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Some new oscillation criteria of third-order
half-linear neutral difference equations
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Abstract
In this article, we introduce the oscillation of all solutions of third-order half-linear neutral difference equa-
tion(OSTOHLDE)

∆(g(n)(∆(h(n)∆z(n)))α)+ f (n)yα(n+1) = 0,

where z(n) = y(n)+e(n)y(n−k) and α is a ratio of odd positive integers(PI). Our results are new and complement
to the existing ones.
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1. Introduction
This paper investigated the OSTOHLDE

∆(g(n)(∆(h(n)∆z(n)))α)+ f (n)yα(n+1) = 0 (E),

where n ∈ N(n0) = {n0, n0 +1, . . . }, n0 is a PI, and z(n) =
y(n)+ e(n)y(n− k). Throughout, we use the following as-
sumptions:

(A1) {g(n)}, {h(n)}, {e(n)} and { f (n)} are positive real
sequences with 0 ≤ e(n) ≤ p < 1, and α is a ratio of
odd PI;

(A2) k is a PI;

(A3) ∑
∞
n=n0

(g(n))−
1
α = ∑

∞
n=n0

1
h(n) = ∞.

The real sequence {y(n)} is a solution of (E) if it is defined
and satisfies (E) for all n ∈ N(n0). A nontrivial solution of
(E) is called oscillatory if the terms of the sequence {y(n)}
are neither eventually positive nor eventually negative and
nonoscillatory otherwise. Equation (E) is called oscillatory.

In recent years, many researchers studying the OSTOHLDE.
The monographs and the references [1–3, 6, 8–11, 13] cited
therein as examples of recent results on this OSTOHLDE.
However, the sufficient conditions established in these papers
except [9] ensure that every solution of equations concerned
either oscillatory or tends to zero.

For the case 0 ≤ e(n) ≤ p < 1, we used the following
relation

y(n)≥ (1− e(n))z(n) (1.1)

when y(n) is positive and z(n) is positive and increasing. But
if z(n) is positive and decreasing there is no such relation
of the form (1.1) is found. However, if z(n) is positive and
decreasing then [12, 14] used y(n) is also decreasing and
found a relation of the form (1.1) between y(n) and z(n). The
following example shows that if z(n) is decreasing then y(n)
is not decreasing. Let

y(n) =
1
3n

(
3
2
+(−1)n

)
> 0
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then
z(n) = y(n)+

1
3

y(n−1) =
1

3n−1 > 0.

Also

∆z(n) =− 2
3n < 0 and ∆y(n) =

1
3n+1 (4(−1)n+1−3)

which is oscillatory and hence y(n) is not decreasing.
The above observation in this article by using a different

method, first we obtain a relation between y(n) and z(n) when
z(n) is positive and decreasing, then using this relation we
establish new oscillation criteria ensuring all solutions of (E)
are oscillatory. Thus, the results presented in this article are
new and complement to the existing results reported in the
literature. The article we are provided to other examples and
showed in the importance of the main results.

2. Main Results
In this section, we present sufficient conditions for the

oscillation of all solutions of (E). We may deal only with the
positive solutions(PS) of (E) since the proof for the negative
case is similar. We begin with the following lemma, these
lemmas gives the basic properties of nonoscillatory, let us say
PS of (E).

Lemma 2.1. Let {y(n)} be a PS of (E). Then there are only
two cases for the corresponding sequence {z(n)}
(I) z(n)> 0, ∆z(n)< 0, ∆(h(n)∆z(n))> 0,

∆(g(n)(∆(h(n)∆z(n)))α)< 0;

(II) z(n)> 0, ∆z(n)> 0, ∆(h(n)∆z(n))> 0,
∆(g(n)(∆(h(n)∆z(n)))α)< 0,

eventually.

Proof. The proof is standard, and also similar to that of [10,
Lemma 2.1] and thus is excluded.

Lemma 2.2. Let {y(n)} be a PS of (E) and z(n) satisfies Case
(II) of Lemma 2.1. Then

y(n+1)≥ (1− e(n+1))z(n− k) (2.1)

for all n≥ N ∈ N(n0).

Proof. The proof is similar to that of in [12, Lemma 2.2], and
thus excluded.

Our convenience, let us define

G(n) =
n−1

∑
s=N

1

g
1
α (s)

, H(n) =
n−1

∑
s=N

G(s)
h(s)

,

Q(n) =
1

h(n)

∞

∑
s=n

(
1

g(s)

∞

∑
t=s

f (t)
) 1

α

,

and

φ(n) =
n

∏
s=n−k

(
1

1+Q(s)

)
, ψ(n) = (φ(n)− e(n+1))

for all N ∈ N(n0).

Lemma 2.3. Let {y(n)} be a positive solution of (E) with
{z(n)} satisfies Case (I) of Lemma 2.1. Then

z(n+1)≥ φ(n)z(n− k) (2.2)

for all n≥ N ∈ N(n0).

Proof. Assume that {y(n)} is a PS of (E) with the corre-
sponding sequence {z(n)} belongs to Case (I) of Lemma
2.1. Then it is easy to verify that limn→∞ h(n)∆z(n) = 0, and
limn→∞ g(n)(∆(h(n)∆z(n)))α = 0. Thus, a summation of (E)
yields

g(n)(∆(h(n)∆z(n)))α =
∞

∑
s=n

f (s)yα(s+1)

≤
∞

∑
s=n

f (s)zα(s+1)

≤ zα(n+1)
∞

∑
s=n

f (s). (2.3)

Summing up again, one obtains

h(n)∆z(n)≥−z(n+1)
∞

∑
s=n

(
1

g(s)

∞

∑
t=s

f (t)
) 1

α

,

or
∆z(n)≥−Q(n)z(n+1).

Hence
z(n+1)

z(n)
≥ 1

1+Q(n)
.

Summing the above inequality from n− k to n, we have

z(n+1)≥ φ(n)z(n− k)

for all n≥ N ∈ N(n0). This completes the proof.

Lemma 2.4. Assume that z(n) satisfies Case (II) of Lemma
2.1 for all n≥ N ∈ N(n0). Then

∆z(n)≥ G(n)
h(n)

g
1
α (n)∆(h(n)∆z(n)), (2.4)

z(n)≥ H(n)g
1
α (n)∆(h(n)∆z(n)), (2.5)

and

z(n− k)≥ H(n− k)
h(n)∆z(n)

G(n)
, (2.6)

for all n≥ N.

Proof. The proof is similar to that of Lemma 2.5 of [11] and
Lemma 2.4 of [11] and hence the details are omitted.

Now, we prove our main results.
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Theorem 2.5. If both the first order delay DE

∆w(n)+
f (n)ψα(n)

F(n)
w(n− k) = 0, (2.7)

and

∆x(n)+ f (n)(1−e(n+1))α Hα(n−k)x(n−k) = 0 (2.8)

where F(n) = ∑
∞
s=n−k f (s), is oscillatory, then equation (E) is

oscillatory.

Proof. Let {y(n)} be a PS of (E). Then there is an integer
N ∈ N(n0) such that y(n)> 0 and y(n− k)> 0 for all n≥ N.
From the definition of z(n), we have z(n)> 0 and it satisfies
two cases of Lemma 2.1 for all n≥ N.
Case (I) The definition of z(n) and Lemma 2.3, we have

y(n+1)≥ z(n+1)−e(n+1)z(n+1−k)≥ψ(n)z(n−k)

(2.9)

for all n≥ N. Using (2.9) in (E), we obtain

∆(g(n)(∆(h(n)∆z(n)))α)+ f (n)ψα(n)zα(n−k)≤ 0, n≥N.

(2.10)

From (2.3), we have

zα(n)
∞

∑
s=n

f (s)≥ zα(n+1)
∞

∑
s=n

f (s)≥ g(n)(∆(h(n)∆z(n)))α

and using this in (2.10), we obtain

∆(g(n)(∆(h(n)∆z(n)))α)

+
f (n)ψα(n)

∑
∞
s=n−k f (s)

g(n− k)(∆(h(n− k)∆z(n− k)))α ≤ 0.

Let w(n) = g(n)(∆(h(n)∆z(n)))α > 0 be a PS of the inequal-
ity

∆w(n)+
f (n)ψα(n)

F(n)
w(n− k)≤ 0.

But by Lemma 5 of Section 2 in [7] =⇒ that the corresponding
difference equation (2.7) also has a PS, which is =⇒⇐=.
Case(II) Using (2.1) in (E), we obtain

∆(g(n)(∆(h(n)∆z(n)))α)+ f (n)(1−e(n+1))α zα(n−k)≤ 0
(2.11)

for n≥ N. In view of (2.5), one obtains

zα(n−k)≥Hα(n−k)g(n−k)(∆(h(n−k)∆z(n−k)))α , n≥N.

(2.12)

Combining (2.11) and (2.12) yields

∆(g(n)(∆(h(n)∆z(n)))α)+ f (n)(1− e(n+1))α Hα(n− k)

g(n− k)(∆(h(n− k)∆z(n− k)))α ≤ 0,

for n ≥ N. Let x(n) = g(n)(∆(h(n)∆z(n)))α > 0. Then, we
see that {x(n)} is a PS of the inequality

∆x(n)+ f (n)ψα(n)Hα(n− k)x(n− k)≤ 0.

But by Lemma 5 of Section 2 in [7] =⇒ that the corresponding
difference equation (2.8) also has a PS, which is =⇒⇐=. This
completes the proof.

Corollary 2.6. If

lim
n→∞

inf
n−1

∑
s=n−k

f (s)
F(s)

ψ
α(s)>

(
k

k+1

)k+1

, (2.13)

and

lim
n→∞

inf
n−1

∑
s=n−k

f (s)(1−e(s+1))α Hα(s−k)>
(

k
k+1

)k+1

(2.14)

are hold, then (E) oscillates.

Proof. The proof follows from Theorem 7.6.1 of [5] and The-
orem 2.5 and hence the details are excluded.

Theorem 2.7. Assume that there exists a positive nondecreas-
ing real sequence {ρ(n)} such that

lim
n→∞

sup
n

∑
s=N

[
ρ(s) f (s)(1− e(s+1))α Hα(s− k)

Gα(s)

− g(s)(∆ρ(s))α+1

(α +1)α+1ρα(s)

]
= ∞, (2.15)

and

lim
n→∞

sup
n+k

∑
t=n

 1
h(t)

(
1

g(s)

t

∑
i=s

f (i)ψα(i)

) 1
α

> 1 (2.16)

for all n≥ N ∈ N(n0), then (E) oscillates.

Proof. Let {y(n)} be a PS of (E). Then the integer N ∈N(n0)
such that y(n) > 0 and y(n− k) > 0 for all n ≥ N. The defi-
nition of z(n), we have z(n)> 0 and it satisfies two cases of
Lemma 2.1 for all n≥ N.
Case(I) Summing (2.10) from n to j, we obtain

g( j+1)(∆(h( j+1)∆z( j+1)))α

−g(n)(∆(h(n)∆z(n)))α +
j

∑
t=n

f (t)ψα(t)zα(t− k)≤ 0.

Since {g( j)(∆(h( j)∆z( j)))α} is positive and decreasing, the
above inequality implies that, as j→ ∞,

−∆(h(n)∆z(n))+

(
1

g(n)

j

∑
t=n

f (t)ψα(t)zα(t− k)

) 1
α

≤ 0.
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Summing up again from n to j and rearranging, we obtain

−h( j+1)∆z( j+1)+h(n)∆z(n)

+
j

∑
t=n

(
1

g(t)

t

∑
s=n

f (s)ψα(s)
) 1

α

z(t− k)≤ 0.

Since {∆z( j)} is negative and h( j)∆z( j) is increasing, as j→
∞, we have

∆z(n)+
1

h(n)

j

∑
t=n

(
1

g(t)

t

∑
s=n

f (s)ψα(s)
) 1

α

z(t− k)≤ 0.

Summing the last inequality from n to j and rearranging, we
obtain

z( j+1)− z(n)

+
j

∑
t=n

 1
h(t)

t

∑
s=n

(
1

g(s)

t

∑
i=s

f (i)ψα(i)

) 1
α

z(t− k)

≤ 0.

Since {z(n)} is positive and decreasing, the last inequality

j

∑
t=n

 1
h(t)

t

∑
s=n

(
1

g(s)

t

∑
i=s

f (i)ψα(i)

) 1
α

z(t− k)≤ z(n),

or

n+k

∑
t=n

 1
h(t)

t

∑
s=n

(
1

g(s)

t

∑
i=s

f (i)ψα(i)

) 1
α

≤ 1

which =⇒⇐= (2.16) as n→ ∞.
Case(II) Define

w(n) =
ρ(n)g(n)(∆(h(n)∆z(n)))α

(h(n)∆z(n))α
, n≥ N. (2.17)

Then w(n)> 0 for all n≥ N, and

∆w(n) =
∆ρ(n)

ρ(n+1)
w(n+1)

+ρ(n)
∆(g(n)(∆(h(n)∆z(n)))α)

(h(n)∆z(n))α

−ρ(n)
g(n+1)(∆(h(n+1)∆z(n+1)))α

(h(n+1)∆z(n+1))α(h(n)∆z(n))α

∆(h(n)∆z(n))α . (2.18)

Using (2.6) in (2.11), we obtain

∆(g(n)(∆(h(n)∆z(n)))α)+ f (n)(1− e(n+1))α

Hα(n− k)
Gα(n)

(h(n)∆z(n))α ≤ 0. (2.19)

In view of (2.19), (2.18) becomes

∆w(n) ≤ ∆ρ(n)
ρ(n+1)

w(n+1)

−ρ(n) f (n)(1− e(n+1))α Hα(n− k)
Gα(n)

− ρ(n)
ρ(n+1)

w(n+1)
∆(h(n)∆z(n))α

(h(n)∆z(n))α
, n≥ N.

(2.20)

By discrete Mean-Value theorem

∆(h(n)∆z(n))α = α
tα

t
∆(h(n)∆z(n)),

h(n)∆z(n)< t < h(n+1)∆z(n+1)

and hence

∆(h(n)∆z(n))≥ α
(h(n)∆z(n))α

h(n+1)∆z(n+1)
∆(h(n)∆z(n)), n≥ N.

Using the last inequality in (2.20), and this in view of (2.17)
we obtain

∆w(n) ≤ ∆ρ(n)
ρ(n+1)

w(n+1)

−ρ(n) f (n)(1− e(n+1))α Hα(n− k)
Gα(n)

−α
ρ(n)

ρ
1+ 1

α (n+1)g
1
α (n)

w1+ 1
α (n+1), n≥ N,

(2.21)

where we have used g
1
α (n)∆(h(n)∆z(n)) is positive and de-

creasing. Now we obtain

Cu−Du1+ 1
α ≤ αα

(α +1)α+1
Cα+1

Dα
, D > 0

in (2.21), with C = ∆ρ(n)
ρ(n+1) and D = α

ρ(n)

ρ
1+ 1

α (n+1)g
1
α (n)

, we ob-

tain

∆w(n) ≤ −ρ(n) f (n)(1− e(n+1))α Hα(n− k)
Gα(n)

+
g(n)(∆ρ(n))α+1

(α +1)α+1ρα(n)
, n≥ N.

Summing the last inequality from N to n, one gets

n

∑
s=N

[
ρ(s) f (s)(1− e(s+1))α Hα(s− k)

Gα(s)

− g(s)(∆ρ(s))α+1

(α +1)α+1ρα(s)

]
< w(N)< ∞

which =⇒⇐= (2.15). This completes the proof.
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3. Conclusion
This article, we obtain the new oscillation criteria for (E)

using delay argument in the neutral term, when 0 ≤ e(n) ≤
p < 1 and α ∈ (0,∞). The obtain results ensure that all solu-
tions are oscillatory. Compare to other results is improve in
the sense that the existing results for the case 0≤ e(n)≤ p< 1
provided the solutions are either oscillatory or tends to zero.
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