), 27-39.
- [8] Z. Dahmani, A note on some new fractional results involving convex functions, Acta Math. Univ. Comenianae, 81(2),(2012), 241-246.
- [9] Z. Dahmani, L. Tabharit and S. Taf, New generalisation of Gruss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2(3), (2012), 92-99.
- Z. Dahmani and N. Bedjaoui, *Some generalized integral inequalities*, J. Advan. Res. Appl. Math, 3(4),(2011), 58-66.
- [11] Z. Dahmani and H. Metakkel El Ard, Generalization of some integral inequalities using Riemann-Liouville operator, Int. J. Open Problem Compt. Math., 4(4), (2011), 40-46.
- ^[12] A. A. George, *Fractional Differentiation Inequalities*, Springer Publishing Company, New York, 2009.
- [13] M. Houas, Certain weighted integral inequalities involving the fractional hypergeometric operators, Scientia, Series A: Mathematical Science, 27(2016), 87-97.
- [14] S. Kilinc and H.Yildirim, Generalized fractional integral inequalities involving Hypergeometic operators, Int. J. Pure Appl. Math., 101(1), (2015), 71-82.
- [15] V. Kiryakova, On two Saigo's fractional integral operator in the class of univalent functions, Fract. Calc. Appl. Anal., 9(2),(2006).
- [16] A. R. Prabhakaran and K. Srinivasa Rao, Saigo operator of fractional integration of Hypergeometric functions, Int. J. Pure Appl. Math., 81(5), (2012), 755-763.
- [17] S. D. Purohit, R. K. Yadav, On generalized fractional qintegral operator involving the q-Grüss Hypergeometric functions, Bull. Math. Anal., 2(4), (2010), 35-44.
- [18] S. D. Purohit and R. K. Raina, Chebyshev type inequalities for the Saigo fractional integral and their q- analogues, J. Math. Inequal., 7(2),(2013), 239-249.
- [19] S. D. Purohit and R. K. Raina, *Certain fractional integral inequalities involving the Gauss hypergeometric function*, Rev. Tec. Ing. Univ. Zulia 37(2), (2014), 167-175.
- [20] S. D. Purohit, Faruk Ucar and R. K. Yadav, On fractional integral inequalities and their q-analogues, Revista Tecnocientifica URU, N⁰6 Enero-Junio., (2014), 53-66.
- ^[21] R. K. Raina, Solution of Abel-type integral equation involving the Appell hypergeometric function, Integral

Transf. Spec. Funct., 21(7), (2010), 515-522.

- [22] M. Saigo, A remark on integral operators involving the Grüss hypergeometric functions, Math. Rep. Kyushu Univ., 11(1978), 135-143.
- [23] H. Yildirim and Z. Kirtay, Ostrowski inequality for generalized fractional integral and related equalities, Malaya J. Math. 2(3), (2014), 322-329.
- [24] S.G.Somko, A.A.Kilbas and O.I.Marichev, *Fractional Integral and Derivative Theory and Application*, Gordon and Breach, Yverdon, Switzerland, 1993.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

