

https://doi.org/10.26637/MJM0803/0098

Half separation axioms in generalized topological spaces

V. Pankajam^{1*} and S. Balamanthra²

Abstract

In this paper, we study separations of sets called μ half separated and corresponding to these notions introduced μ half connectedness in generalized topological spaces.

Keywords

μ separated, μ semi-separated, μ pre-separated, μ α-separated, μ β-separated, μ b-separated, μ half separated, μ half α-separated, μ half semi-separated, μ half pre-separated, μ half β-separated sets, μ half b-separated, μ connectedness, μ α-connectedness, μ semi-connectedness, μ pre-connectedness, μ β-connectedness, μ half connectedness, μ half α -connectedness, μ half semi-connectedness, μ half pre-connectedness, μ half β-connectedness.

AMS Subject Classification

54A05, 54D15.

1,2 *Department of Mathematics, Sri G.V.G Visalakshi College for Women, Udumalpet-642128, Tamil Nadu, India.* ***Corresponding author**: ¹ pankajamgurusamy@gmail.com; ²manthrasm96@gmail.com **Article History**: Received **23** April **2020**; Accepted **14** May **2020** ©2020 MJM.

Contents

1. Introduction and Preliminaries

A generalized topology or simply GT μ [2] on a nonempty set X is a collection of subsets of X such that $\phi \in \mu$ and μ is closed under arbitrary union. Elements of μ are called μ -open sets. A subset A of X is said to be μ -closed if $X - A$ is μ -open. The pair (X,μ) is called a generalized topological space (GTS). If A is a subset of a space (X,μ) , then $c_u(A)$ is the smallest μ closed set containing A and $i_u(A)$ is the largest μ open set contained in A. If $\gamma: \varphi(X) \to \varphi(X)$ is a monotonic function defined on a nonempty set X and $\mu = \{A | A \subset v(A)\}\,$, the family of all γ open sets is also a GT [1], $i_{\mu} = i_{\gamma}$, $c_{\mu} = c_{\gamma}$ and $\mu = \{A | A = i_{\mu}(A)\}$ [3, Corollary 1.3]. The family of all monotonic functions defined on X is denoted by Γ. By a space (X, μ) , we will always mean a GTS (X,μ) . The concepts of μ semi-connectedness, μ preconnectedness, $\mu \alpha$ -connectedness, $\mu \beta$ -connectedness and μ

b-connectedness in general topological spaces are based on the notions of semi-open set, pre-open set, α -open set, β -open set and b-open sets respectively. The classes of μ α -connected, μ semi-connected, μ pre-connected, μ β-connected and μ b-connected topological spaces are subclasses of the class of connected topological spaces. In this article we introduce the notions of μ half connectedness, μ half α -connectedness, μ half semi-connectedness, μ half pre-connectedness, μ half β -connectedness and μ half b-connectedness in general topological spaces. These properties are weaker forms of μ connectedness, μ α -connectedness, μ semi-connectedness, μ pre-connectedness, μ β -connectedness and b-connectedness respectively.

Definition 1.1. *[\[1\]](#page-3-2) Let (X,*µ*) be a GTS. The GTS X is called*

- *(i)* µ*-connected if there are no nonempty disjoint* µ *open subsets P, Q of X such that* $P \cup Q = X$ *.*
- *(ii)* µ α *connected if there are no nonempty disjoint* µ*-* α -open subsets *P*, *Q* of *X* such that $P \cup Q = X$.
- *(iii)* µ *semi-connected if there are no nonempty disjoint* µ*semi-open subsets P, Q of X such that P* \cup *Q* = *X*.
- *(iv)* µ *pre-connected if there are no nonempty disjoint* µ*– pre-open subsets P, Q of X such that P* \cup *Q* = *X*.

(v) µ β*-connected if there are no nonempty disjoint* µ $β$ *-open subsets P, Q of X such that P*∪ $Q = X$.

2. µ **-Half separated sets**

In this section μ -half separated sets are defined and some of their properties are discussed.

Definition 2.1. *Two non-empty subsets A and B in a GTS X are said to be* µ*-separated (resp.,*µ *semi-separated,* µ *preseparated,* µ α *–separated,* µ β*-separated,* µ *b-separated) if* $A \cap C_u(B) = \emptyset$ *or* $\emptyset = C_u(A) \cap B$ $(A \cap SC_u(B) = \emptyset$ *or* $\phi = SC_{\mu}(A) \cap B$, $A \cap PC_{\mu}(B) = \phi$ or $\phi = PC_{\mu}(A) \cap B$, $A \cap$ $\alpha C_{\mu}(B) = \phi$ *or* $\phi = \alpha C_{\mu}(A) \cap B$, $A \cap \beta C_{\mu}(B) = \phi$ *or* $\phi =$ $\beta C_{\mu}(A) \cap B$, $A \cap bC_{\mu}(B) = \phi$ *or* $\phi = bC_{\mu}(A) \cap (B)$.

Theorem 2.2. *Let A and B be non-empty sets in a space X. The following statements hold:*

(i) If A and B are μ half separated (μ half semi-separated, μ *half pre-separated,* µ *half* α*-separated,* µ *half* β*-separated) and* $A_1 \subseteq A$ *and* $B_1 \subseteq B$ *, then* A_1 *and* B_1 *are so, respectively. (ii)* If $A \cap B = \emptyset$ *and one of A and B is* μ -*closed (* μ *semiclosed,* µ *pre-closed,* µ α*-closed,* µ β*-closed) or* µ*-open (*µ *semi-open,* µ *pre-open,* µ α*-open,* µ β*-open), then A and B are* µ *half-separated (resp.,* µ *half semi-separated,* µ *half pre-separated,* µ *half* α*-separated,* µ *half* β*-separated).*

(iii) If one of A and B is µ*-closed (*µ *semi-closed,* µ *preclosed,* µ α*-closed,* µ β*-closed) or* µ*- open (*µ *semi-open,* μ *pre-open,* μ α*-open,* μ β*-open)* and if $H = A ∩ (X - B)$ *and* $G = B \cap (X - A)$ *, then H* and *G* are μ *half-separated (resp.,* µ *half semi-separated,* µ *half pre-separated,* µ *half* α*-separated,* µ *half* β*-separated).*

Proof. (i) Claim: A_1 and B_1 are also μ half separated.

 $A \cap C_{\mu}(B) = \phi$ or $C_{\mu}(A) \cap B = \phi$.

Since A_1 ⊆ A and B_1 ⊆ B, we have $A_1 \cap C_\mu(B_1) \subset A \cap$ $C_{\mu}(B) = \phi.$

Which implies $A_1 \cap C_\mu(B_1) = \phi$.

Since A_1 ⊆ *A* and B_1 ⊆ *B*, we have $C_u(A_1) \cap B_1 \subset C_u(A) \cap$ $B = \phi$.

Which implies $C_{\mu}(A_1) \cap B_1 = \phi$.

(ii) In case A is μ -open, by $A \cap B = \phi$, $A \cap C_{\mu}(B) = \phi$. In case A is μ - closed, $C_{\mu}(A) \cap B = A \cap B = \phi$. Therefore, A and B are μ half-separated.

(iii) (1) Let A be μ -closed. Then $C_{\mu}(H) \cap G \subset C_{\mu}(A) \cap (X A$) = $A \cap (X - A) = \phi$.

(2) Let A be μ -open. Then $H \cap C_{\mu}(G) \subset A \cap C_{\mu}(X-A)$ $A \cap (X - A) = \phi$. \Box

Theorem 2.3. *Let X be a space. If A is a* µ *half-connected (resp.,* µ *half semi-connected,* µ *half pre connected, half* α*connected,* µ *half* β*-connected) subset of X and H and G are* µ*-half separated (resp.,* µ *half semi-separated,* µ *half preseparated,* µ *half* α *-separated,* µ *half* β *-separated) subsets of X with* $A ⊂ H ∪ G$, then either $A ⊂ H$ or $A ⊂ G$.

Proof. Let *A* be a μ half-connected set and $A \subset H \cup G$. Since H and G are μ half-separated, $G \cap C_{\mu}(H) = \phi$ or $C_{\mu}(G) \cap H =$

 ϕ . Let $G \cap C_{\mu}(H) = \phi$. Since $A = (A \cap H) \cup (A \cap G)$, then $(A \cap G) \cup C_\mu (A \cap H) \subset G \cap C_\mu (H) = \emptyset$. If $A \cap H$ and $A \cap G$ are non-empty, then A is not μ half-connected, a contradiction. Thus, either $A \cap H = \phi$ or $A \cap G = \phi$. This implies that $A \subset H$ or $A \subset G$. П

The following Figure 1 shows the connection between μ separated and μ half separated sets in GTS.

Following examples prove that the reverse implications of the above Figure 1 need not be true.

Example 2.4. *Let* $X = \{a, b, c\}$ *with the general topology* $\mu =$ $\{\phi, \{b\}, \{c\}, \{b, c\}\}\$. $\mu SO = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\$ *X*} *and* $\mu \alpha O = {\phi, \{b\}, \{c\}, \{b, c\}}$ *. Here* ${a, b}$ *and* ${c}$ *are* µ *semi-separated sets but not* µ α*-separated sets.*

Example 2.5. *Let* $X = \{a, b, c, d\}$ *with the general topology* $\mu = {\phi, \{b\}, \{d\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}}$. μ *bO* = ${\phi, \{a\}, \{b\}, \{c\}, \{d\}, \{a,b\}, \{b,c\}, \{c,d\}, \{a,c\}, \{b,d\},\$ ${a,b,c}, {b,c,d}, {a,c,d}, {a,b,d}, X}$ and $\mu SO = {\phi, \{b\}}$ {*d*},{*b*, *c*},{*a*, *c*},{*b*,*d*},{*a*,*b*, *c*},{*b*, *c*,*d*},{*a*, *c*,*d*},{*a*,*b*,*d*}, *X*}. Here $\{a,b\}$ *and* $\{c,d\}$ *are* μ *b*-separated sets but not μ *semi-separated sets.*

Example 2.6. *Let* $X = \{a, b, c, d\}$ *with the general topology* $\mu = {\phi, {a}, {b, c}, {a, b, c}}$. ${\mu \beta \theta} = {\phi, {a}, {b}, {c}, {a, b},$ {*b*, *c*},{*c*,*d*},{*a*,*d*},{*a*, *c*},{*b*,*d*},{*a*,*b*,*d*},{*a*,*b*, *c*},{*b*, *c*,*d*}, ${a, c, d}$, *X* $}$ *and* $\mu bO = { \phi, {a}, {b}, {c}, {a}, {a}, {b}, {b}, {c},$ {*a*,*d*},{*a*, *c*},{*a*,*b*,*d*},{*a*,*b*, *c*},{*b*, *c*,*d*},{*a*, *c*,*d*},*X*}*. Here* {*a*,*b*} *and* {*c*,*d*} *are* µ β*-separated sets but not* µ *b-separated sets.*

Example 2.7. Let $X = \{a, b, c, d\}$ with the general topology $\mu = {\phi, {a}, {b}, {b}, {a, b}}$. $\mu bO = {\phi, {a}, {b}, {b}, {a, b}, {b, c},$ {*a*, *c*},{*a*,*d*},{*b*,*d*},{*a*,*b*,*d*},{*a*,*b*, *c*},{*b*, *c*,*d*},{*a*, *c*,*d*},*X*} *and* $\mu \alpha O = {\phi, {a}, {b}, {b}, {a, b}}$. Here ${b}$ *and* ${a, c}$ *are* μ *b-separated sets but not* α*-separated sets.*

Example 2.8. *Let* $X = \{a,b,c\}$ *with the general topology* $\mu =$ ${\phi, {\{b\}, \{c\}, \{b,c\}\}\}\$. $\mu bO = {\phi, {\{b\}, \{c\}, \{a,b\}, \{b,c\}, \{a,c\}\}\$ *X*} *and* µ*PO* = {φ,{*b*},{*c*},{*b*, *c*}}*. Here* {*a*,*b*} *and* {*c*} *are* µ *b-separated sets but not* µ *pre-separated sets.*

Example 2.9. Let $X = \{1, 2, 3, 4\}$ with the general topol*ogy* µ *=* {φ*,*{*3*}*,*{*4*}*,*{*1,4*}*,* {*2,4*}*,*{*1,3,4*}*,*{*1,2,3*}}*.*µα*O* =

{φ,{3},{4},{1,4},{2,4},{1,3,4},{1,2,3}}*.Here* {1,2,3} *and* {4} *are* µα*-separated sets and* µ *half* α*–separated.*

Example 2.10. *Let* $X = \{a, b, c\}$ *with the general topology* $\mu = {\phi, {b}, {c}, {c}, {b}, c}$. $\mu \alpha O = {\phi, {b}, {c}, {b}, {c}$ $\mu \alpha c l = \{X, \{a, c\}, \{a, b\}, \{a\}\}\$. Here $\{a, c\}$ and $\{b, d\}$ are μ *half* α *separated but not* µ α*-separated.*

Example 2.11. Let $X = \{a, b, c, d\}$ with the general topology $\mu = {\phi, {a}, {b, c}, {b, c}, {a, b, c}}.$ {*b*, *c*},{*a*, *c*},{*a*,*d*},{*a*,*b*,*d*},{*a*,*b*, *c*},{*b*, *c*,*d*},{*a*, *c*,*d*},*X*}*. Here* $\{a, b, c\}$ *and* $\{d\}$ *are* μ *half b-separated sets but not* $C_{\mu} - C_{\mu}$ *separated sets.*

3. µ **Half connected sets**

In this section we define μ -half connected sets and study some of their properties.

Definition 3.1. *A subset A of a space X is said to be* µ*-half connected (resp.,* µ*half semi-connected,* µ *half pre-connected,* µ *half* α *-connected,* µ *half* β *-connected) if A is not the union of two non-empty* µ *half separated (resp.,*µ *half semiseparated,* µ *half pre-separated,* µ *half* α *-separated,* µ *half* β *-separated) sets in X (resp.,* µ *half semi-separated,* µ *half pre-separated,* µ *half* α *-separated,* µ *half* β *-separated).*

Example 3.2. Let $X = \{1,2,3\}$ with the topology $\mu = {\phi, {2}, {3}, {2,3}}$. $S = {1,2,3} \subset X$ *and* $\mu SO = {\phi, {2}, {3}, {1,2}, {2,3}, {1,3}, X}.$ Take $A = {1,2}$ *and* $B = \{3\}$ *.* $S = A ∪ B = \{1, 2, 3\} �>C X$ *. S cannot be written as the union of two disjoint non-empty* µ*-semi open sets. Hence S is* µ*-semi connected.*

Example 3.3. Let $X = \{a,b,c,d\}$ with the topology $\mu =$ ${\phi, {a}, {b}, {b}, {a, b}$ and $A = {a, b, c} \subset X$. $\mu bO = {\phi, \{a\}, \{b\}, \{a,b\}, \{b,c\}, \{a,c\}, \{a,d\}, \{b,d\}},$ {*a*,*b*, *c*},{*b*, *c*,*d*},{*a*, *c*,*d*},{*a*,*b*,*d*},*X*}*.Take C* = {*a*,*b*} *and* $D = \{b, c\}$ *. Now* $A = C \cup D$ *. A cannot be written as the union of two disjoint non-empty* µ *half open sets. Hence A is* µ *half semi connected.*

Theorem 3.4. *A space X is* µ*-half-connected (resp.,* µ*-half semiconnected,* µ*-half pre connected,* µ*- half* α*-connected,* µ*- half* β*-connected) iff it cannot be expressed as the disjoint union of non-empty* µ*-open (resp.,* µ*- semi-open,* µ*- pre-open,* µ α*-open,* µβ*-open) set and a non-empty* µ*-closed (resp.,* µ*semi-closed,* µ*- pre-closed,* µ α*-closed,* µ β*-closed) set.*

Proof. Take *X* as a μ - half-connected space. If $X = U \cup F$, where $U \cap F = \emptyset$, U is a non-empty μ -open set and F is a non-empty μ - closed set in X. Since F is a μ -closed set in X, $U \cap C_u(F) = \phi$ and so U and F are μ -half-separated. Hence, X is not μ -half-connected space, a contradiction. Conversely, if X is not a half-connected space, then there exist half-separated sets U and V in X which are nonempty such that $X = U \cup V$. Let $U \cap C_{\mu}(V) = \emptyset$. Set $A = X - C_{\mu}(V)$ and $F = C_u(V)$. Then $A \cup F = X$ and $A \cap F = \phi$. Also A is a non-empty μ -open set and F is a non-empty μ -closed set. \Box

Theorem 3.5. *Let X be a space. If A is a* µ *half-connected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected) subset of X and H and G are* µ*-half separated (resp.,* µ *half semi-separated,* µ *half preseparated,* µ *half* α*-separated,* µ *half* β*-separated) subsets of X with A* ⊂ *H* ∪ *G, then either A* ⊂ *H or A* ⊂ *G*.

Proof. Let A be a μ half-connected set and $A \subset H \cup G$. Since H and G are μ half-separated, by Definition 2.1 $G \cap c_{\mu}(H) =$ ϕ or $c_{\mu}(G) \cap H = \phi$. Let $G \cap c_{\mu}(H) = \phi$. Since $A = (A \cap$ *H*)∪($A \cap G$), then $(A \cap G)$ ∪ $cl(A \cap H) \subset G \cap c_\mu(H) = \emptyset$. If $A \cap H$ and $A \cap G$ are non- empty, then A is not μ halfconnected, this is a contradiction. Hence, either $A \cap H = \phi$ or *A* \cap *G* = ϕ . Suppose that *A* \cap *H* = $\phi \Rightarrow$ *A* = *A* \cap *G* \Rightarrow *A* \subset *G* or $A \cap G = \emptyset \Rightarrow A = A \cap H \Rightarrow A \subset H$. This implies that $A \subset H$ or $A \subset G$. □

Theorem 3.6. *If A and B are* µ *half-connected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected) sets of a space X and A and B are not half* µ*-separated (resp.,* µ *half semi-separated,* µ *half preseparated,* µ *half* α *-separated,* µ *half* β *-separated) then* $A \cap B$ *is* μ *half connected (resp.,* μ *half semi-connected,* μ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected).*

Proof. Let A and B be μ half-connected sets in X.Suppose $A \cup B$ is not μ half connected. Then there exist two nonempty μ half-separated sets G and H such that $A \cup B =$ *G*∪ *H*. Since G and H are μ half-separated, $G \cap c_{\mu}(H) = \phi$ or $c_{\mu}(G) \cap H = \phi$. Suppose that $G \cap cl(H) = \phi$, since A and B are μ half-connected by Theorem 3.5, either $A \subset G$ or *A* ⊂ *H*. Similarly, *B* ⊂ *G* or *B* ⊂ *H*.If *A* ⊂ *G* and *B* ⊂ *G*, then H is empty, this is a contradiction. If $B \subset G$ and $A \subset H$, then $c_{\mu}(A) \cap B \subset c_{\mu}(H) \cap G = \phi$. Therefore, A and B are μ half-separated. This is a contradiction. Hence $A \cup B$ is μ half -connected. \Box

Theorem 3.7. *If* $\{M_i : i \in I\}$ *is a non-empty family of* μ *half-connected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected)sets of a space X and* $\bigcap_{i \in I} M_i \neq \emptyset$ *, then* $\bigcup_{i \in I} M_i \neq \emptyset$ *is* μ *half-connected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected).*

Proof. If $\cup_{i \in I} M_i$ is not μ half-connected, then $\cup_{i \in I} M_i = H \cup G$, where H and G are non-empty μ half-separated sets in X. Since $\bigcap_{i \in I} M_i \neq \emptyset$, we have a point $x \in \bigcap_{i \in I} M_i$. Since $x \in$ $\cup_{i \in I} M_i$, either $x \in H$ or $x \in G$. Suppose that $x \in H$. By Theorem 3.5, $M_i \subset H$ for all i. Thus, $\bigcup_{i \in I} M_i \subset H$. Then G is empty. This contradiction to $\bigcup_{i \in I} M_i$ is not μ half connected. Hence $∪_{i∈I}M_i$ is μ half-connected. \Box

Theorem 3.8. *Let X be a space,* $\{A_{\alpha} : \alpha \in \Delta\}$ *be a family of* µ *half-connected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected) sets and A is* µ *half-connected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected).If*

 $A \cap A_{\alpha} \neq \emptyset$ *, for every* $\alpha \in \Delta$ *, then* $A \cup (\cup_{\alpha \in \Delta} A_{\alpha})$ *is* μ *halfconnected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected).*

Proof. Since $A \cap A_{\alpha} \neq \emptyset$ for each, $\alpha \in \Delta$ by Theorem 2.2, *A*∪*A*α is μ half-connected for each $\alpha \in \Delta$. Now, $A \cup (\cup A_{\alpha}) =$ $∪(A∪A_α)$ and $φ ≠ A ⊂ ∩_{α∈Δ}(A∪A_α)$. Hence by Theorem 3.5, $A∪(∪A_α)$ is $µ$ half-connected. 3.5, *A*∪(∪*A* α) is *μ* half-connected.

Theorem 3.9. *Let X be a* μ *T*₀ *(resp.,* μ *sT*₀*,* μ *pT*₀*,* μ α *T*₀*,* μ $βT_0$) topological space where $|X| \geq 2$. Then *X* is not μ half*connected (resp.,* µ *half semi-connected,* µ *half pre connected,* µ *half* α*-connected,* µ *half* β*-connected).*

Proof. Let x, y be distinct points of X. Then there exists a μ -open set U such that $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin$ *U*. Let $x \in U$ and $y \notin U$. Then $y \in X - U$, and $X - U$ is μ closed.Then, $X = U \cup (X - U)$.By Theorem 3.4, X is not μ half-connected. \Box

4. Conclusion

In this article μ half separated sets and μ half connected sets were introduced and separation axioms were discussed in generalized topological space.

References

- [1] I. Basdouria, R. Messaouda and A. Missaouia, Connected and hyper-connected generalized topological spaces, *Journal of Linear and Topological Algebra*, 5(4)(2016), 229–234.
- [2] A. Csaszar, Generalized Open Sets, *Acta Math. Hungar.*, 75(1-2)(1997), 65-87.
- [3] A. Csaszar, Generalized topology, generalized continuity, *Acta Math. Hungar.*, 96(2002), 351–357.
- [4] A. Csaszar, Generalized open sets in generalized topologies, *Acta Math. Hungar.*, 106(2005), 53–66.
- [5] V. Pankajam and D. Sivaraj, On some separation axioms in generalized topological spaces, *Bol. Soc. Paran. Mat.,* 31(1)(2013), 29–42.
- [6] B. Roy, On generalized R0and R1spaces, *Acta Math. Hungar.*, 127(3)(2010), 291–300.
- [7] M.S. Sarsak, Weak separation axioms in generalized topological spaces, *Acta Math. Hungar.*, 131(1-2)(2011), 110- 121.
- [8] P. Sivagami, Remarks on γ-interior, *Acta Math. Hungar.*, 119(2008), 81–94.
- [9] Takshi Noiri and Shyamapa da Modak, Half bconnectedness in topological Space, *Journal of The Chungcheong Mathematical Society*, 29(2)(2016), 1–10.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $* * * * * * * * * * *$

