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Abstract
In this paper, the notion of fuzzy quasi ideal is extended to intuitionistic fuzzy quasi ideal with respect to a
triangular norm and various results of such intuitionistic fuzzy ideals are studied. It has also been established
that if an intuitionistic fuzzy subring with respect to a triangular norm is an intuitionistic fuzzy quasi ideal with
respect to that norm, then it is also intuitionistic fuzzy quasi ideal with respect to the annihilation of that triangular
norm.
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1. Introduction
Fuzzy set was initiated by Zadeh [18] in 1965 and since

that time various algebraic structures like groups, rings, mod-
ules have been characterized by many researchers in fuzzy
setting. Rosenfeld [16] defined fuzzy subgroup of a group.
Around 1982, W.Liu [10] introduced the concept of fuzzy ide-
als of ring. As these algebraic structures play very important
role in mathematics and in many other branches of science,
so these concepts have been generalized by many researchers.
The intuitionistic fuzzy set, which is a generalization of a
fuzzy set was introduced by K.T.Atanassov [2, 3] is one of
them. In 2003, Banerjee and Basnet [4] studied intuitionistic
fuzzy subring and intuitionistic fuzzy ideals. Rahman and
Saikia [14] studied intuitionistic fuzzy sub-modules with re-
spect to triangular norm. Recently, in 2019 intuitionistic fuzzy
subrings in near rings with respect to a triangular norm and
t- co-norm is studied by Murugadas and Vetrivel [12]. The

notion of quasi ideals for rings was first introduced by Ste-
infeld [17]. Mohanraaj and Dheena [5] studied fuzzy quasi
ideals of rings in terms of a triangular norm. In this present
study, intuitionistic fuzzy quasi ideal is defined with respect
to a triangular norm and a t co-norm and few results on such
intuitionistic fuzzy ideals are investigated.

2. Preliminaries
Through the whole paper R indicates a non-commutative

ring with unity, T indicates a ’t-norm’ and ST indicates a ’t
co-norm’ if not otherwise specified.

Definition 2.1. An arbitrary mapping µ : X → [0,1] is said
to be a fuzzy subset of X.

Definition 2.2. [2] For a non-empty set X, by an intuitionistic
fuzzy set(abbreviated as IFS) we mean a structure of the form

A = {(r,µA(r),νA(r)|r ∈ X)}
where µA and νA are mappings from X to [0,1] i.e. fuzzy
sets in X and denote the membership degree (viz. µA(r))
and non-membership degree (viz. νA(r)), ∀r ∈ X to the set A
respectively together with the condition 0≤ µA(r)+νA(r)≤
1,∀r ∈ X. The set of all IFSs of X is denoted by IFS(X). We
denote A = {(r,µA(r),νA(r)|r ∈ X)} simply by A = (µA,νA).

Definition 2.3. [2] Let A = (µA,νA) and B = (µB,νB) be
two IFSs of X. Then
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(i) A⊆ B iff µA(x∗)≤ µB(x∗) and νA(x∗)≥ νB(x∗)
for all x∗ ∈ X.

(ii) A = B iff µA(x∗) = µB(x∗) and νA(x∗) = νB(x∗)
for all x∗ ∈ X

(iii) A∩B = {(x∗,µA(x∗)∧µB(x∗),νA(x∗)∨νB(x∗))
|x∗ ∈ X}

(iv) A∧B = {(x∗,T (µA(x∗),µB(x∗)),S(νA(x∗),νB(x∗)))
|x∗ ∈ X}

(v) A∪B = {(x∗,µA(x∗)∨µB(x∗),νA(x∗)∧νB(x∗))
|x∗ ∈ X}

(vi) �A = {(x∗,µA(x∗),µc
A(x
∗))|x∗ ∈ X}

(vii) �A = {(x∗,νc
A(x
∗),νA(x∗))|x∗ ∈ X}

Definition 2.4. [7] An arbitrary mapping T from [0,1]×
[0,1] to [0,1] is said to be a t-norm (or triangular norm)
if ∀x∗,y∗,z∗ ∈ [0,1] the following postulates are satisfied:
T1)T (x∗,1) = T (1,x∗) = x∗

T2)If y∗ ≤ z∗ then T (x∗,y∗)≤ T (x∗,z∗)
T3)T (x∗,y∗) = T (y∗,x∗)
T4)T (x∗,T (y∗,z∗)) = T (T (x∗,y∗),z∗).

Definition 2.5. [7] An arbitrary mapping S from [0,1]× [0,1]
to [0,1] is said to be a fuzzy union (or t co-norm) if ∀x∗,y∗,z∗ ∈
[0,1] the following postulates are satisfied:
S1)S(x∗,1) = S(1,x∗) = x∗

S2)If y∗ ≤ z∗ then S(x∗,y∗)≤ S(x∗,z∗)
S3)S(x∗,y∗) = S(y∗,x∗)
S4)S(x∗,S(y∗,z∗)) = S(S(x∗,y∗),z∗).

The pair (T,ST ) axe called dual in respect of fuzzy com-
plement if
(i) T (x∗,y∗) = 1−ST (1− x∗,1− y∗)
(ii) ST (x∗,y∗) = 1−T (1− x∗,1− y∗), fox all x∗,y∗ ∈ [0,1].

Definition 2.6. Tc, the C-annihihation of T is defined as:
T(c) : [0,1]× [0,1]→ [0,1]

T(c)(x∗,y∗) =

{
0; i f x∗ ≤ 1− y∗

T (x∗,y∗); otherwise
fox all x∗,y∗ ∈ [0,1]

Definition 2.7. [4] For A,B ∈ IFS(X), their sum A+B
is defined as

µA+B(p) =

 sup
p=q+r

{µA(q)∧µB(r)}

0; else
and

νA+B(p) =

{
inf

p=q+r
{νA(q)∨νB(r)}

1; else

Definition 2.8. [4] For A,B ∈ IFS(X), their product AB
is defined as

µAB(p) =

 sup
p=qr
{µA(q)∧µB(r)}

0; else
and

νAB(p) =

{
inf

p=qr
{νA(q)∨νB(r)}

1; else

Definition 2.9. [4] Let A be a subset of a non-empty set X.
Then an IFS χA = (µχA ,νχA) is called an intuitionistic fuzzy
characteristic function and is defined as

µχA(x
∗) =

{
1; i f x∗ ∈ A
0; i f x∗ /∈ A

and νχA(x
∗) =

{
0; i f x∗ ∈ A
1; i f x∗ /∈ A

Definition 2.10. [4] Let R be be a ring. Then χ0 and χR are
IFSs on R defined by

χ0(r) = (µχ0(r),νχ0(r)) and χR(r) = (µχR(r),νχR(r)),
where

µχ0(r)=

{
1; when r = 0
0; when r 6= 0

; νχ0(r)=

{
0; when r = 0
1; when r 6= 0

and µχR(r) = 1 ; νχR(r) = 0 ∀r ∈ R

Definition 2.11. [13] An operator Tm in terms of T is defined
as
Tm(x∗1,x

∗
2, . . . ,x

∗
m)=T (x∗j ,Tm−1(x∗1,x

∗
2, . . . ,x

∗
j−1,x

∗
j+1, . . . ,x

∗
m))

for all 1≤ j ≤ m,x∗j ∈ [0,1],m≥ 3,T2 = T .
Again T∞ is defined as, T∞(x∗1,x

∗
2, . . .)= lim

m→∞
Tm(x∗1,x

∗
2, . . . ,x

∗
m)

Definition 2.12. [14] An operator Sm in terms of S is defined
as
Sm(x∗1,x

∗
2, . . . ,x

∗
m)= S(x∗j ,Sm−1(x∗1,x

∗
2, . . . ,x

∗
j−1,x

∗
j+1, . . . ,x

∗
m))

for all 1≤ j ≤ m,x∗j ∈ [0,1],m≥ 3,S2 = S.
Again S∞ is defined as, S∞(x∗1,x

∗
2, . . .)= lim

m→∞
Tm(x∗1,x

∗
2, . . . ,x

∗
m)

Definition 2.13. [13] The intersection µ1∩µ2∩ . . .∩µk with
respect to (in brief wrt) T of the collection {µ1,µ2, . . . ,µk}
of fuzzy subsets in X is defined as, (µ1∩µ2∩ . . .∩µk)(y) =
Tk(µ1(y),µ2(y), . . . ,µk(y)) for all y ∈ X. Again the fuzzy set⋂

T µ j(y) = T∞(µ1(y),µ2(y), . . .) means the intersection of the
collection {µ1,µ2, . . . } of fuzzy sets in X wrt T .

Definition 2.14. [14] The union µ1 ∪ µ2 ∪ . . .∪ µk wrt S of
the collection {µ1,µ2, . . . ,µk} of fuzzy subsets in X is defined
as, (µ1 ∪ µ2 ∪ . . .∪ µk)(y) = Sk(µ1(y),µ2(y), . . . ,µk(y)) fox
all y∈ X. Again the fuzzy set

⋃
S µ j(y) = S∞(µ1(y),µ2(y), . . .)

means the union of the collection {µ1,µ2, . . . } of fuzzy sets in
X wrt S.

Definition 2.15. [14] For the collection {A1,A2, . . . ,Am} here
Ak = (µk,νk),k = 1,2, . . . ,m of IFSs of X their intersection
A1∩A2∩ . . .∩Am wrt T is an IFS of X, defined by

A1∩A2∩ . . .∩Am = {(y,Tm(µ1(y),µ2(y), . . . ,µm(y)),

STm(ν1(y),ν2(y), . . . ,νm(y)))|y ∈ X}

Again the IFS,⋂
T

Ak(y) = {(y,T∞(A1(y),A2(y), . . .),

ST∞
(A1(y),A2(y), . . .))|y ∈ X}
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means the intersection of the collection {A1,A2, . . .} of IFSs
of X wrt T .

Definition 2.16. [14] For the collection {A1,A2, . . . ,Am} here
Ak = (µk,νk),k = 1,2, . . . ,m of IFSs of X their union A1 ∪
A2∪ . . .∪Am wrt T is an IFS of X, defined by

A1∪A2∪ . . .∪Am = {(y,STm(µ1(y),µ2(y), . . . ,µm(y)),

Tm(ν1(y),ν2(y), . . . ,νm(y)))|y ∈ X}

Again the IFS,⋃
T

Ak(y) = {(y,ST∞
(A1(y),A2(y), . . .),

T∞(A1(y),A2(y), . . .))|y ∈ X}

means the union of the collection {A1,A2, . . .} of IFSs of X
wrt T .

Definition 2.17. [15] A ∈ IFS(R) is called an intuitionistic
fuzzy subring (in short IFSR) of R wrt T if ∀r,s ∈ R it satisfies

(i) µA(r− s)≥ T (µA(r),µA(s)) and
νA(r− s)≤ ST (νA(r),νA(s)).

(ii) µA(rs)≥ T (µA(r),µA(s)) and
νA(rs)≤ ST (νA(r),νA(s)).

Lemma 2.18. A ∈ IFS(R) is an IFSR of R wrt T iff �A an-
d �A are IFSRs of R wrt T .

Proof. Suppose A is an IFSR of R wrt T . Let r,s ∈ R. Then
µc

A(r− s) = 1−µA(r− s)
≤ 1−T (µA(r),µA(s)) = ST (1−µA(r),1−µA(s)).

Thus µc
A(r− s)≤ ST (µ

c
A(r),µ

c
A(s)).

Also, µc
A(rs) = 1−µA(rs)
≤ 1−T (µA(r),µA(s)) = ST (1−µA(r),1−µA(s)) =

ST (µ
c
A(r),µ

c
A(s)). The other two axioms can be found from

the hypothesis that A is an IFSR of R wrt T . Hence �A is an
IFSR of R wrt T . Also,
νc

A(r− s) = 1−νA(r− s)
≥ 1−ST (νA(r),νA(s)) = T (1−νA(r),1−νA(s)) .

Therefore νc
A(x− s)≥ T (νc

A(x),ν
c
A(s)). Again, νc

A(rs) = 1−
νA(rs)

≥ 1−T (νA(r),νA(s)) = ST (1− νA(r),1− νA(s)) =
ST (ν

c
A(r),ν

c
A(s)). The other two axioms can be found from

the hypothesis that A is an IFSR of R wrt T . Therefore �A is
an IFSR of R wrt T . The reverse part of the lemma follows
directly.

Lemma 2.19. Suppose C-annihilation T(c) of T provides a
t-norm. If A is an IFSR of R wrt T , then �A and �A are IFSRs
of R wrt T(c).

Proof. Let the C-annihilation of T be T(c). Let us define ST(c)
as

ST(c)(x
∗,y∗) =

{
1; i f 1− x∗ ≤ y∗

1−T (1− x∗,1− y∗); otherwise

fox all x∗,y∗ ∈ [0,1]. Then ST(c) is the dual of T(c).
Since A is an IFSR of R wrt T , so we get
µA(r− s)≥ T (µA(r),µA(s))≥ T(c)(µA(r),µA(s)) and
µA(rs)≥ T (µA(r),µA(s))≥ T(c)(µA(r),µA(s)).

We have

ST(c)(µ
c
A(r),µ

c
A(s)) =

{
1; i f µA(r)≤ 1−µA(s)
1−T (1−µc

A(r),1−µc
A(s)); else

Now, ST(c)(µ
c
A(r),µ

c
A(s))

≥ 1−T (1−µc
A(r),1−µc

A(s))
= 1−T (µA(r),µA(s)) = 1−µA(r− s)

[since µA(r− s)≥ T (µA(r),µA(s))].
Thus we have µc

A(r− s) ≤ ST(c)(µ
c
A(r),µ

c
A(s)). Similarly it

can be shown that µc
A(rs)≤ ST(c)(µ

c
A(r),µ

c
A(s)). Hence �A is

an IFSR of R wrt T(c).
For the next part we have,

T(c)(νc
A(r),ν

c
A(s)) =

{
0; i f νc

A(r)≤ 1−νc
A(s)

T (νc
A(r),ν

c
A(s)); otherwise

This implies, T(c)(νc
A(r),ν

c
A(s))

≤ T (νc
A(r),ν

c
A(s))

= 1−ST (νA(r),νA(s))≤ 1−νA(r− s).
Thus we have νc

A(r− s)≥ T(c)(νc
A(r),ν

c
A(s)). Similarly it can

be shown that νc
A(rs)≥ T(c)(νc

A(r),ν
c
A(s)).

Since A is an IFSR of R wrt T , therefore,
νA(r− s)≤ ST (νA(r),νA(s))≤ ST (c)(νA(r),νA(s)) and
νA(rs) ≤ ST (νA(r),νA(s)) ≤ ST (c)(νA(r),νA(s)). Hence �A
is an IFSR of R wrt T(c).

3. Intuitionistic Fuzzy Quasi Ideal wrt a
t-norm

Definition 3.1. A ∈ IFS(R) is called a intuitionistic fuzzy
quasi ideal (in short IFQI) if for all r,s ∈ R it satisfies

(i) µA(r− s)≥min(µA(r),µA(s)) and
νA(r− s)≤max(νA(r)νA(s)).

(ii) (A.χR)∩ (χR.A)⊆ A

Definition 3.2. A ∈ IFS(R) is called a intuitionistic fuzzy
quasi ideal (in short IFQI) wrt T if for all r,s ∈ R it satisfies

(i) µA(r− s)≥ T (µA(r),µA(s)) and
νA(r− s)≤ ST (νA(r),νA(s)).

(ii) (A.χR)∧ (χR.A)⊆ A

Example 3.3. Let us consider R = Z4 = {0,1,2,3} under
addition and multiplication modulo 4. Now we define fuzzy
subsets µA and νA on R as follows:
µA(0) = 0.3,µA(1) = 0.25,µA(2) = 0.2,µA(3) = 0.1 and
νA(0) = 0.6,νA(1) = 0.65,νA(2) = 0.7,νA(3) = 0.8
Then A = (µA,νA) is an IFQI of R wrt the pair of triangular
norms and conorms given below:
(i)x∗y∗,x∗+y∗−x∗y∗,(ii)max(0,x∗+y∗−1),min(1,x∗+y∗).
But A = (µA,νA) is not an IFQI of R, as
µA(0−1) = µA(3) = 0.1 � 0.25 = min(µA(0),µA(1))
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Theorem 3.4. An IFSR A of R wrt T is an IFQI wrt T iff
µA(x)≥T

[
sup
x=yz

µA(y), sup
x=yz

µA(z)
]

and νA(x)≤ ST
[

inf
x=yz

νA(y),

inf
x=yz

νA(z)
]
, for all x ∈ R.

Proof. Let A be an IFSR of R wrt T . First let us assume that
A be IFQI of R wrt T and x ∈ R. Then (A.χR)∧ (χR.A)⊆ A,
implies,
µA(x)≥ T (µA.χR(x),µχR.A(x))

= T
[

sup
x=yz

T (µA(y),µχR(z)), sup
x=yz

T (µχR(y),µA(z))
]

= T
[

sup
x=yz

µA(y), sup
x=yz

µA(z)
]

and νA(x)≤ ST (νA.χR(x),νχR.A(x))
= ST

[
inf

x=yz
S(νA(y),νχR(z)), inf

x=yz
ST (νχR(y),νA(z))

]
= ST

[
inf

x=yz
νA(y), inf

x=yz
νA(z)

]
.

Conversely, let A satisfies the conditions,
µA(x)≥T

[
sup
x=yz

µA(y), sup
x=yz

µA(z)
]

and νA(x)≤ ST
[

inf
x=yz

νA(y),

inf
x=yz

νA(z)
]
, for all x ∈ R. By our assumption we have,

µA(x)≥ T
[

sup
x=yz

µA(y), sup
x=yz

µA(z)
]

= T
[

sup
x=yz

T (µA(y),µχR(z)), sup
x=yz

T (µχR(y),µA(z))
]

= T (µA.χR(x),µχR.A(x)) = µ(A.χR)∧(χR.A)(x).
Also we have,
νA(x)≤ ST

[
inf

x=yz
νA(y), inf

x=yz
νA(z)

]
= ST

[
inf

x=yz
S(νA(y),νχR(z)), inf

x=yz
ST (νχR(y),νA(z))

]
= ST (νA.χR(x),νχR.A(x)) = ν(A.χR)∧(χR.A)(x).

Therefore (A.χR)∧ (χR.A) ⊆ A. The other two axioms can
be found from the hypothesis that A is an IFSR of R wrt T .
Hence A is an IFQI of R wrt T .

Theorem 3.5. An IFSR A of R wrt T is an IFQI wrt T iff �A
and �A are IFQIs of R wrt T .

Proof. Suppose A is an IFSR of R wrt T . Then by lemma
(2.18) �A and �A are IFSRs of R wrt T . First let us assume
that A be IFQI of R wrt T . Then by theorem (3.4), we have
µA(x)≥ T

[
sup
x=yz

µA(y), sup
x=yz

µA(z)
]
.. . . . . . (1)

Now, ST
[

inf
x=yz

µ
c
A(y), inf

x=yz
µ

c
A(z)

]
= 1−T

[
1− inf

x=yz
µ

c
A(y),1− inf

x=yz
µ

c
A(z)

]
= 1−T

[
sup
x=yz

µA(y), sup
x=yz

µA(z)
]

≥ 1−µA(x) [Using (1)].
Therefore, µc

A(x)≤ ST
[

inf
x=yz

µ
c
A(y), inf

x=yz
µ

c
A(z)

]
. . . . . .(2). Thus

from (1) and (2) by theorem (3.4), we have �A = (µA,µ
c
A) is

an IFQI of R wrt T .
Also, since A is an IFQI of R wrt T , so by theorem (3.4), we
have νA(x)≤ ST

[
inf

x=yz
νA(y), inf

x=yz
νA(z)

]
. . . . . .(3)

Again, T
[

sup
x=yz

ν
c
A(y), sup

x=yz
ν

c
A(z)

]
= 1−ST

[
1− sup

x=yz
ν

c
A(y),1− sup

x=yz
ν

c
A(z)

]

= 1−ST
[

sup
x=yz

νA(y), sup
x=yz

νA(z)
]

≤ 1−νA(x) [Using (3)].
Therefore, νc

A(x) ≥ T
[

sup
x=yz

ν
c
A(y), sup

x=yz
ν

c
A(z)

]
. . . . . .(4). Thus

from (3) and (4) by theorem (3.4), we have �A = (νc
A,νA) is

an IFQI of R wrt T .
The reverse part of the theorem obviously follows from theo-
rem (3.4).

Theorem 3.6. Suppose T(c), C-annihilation T provides a t-
norm. If an IFSR A of R wrt T is an IFQI, then �A and �A
are IFQIs of R wrt T(c).

Proof. Let A be an IFSR of R wrt T such that it is an IFQI.
Then by lemma (2.19) �A and �A are IFSRs of R wrt T(c).
Since A is an IFQI of R wrt T , so for all x ∈ R by theorem
(3.4), we get

µA(x)≥ T
[

sup
x=yz

µA(y), sup
x=yz

µA(z)
]

≥ T(c)
[

sup
x=yz

µA(y), sup
x=yz

µA(z)
]

(3.1)

and

νA(x)≤ ST
[

inf
x=yz

νA(y), inf
x=yz

νA(z)
]

≤ ST(c)

[
inf

x=yz
νA(y), inf

x=yz
νA(z)

]
(3.2)

Now, ST(c)

[
inf

x=yz
µ

c
A(y), inf

x=yz
µ

c
A(z)

]
= 1−T(c)

[
1− inf

x=yz
µ

c
A(y),1− inf

x=yz
µ

c
A(z)

]
= 1−T(c)

[
sup
x=yz

µA(y), sup
x=yz

µA(z)
]

≥ 1−µA(x) [Using (1)].
Therefore, µc

A(x)≤ ST(c)

[
inf

x=yz
µ

c
A(y), inf

x=yz
µ

c
A(z)

]
. . . . . .(3).

Thus from (1) and (3) by theorem (3.4), we have
�A = (µA,µ

c
A) is an IFQI of R wrt T(c).

Again, T(c)
[

sup
x=yz

ν
c
A(y), sup

x=yz
ν

c
A(z)

]
= 1−ST(c)

[
1− sup

x=yz
ν

c
A(y),1− sup

x=yz
ν

c
A(z)

]
= 1−ST(c)

[
sup
x=yz

νA(y), sup
x=yz

νA(z)
]

≤ 1−νA(x) [Using (2)].
Therefore, νc

A(x)≥T(c)
[

sup
x=yz

ν
c
A(y), sup

x=yz
ν

c
A(z)

]
. . . . . .(4). Thus

from (2) and (4) by theorem (3.4), we have �A = (νc
A,νA) is

an IFQI of R wrt T(c).

Theorem 3.7. Let {A1,A2, . . . ,Am} where Ak = (µk,νk),k =
1,2, . . . ,m be m IFQIs of R wrt T . Then A1∩A2∩ . . .∩Am is
also an IFQI of R wrt T .

Proof. Let A = A1∩A2∩ . . .∩Am. We will use the induction
method to prove that A is an IFQI of R wrt T .
If m = 1, then A = A1 and therefore A is an IFQI of R wrt T .
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We suppose, the intersection of (m−1) IFQIs of R wrt T is
again an IFQI of R wrt T . By our assumption A2∩A3∩ . . .∩
Am is an IFQI of R wrt T . Let x,y ∈ R. Then
(µ1∩µ2∩ . . .∩µm)(x− y)
= Tm(µ1(x− y),µ2(x− y), . . . ,µm(x− y))
= T (µ1(x− y),Tm−1(µ2(x− y), . . . ,µm(x− y)))
≥ T (T (µ1(x)µ1(y)),T (Tm−1(µ2(x), . . . ,µm(x)),

Tm−1(µ2(y), . . . ,µm(y)))
(since A2∩A3∩ . . .∩Am is an IFQI of R)

= T (T (µ1(y)µ1(x)),T (Tm−1(µ2(x), . . . ,µm(x)),
Tm−1(µ2(y), . . . ,µm(y)))

= T (µ1(y),T (T (µ1(x),Tm−1(µ2(x), . . . ,µm(x))),
Tm−1(µ2(y), . . . ,µm(y))))

= T (µ1(y),T (Tm(µ1(x),µ2(x), . . . ,µm(x)),
Tm−1(µ2(y), . . . ,µm(y))))

= T (µ1(y),T (Tm−1(µ2(y), . . . ,µm(y))),
Tm(µ1(x),µ2(x), . . . ,µm(x)))

= T (Tm(µ1(y),µ2(y), . . . ,µm(y)),
Tm(µ1(x),µ2(x), . . . ,µm(x)))

= T ((µ1∩µ2∩ . . .∩µm)(x),
(µ1∩µ2∩ . . .∩µm)(y))

Thus (µ1∩µ2∩ . . .∩µm)(x− y)
≥ T ((µ1∩µ2∩ . . .∩µm)(x),(µ1∩µ2∩ . . .∩µm)(y))
Let (T,ST ) be the dual pair wrt fuzzy complement. Then
(ν1∪ν2∪ . . .∪νm)(x− y)
= STm(ν1(x− y),ν2(x− y), . . . ,νm(x− y))
= ST (ν1(x− y),STm−1(ν2(x− y), . . . ,νm(x− y)))
≤ ST (ST (ν1(x)ν1(y)),ST (STm−1(ν2(x), . . . ,νm(x)),

STm−1(ν2(y), . . . ,νm(y)))
(since A2∩A3∩ . . .∩Am is an IFQI of R)

= ST (ST (ν1(y)ν1(x)),ST (STm−1(ν2(x), . . . ,νm(x)),
STm−1(ν2(y), . . . ,νm(y)))

= ST (ν1(y),ST (ST (ν1(x),STm−1(ν2(x), . . . ,νm(x))),
STm−1(ν2(y), . . . ,νm(y))))

= ST (ν1(y),ST (STm(ν1(x),ν2(x), . . . ,νm(x)),
STm−1(ν2(y), . . . ,νm(y))))

= ST (ν1(y),ST (STm−1(ν2(y), . . . ,νm(y))),
STm(ν1(x),ν2(x), . . . ,νm(x)))

= ST (STm(ν1(y),ν2(y), . . . ,νm(y)),
STm(ν1(x),ν2(x), . . . ,νm(x)))

= ST ((ν1∪ν2∪ . . .∪νm)(x),
(ν1∪ν2∪ . . .∪νm)(y))

Thus (ν1∪ν2∪ . . .∪νm)(x− y)
≤ ST ((ν1∪ν2∪ . . .∪νm)(x),(ν1∪ν2∪ . . .∪νm)(y))

Again, (µ1∩µ2∩ . . .∩µm)(x)
= Tm(µ1(x),µ2(x), . . . ,µm(x))
= T (µ1(x),Tm−1(µ2(x),µ3(x), . . . ,µm(x)))
≥T

[
T (sup

x=yz
µ1(y), sup

x=yz
µ1(z)),T (sup

x=yz
Tm−1(µ2(y), . . . ,µm(y)),

sup
x=yz

Tm−1(µ2(z), . . . ,µm(z)))
]

(since A2∩A3∩ . . .∩Am is an IFQI of R)
=T

[
T (sup

x=yz
µ1(z), sup

x=yz
µ1(y)),T (sup

x=yz
Tm−1(µ2(y), . . . ,µm(y)),

sup
x=yz

Tm−1(µ2(z), . . . ,µm(z)))
]

=T
[
T (sup

x=yz
µ1(z),T (sup

x=yz
µ1(y), sup

x=yz
Tm−1(µ2(y), . . . ,µm(y))),

sup
x=yz

Tm−1(µ2(z), . . . ,µm(z)))
]

≥ T
[
T (sup

x=yz
µ1(z), sup

x=yz
T (µ1(y),Tm−1(µ2(y), . . . ,µm(y))),

sup
x=yz

Tm−1(µ2(z), . . . ,µm(z)))
]

= T
[
T (sup

x=yz
µ1(z), sup

x=yz
Tm(µ1(y),µ2(y), . . . ,µm(y)),

sup
x=yz

Tm−1(µ2(z), . . . ,µm(z)))
]

= T
[
T (sup

x=yz
µ1(z), sup

x=yz
Tm−1(µ2(z), . . . ,µm(z))),

sup
x=yz

Tm(µ1(y),µ2(y), . . . ,µm(y))
]

≥ T
[

sup
x=yz

T (µ1(z),Tm−1(µ2(z), . . . ,µm(z))),

sup
x=yz

Tm(µ1(y),µ2(y), . . . ,µm(y))
]

= T
[

sup
x=yz

Tm(µ1(z),µ2(z), . . . ,µm(z))),

sup
x=yz

Tm(µ1(y),µ2(y), . . . ,µm(y))
]

= T
[

sup
x=yz

(µ1∩µ2∩ . . . ,∩µm)(y),

sup
x=yz

(µ1∩µ2∩ . . .∩µm)(z)
]

= T
[

sup
x=yz

T ((µ1∩µ2∩ . . . ,∩µm)(y),µχR(z)),

sup
x=yz

T (µχR(y),(µ1∩µ2∩ . . .∩µm)(z))
]

Thus (µ1∩µ2∩ . . .∩µm)(x)
≥ T [((µ1 ∩ µ2 ∩ . . .∩ µm).µχR)(x),(µχR .(µ1 ∩ µ2 ∩ . . .∩

µm))(x)]
Also, (ν1∪ν2∪ . . .∪νm)(x)
= STm(ν1(x),ν2(x), . . . ,νm(x))
= ST (ν1(x),STm−1(ν2(x),ν3(x), . . . ,νm(x)))
≤ ST

[
ST ( inf

x=yz
ν1(y), inf

x=yz
ν1(z)),ST ( inf

x=yz
STm−1(ν2(y), . . . ,

νm(y)), inf
x=yz

STm−1(ν2(z), . . . ,νm(z)))
]

(since A2∪A3∪ . . .∪An is an IFQI of R)
= ST

[
ST ( inf

x=yz
ν1(z), inf

x=yz
ν1(y)),ST ( inf

x=yz
STm−1(ν2(y), . . . ,

νm(y)), inf
x=yz

STm−1(ν2(z), . . . ,νm(z)))
]

= ST
[
ST ( inf

x=yz
ν1(z),ST ( inf

x=yz
ν1(y), inf

x=yz
STm−1(ν2(y), . . . ,

νm(y))), inf
x=yz

STm−1(ν2(z), . . . ,νm(z)))
]

≤ ST
[
ST ( inf

x=yz
ν1(z), inf

x=yz
ST (ν1(y),STm−1(ν2(y), . . . ,νm(y))),

inf
x=yz

STm−1(ν2(z), . . . ,νm(z)))
]

= ST
[
ST ( inf

x=yz
ν1(z), inf

x=yz
STm(ν1(y),ν2(y), . . . ,νm(y)),

inf
x=yz

STm−1(ν2(z), . . . ,νm(z)))
]

= ST
[
ST ( inf

x=yz
ν1(z), inf

x=yz
STm−1(ν2(z), . . . ,νm(z))),

inf
x=yz

STm(ν1(y),ν2(y), . . . ,νm(y))
]

≤ ST
[

inf
x=yz

ST (ν1(z),STm−1(ν2(z), . . . ,νm(z))),

inf
x=yz

STm(ν1(y),ν2(y), . . . ,νm(y))
]
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= ST
[

inf
x=yz

STm(ν1(z),ν2(z), . . . ,νm(z))),

inf
x=yz

STm(ν1(y),ν2(y), . . . ,νm(y))
]

= ST
[

inf
x=yz

(ν1∪ν2∪ . . . ,∪νm)(y),

inf
x=yz

(ν1∪ν2∪ . . .∪νm)(z)
]

= ST
[

inf
x=yz

ST ((ν1∪ν2∪ . . . ,∪νm)(y),νχR(z)),

inf
x=yz

ST (νχR(y),(ν1∪ν2∪ . . .∪νm)(z))
]

Thus (ν1∪ν2∪. . .∪νm)(x)≤ ST [((ν1∪ν2∪. . .∪νm).νχR)(x),
(νχR .(ν1∪ν2∪ . . .∪νm))(x)]
Therefore, [(A1∩A2∩ . . .∩Am).χR]∧ [χR.(A1∩A2∩ . . .∩Am)]

⊆ (A1∩A2∩ . . .∩Am).
Hence A = A1∩A2∩ . . .∩Am is an IFQI of R wrt T .

Theorem 3.8. Let {A1,A2, . . .} here Ak =(µk,νk),k= 1,2, . . .
be a collection of IFQIs of R wrt a continuous t-norm T . Then⋂

T Ak is also an IFQI of R wrt T .

Proof. Let x,y ∈ R and (T,ST ) be dual pair wrt fuzzy comple-
ment.(⋂

T

µk
)
(x− y) = limTm(µ1(x− y),µ2(x− y), . . . ,µm(x− y))

≥ limT (Tm(µ1(x),µ2(x), . . . ,µm(x)),
Tm(µ1(y),µ2(y), . . . ,µm(y))) (by theorem 3.4)

= T (limTm(µ1(x),µ2(x), . . . ,µm(x)),
limTm(µ1(y),µ2(y), . . . ,µm(y))) (since T is continuous)

= T
((⋂

T

µk
)
(x),

(⋂
T

µk
)
(y)
)

[here limit is taken as m→ ∞]

Also,
(⋃

ST

νi
)
(x− y)

= limSTn(ν1(x− y),ν2(x− y), . . . ,νn(x− y))
≤ limST (STm(ν1(x),ν2(x), . . . ,νm(x)),

STm(ν1(y),ν2(y), . . . ,νm(y))) (by theorem 3.4)
= ST (limSTm(ν1(x),ν2(x), . . . ,νm(x)),

limSTn(ν1(y),ν2(y), . . . ,νm(y))) (since T is continu-
ous)
= ST

((⋃
ST

νk
)
(x),

(⋃
ST

νk
)
(y)
)

[here limit is taken as m→ ∞]

Again,
(⋂

T

µk
)
(x) = limTm(µ1(x),µ2(x), . . . ,µm(x))

≥ limT (sup
x=yz

Tm(µ1(y),µ2(y), . . . ,µm(y)),

sup
x=yz

Tm(µ1(z),µ2(z), . . . ,µm(z))) (by theorem 3.7)

= T (lim sup
x=yz

Tm(µ1(y),µ2(y), . . . ,µm(y)),

lim sup
x=yz

Tm(µ1(z),µ2(z), . . . ,µm(z)))

= T (sup
x=yz

limTm(µ1(y),µ2(y), . . . ,µm(y)),

sup
x=yz

limTm(µ1(z),µ2(z), . . . ,µm(z)))

= T (sup
x=yz

(⋂
T

µi
)
(y), sup

x=yz

(⋂
T

µi
)
(z))

= T (sup
x=yz

T (
(⋂

T

µk
)
(y),µχR(z)) sup

x=yz
T (µχR(y),

(⋂
T

µk
)
(z)))

= T ((
(⋂

T

µk
)
.µχR)(x),(µχR .

(⋂
T

µk
)
(x)))

[here limit is taken as m→ ∞]

And,
(⋃

ST

νk
)
(x) = limSTm(ν1(x),ν2(x), . . . ,νm(x))

≤ limST ( inf
x=yz

STm(ν1(y),ν2(y), . . . ,νm(y)),

inf
x=yz

STm(ν1(z),ν2(z), . . . ,νm(z))) (by theorem 3.7)

= ST (lim inf
x=yz

STm(ν1(y),ν2(y), . . . ,νm(y)),

lim inf
x=yz

STm(ν1(z),ν2(z), . . . ,νm(z)))

= ST ( inf
x=yz

limSTm(ν1(y),ν2(y), . . . ,νm(y)),

inf
x=yz

limSTm(ν1(z),ν2(z), . . . ,νm(z)))

= ST ( inf
x=yz

(⋃
ST

νk
)
(y), inf

x=yz

(⋃
ST

νi
)
(z))

= ST ( inf
x=yz

ST (
(⋃

ST

νk
)
(y),νχR(z)) inf

x=yz
ST (νχR(y),

(⋃
ST

νk
)
(z)))

= ST ((
(⋃

ST

νk
)
.νχR)(x),(νχR .

(⋃
ST

νk
)
(x)))

[here limit is taken as m→ ∞]
Thus (

(⋃
T

Ak
)
.χR)∧(χR.

(⋃
T

Ak
)
)⊆
(⋃

T

Ak
)
. Hence

(⋃
T

Ak
)

is an IFQI of R wrt T .

Theorem 3.9. Every IFQI of R is an IFQI of R wrt T .

Proof. Let A be an IFQI of R and x,y ∈ R.
Then µA(x− y)≥min(µA(x),µA(y))≥ T (µA(x),µA(y))
and νA(x− y)≤max(νA(x),νA(y))≤ ST (νA(x),νA(y)).
Also, (A.χR)∩ (χR.A)⊆ A, therefore for any x ∈ R we have
µA(x)≥min

[
µA.χR(x),µχR.A(x)

]
≥ T

[
µA.χR(x),µχR.A(x)

]
= µ(A.χR)∧(χR.A)(x)

Also,νA(x)≤max
[
νA.χR(x),νχR.A(x)

]
≤ ST

[
νA.χR(x),νχR.A(x)

]
= ν(A.χR)∧(χR.A)(x)

Thus (A.χR)∧ (χR.A)⊆ A. Hence A is an IFQI of R wrt
T .

Note 3.10. From the example given above we have ,the re-
verse of the above theorem is not always true.

Theorem 3.11. If A and B are IFQIs of R wrt T , then A∧B
is also an IFQI of R wrt T .

Proof. Let A and B are IFQIs of R wrt T and x,y ∈ R.
µA∧B(x− y) = T (µA(x− y),µB(x− y))
≥ T

(
T (µA(x),µA(y)),T (µB(x),µB(y))

)
= T

(
T (T (µA(x),µA(y)),µB(x)),µB(y)

)
= T

(
T (T (µA(x),µB(x)),µA(y)),µB(y)

)
= T

(
T (µA(x),µB(x)),T (µA(y),µB(y))

)
= T

(
µA∧B(x),µA∧B(y)

)
And, νA∧B(x− y) = ST (νA(x− y),νB(x− y))
≤ ST

(
ST (νA(x),νA(y)),ST (νB(x),νB(y))

)
= ST

(
ST (ST (νA(x),νA(y)),νB(x)),νB(y)

)
= ST

(
ST (ST (νA(x),νB(x)),νA(y)),νB(y)

)
= ST

(
ST (νA(x),νB(x)),ST (νA(y),νB(y))

)
= ST

(
νA∧B(x),νA∧B(y)

)
.

Thus, we have
µA∧B(x− y)≥ T (µA∧B(x),µA∧B(y)) and
νA∧B(x− y)≤ S(νA∧B(x),νA∧B(y)).
Now, µA∧B(x) = T (µA(x),µB(y))
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≥ T
[
T (sup

x=yz
µA(y), sup

x=yz
µA(z)),T (sup

x=yz
µB(y), sup

x=yz
µB(z))

]
= T

[
T (T (sup

x=yz
µA(y), sup

x=yz
µA(z)), sup

x=yz
µB(y)), sup

x=yz
µB(z))

]
= T

[
T (T (sup

x=yz
µA(y), sup

x=yz
µB(y)), sup

x=yz
µA(z)), sup

x=yz
µB(z))

]
= T

[
T (sup

x=yz
µA(y), sup

x=yz
µB(y)),T (sup

x=yz
µA(z), sup

x=yz
µB(z))

]
≥ T

[
sup
x=yz

T (µA(y),µB(y)), sup
x=yz

T (µA(z),µB(z))
]

= T
[

sup
x=yz

(µA∧B(y), sup
x=yz

(µA∧B(z)
]

= T
[

sup
x=yz

T ((µA∧B(y),χR(z)), sup
x=yz

T (χR(y),µA∧B(z))
]

= T
[
µ(A∧B).χR(x),µχR.(A∧B)(x)

]
.

Also, νA∧B(x) = ST (νA(x),νB(y))
≤ ST

[
ST ( inf

x=yz
νA(y), inf

x=yz
νA(z)),ST ( inf

x=yz
νB(y), inf

x=yz
νB(z))

]
= ST

[
ST (ST ( inf

x=yz
νA(y), inf

x=yz
νA(z)), inf

x=yz
νB(y)), inf

x=yz
νB(z))

]
= ST

[
ST (ST ( inf

x=yz
νA(y), inf

x=yz
νB(y)), inf

x=yz
νA(z)), inf

x=yz
νB(z))

]
= ST

[
ST ( inf

x=yz
νA(y), inf

x=yz
νB(y)),ST ( inf

x=yz
νA(z), inf

x=yz
νB(z))

]
≤ ST

[
inf

x=yz
ST (νA(y),νB(y)), inf

x=yz
ST (νA(z),νB(z))

]
= ST

[
inf

x=yz
(νA∧B(y), inf

x=yz
(νA∧B(z)

]
= ST

[
inf

x=yz
ST ((νA∧B(y),χR(z)), sup

x=yz
T (χR(y),µA∧B(z))

]
= ST

[
ν(A∧B).χR(x),νχR.(A∧B)(x)

]
.

Therefore ((A∧B).χR)∧ (χR.(A∧B))⊆ A∧B. Hence A∧B
is an IFQI of R wrt T .

4. Conclusion
In this article instuitionistic fuzzy quasi ideal is defined

in terms of a triangular norm and some of its properties are
discussed as an extension of fuzzy quasi ideals of rings.
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