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The lattice of pre-complements of a classic interval
valued fuzzy graph
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Abstract

We prove that a complement Interval Valued Fuzzy Graph (IVFG), unlike the crisp and fuzzy cases, may
have several non-isomorphic pre-complements. We introduce the notion of complement numbers, and show
that, by assigning complement numbers to the edges of a complement IVFG, we can ensure uniqueness of
pre-complement. We introduce the concepts superior pre-complement 4* and inferior pre-complement ¥, for
any given classic IVFG ¢. A partial order ; is defined on &2 = C~'(¢), the collection of all pre-complements of
4. It is proved that (£, % ) is a lattice with ¢* as the greatest element and ¥, as the least element. We derive a
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1. Introduction

In 1736, Euler who solved the Konigsberg bridge prob-
lem laid the foundation of Graph theory. It has grown into a
significant area of mathematical research, with applications
in chemistry, operations research, social sciences, computer
science, etc. In 1965, L. A. Zadeh [15] introduced the no-
tion of fuzzy set and in 1975, Rosenfeld [3] used the idea of
fuzzy set to develop the concept fuzzy graph. Mordeson and
Peng [14] defined the concept of complement of fuzzy graph
and described some operations on fuzzy graphs. In [22], the
definition of complement of a fuzzy graph was modified so
that the complement of the complement is the original fuzzy

graph, which agrees with the crisp graph case. In [16], Zadeh
extended the concept of fuzzy sets to interval valued fuzzy sets
, in which the values of the membership degree are intervals
of numbers instead of fixed numbers between 0 and 1. Ju
and Wang gave the definition of interval-valued fuzzy graph
(IVFG) in [9]. Akram et al. ([17] - [21]) introduced many new
concepts including bipolar fuzzy graphs, interval-valued line
fuzzy graphs, and strong intuitionistic fuzzy graphs. [2], [12],
[24] are some recent works in this area. In [1] complement of
interval valued fuzzy graphs was defined as an extension of
complement fuzzy graph [22].

We observed that the definition of complement of IVFG
in [1] does not work in all cases and so redefined the concept
in [5]. Some properties of the new definition was studied in
[4] and [6]. It was noted that several non-isomorphic IVFGs
provide the same complement. To overcome this limitation
we introduced the notion of complement number of an edge
in [6] and proved that by assigning complement numbers
to the edges of a complement IVFG, we can ensure unique-
ness of pre-complement. In this paper, we give a necessary
and sufficient condition for a complement IVFG to have a
unique pre-complement, without using complement numbers.
We observe that a given classic IVFG ¢ may have a unique
or infinitely many pre-complements. We construct two spe-
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cial pre-complements ¢* and ¥, for a classic IVFG ¢. The
notation & = C~(¥) is used for the collection of all pre-
complements of . We define a partial order % on &, and
prove that (&2, % ) is a lattice with &* as greatest element and
9, as least element. We have proved that the lattice (<7, %
) becomes a chain if, and only if, & has atmost one edge uv
with real number membership r, where r # min{¥,”, %, }
and ¥, represents the lower end point of the interval mem-
bership of the vertex u.

2. Preliminaries

In this section, we present the basic concepts and results
used in this work. Most of them are well-known, and yet we
include them for the sake of completeness.

Definition 2.1. [7] A relation % on a non-empty set A is
called a partial ordering (or partial order) if it satisfies the
following conditions:

1. Reflexivity (x Z x, for all x € A).
2. Anti-symmetry (XZy and yZx = x =y, for all x,y € A).
3. Transitivity (xZy and yRHz = xXz, for all x,y,z € A).

A set A together with a partial ordering X is called a
partially ordered set (or poset) and is denoted as (A, % ).

Let x and y be the elements of the poset (A, %). Then x and
y are said to comparable if either xZy or yZ%x . Otherwise, x
and y are said to be incomparable. If every two element of a
poset (A, Z) are comparable, we call it a totally ordered set
or a chain.

An element x in the poset (A, %) is said to be the greatest
element if yZx, for all y € A; and the least element if xZy,
forally € A.

Let S be any subset of A. Then x € A is called an upper
bound of S if yZ%x for all y € S; and a lower bound of S if
Xy for all y € S. Let U and L denote the set of all upper
bounds and lower bounds of S, respectively. Then, if there
exist u € U such that u%Zx for all x € U, we say that, u is the
least upper bound (1.u.b) of S and if there exist | € L such that
xZI1 for all x € L, we say that, | is the greatest lower bound
(g.l.b) of S.

We use the notations x Vy and x Ay, respectively, for the
Lu.b and g.1.b of {x,y}.

Definition 2.2. [7] A poset (A,Z) is said to be a lattice if
both xV'y and x \y exist in A for all x,y € A.

Definition 2.3. [/3] A graph (or crisp graph) is defined as
a pair G = (V,E) consisting of a non-empty finite set V of
elements called vertices and a finite set E of elements called
edges such that each edge e in E is assigned unordered pair
of vertices (u,v) called the end vertices of e. We can represent
e by uv or vu.

An edge e = uv is called a loop if u = v and two edges e
and f are said to be parallel if they have the same end vertices.
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A graph with no loops and parallel edges is called a simple
graph.

The complement G of a simple graph G is defined as the
simple graph with the same vertex set as G and there is an
edge connecting vertices u and v if, and only if, there is no
such edge in G.

_ From the above definition it is clear that for any graph G,
G=0G.

Definition 2.4. [8] A fuzzy set A on a set X is character-
ized by a mapping A : X — [0, 1], which is called the mem-
bership function and the fuzzy set A on X is denoted by
A ={(x,.#(x))|x € X}. Here # (x) is called the member-
ship level of x in A.

Definition 2.5. [22] A fuzzy graph Gr = (V,E, ¥ ,&) con-
sists of a non-empty vertex set V together with an edge set E
of all unordered pairs of vertices and a pair of functions V' :
V —=10,1], & : E — [0,1] such that ¥ (u) # 0 for at least one
u€Vand &(uv) <min{¥ (u),¥(v)}, forall uv € E.

The complement of fuzzy graph Gp = (V,E, ¥V ,&) is a
fuzzy graph  Gp = (V,E,7,&) where &w)
=min{¥ (u),V(v)} — & (uv).

Similar to any crisp graph, all fuzzy graphs will satisfy
the property Gr = Gr.

Definition 2.6. [16] An interval valued fuzzy set (IVFS) A
on X is defined by A = {(x,i(x))|x € X} where i is an inter-
val-valued function from X to P|0, 1], set of all subsets of [0, 1],
such that i(x) = [A; ,A]] where 0 < A; <Al < 1. Here i(x)
is called the membership interval of x

Definition 2.7. [9] An interval valued fuzzy graph (IVFG)
& = (V,E,V,&) consists of a non—empty vertex set V to-
gether with an edge set E of all unordered pairs of vertices
and a pair of interval valued functions ¥ and & which satisfy
the following conditions:

1. ¥ :V — P[0, 1] such that ¥V (u) =¥, , ¥, ],0< ¥, <
v <1

2. ¥ (u) # 0 for atleast one u € V.
3. &: E— Pl0,1] such that &(wv) = [&,,,E5],0< &, <

uvo = uy
& <1; and
4. &, <min{¥,;, ¥, } and & < min{¥,", ¥}, for
allu,vev.

Definition 2.8. [11]Letd = (V,E, V&) and 7 = (W,F,0, 1)
be two IVFGs. Then 4 and ¢ are said to be isomorphic if
there exist a bijection h: V — W such that

- — 5 +
1LYy =07

2. &, = llh_(u)h(vyé”jv = ”}Iu)h(v) foranyuv € E.

= G];m foreveryu eV, and

We write 4 = 7 for the statement “¥ is isomorphic to
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3. Complement of an Interval Valued
Fuzzy Graph

The complement of an IVFG ¢ = (V,E, ¥, &) is defined
in [1] as the IVFG ¥ = (V,E, ¥, &) where

Ew) = min {7 F7} = Egumin {V;H Vi — 65
for every edge uv € E. This is a direct extension of the notion
of complement in crisp graph theory and fuzzy complement

in fuzzy graph theory. But it has a serious defect. It does not
apply to all IVFGs.

Example 3.1. Consider the IVFG G given in figure(1).

G : [0.7,0.9] v @ [0.1,0.8]

® v [0.5,1]

Figure 1. An IVFG for which complement cannot be formed
using the definition in [1]

Using the above definition we cannot construct its com-
plement since
min{0.7,0.5} — 0.1 =0.4 > min{0.9,1} — 0.8 =0.1

and so the membership-interval of the edge uv has to be
[0.4,0.1] which is absurd.

So in [5] we have redefined complement of an IVFG as
follows.

Definition 3.2. [5] The complement of IVFG Y = (V,E, V ,&)

isan IVFGG = (V,E, ¥ &) where & (uv) = [, & ]

uvy

[min{%_’%_} - gu_vvmin{%u-i_v 7/\)+} - éau—\t];
ifmin{dj/ui77/v7} - éat[v < min{%¢+7%+} - @@MJ\:

'[min{%l+7 A//ij} - gut’min{ﬂj/j’ 7/v+} - (gaut];
otherwise

Using the above definition, we can form the complement
of every IVFG. For example, the complement of the IVFG G
given in figure(1), whose complement could not be formed
using the definition in [1], is obtained as the IVFG G given in
figure(2)

G : [0.7,09]u @ [0.1,0.1] = 0.1

® v [0.51]

Figure 2. Complement of the IVFG G in figure(1) obtained
using definition(3.2).

Moreover, definition(3.2) generalises the notions of com-
plement and fuzzy complement.
These observations motivate the following definitions.

Definition 3.3. [5] An IVFG 4 = (V,E, ¥ ,&) is called a
classic IVFG if it satisfies the condition
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min{¥,, ¥V, } =&, <min{¥, , ¥, } =&, for all edges
uv € E.

The above condition is called the classic condition. Otherwise
we call it a non-classic IVFG.

Definition3.4. [5]Let Y = (V,E, ¥, &) be an IVFG. Then an
edge uv € E is called a perfect edge if min{¥, , ¥, } — &, <
min{¥, 7, ¥;"} — &} . Otherwise, edge uv € E is called an
imperfect edge.

It may be noted that all edges of a classic IVFG are perfect.
An IVFG is non-classic, if and only if, it has atleast one
imperfect edge.

Throughout this paper, we use the convention that, if the
membership-interval of a vertex is not given, it will be as-
sumed as 1 = [1,1]. Also, if the membership-interval of an
edge is not given, or if an edge is not drawn, its membership-
interval will be assumed as 0 = [0,0]. Intervals of the form
[, 7] represent the real number r and is refered to as a degen-
erate interval.

Example 3.5. Consider the IVFG given in figure(3).

[0.5,0.8]

a [0.1,0.1] b [0.3,0.4]
.,

®n

[0.3,0.4]

d [0.4,0.6]
Figure 3. Example for classic IVFG.
We will show that it is a classic IVFG. The condition for
being classic IVFG is
min{ﬂi/ui? ﬂj/vi} - éol;v < min{%¢+7 /7/\)+} - éaut
for each edge uv. Consider the edges one by one.

1. ab (Memership-interval is [0.1,0.1]) : min {“I/a_,”f/l;} —
&, =min{1,0.5} —0.1=04 <min{¥,", ¥, } &1 =
min{1,0.8} —0.1 =0.7.

2. ac (Not drawn. So, memership-interval is 0 = [0,0]) :
min{¥,, Y.} — & = min{l,1} — 0 = 1
=min{V,", Y} =& =min{1,1} -0=1.

In a similar way, we can verify the property for edges ad,
be, bd and cd. Hence every edge in the IVFG in figure(3) is
perfect, and so it is a classic IVFG.

Next, we will give an example of a non-classic IVFG.

Example 3.6. Consider the edge bc in the IVFG given in
figure(4).



The lattice of pre-complements of a classic interval valued fuzzy graph — 1314/1320

[0.5,0.8]
b c
ak [0.1,0.1] [0.3,0.7] °
[0.3,0.4]
d [0.4,0.6]

Figure 4. Example for non-classic IVFG.

Here, min{ ¥, ,¥,” } — &,. =min{0.5,1} —0.3=0.2 >
min {”f/l)+, "/{'*'} — & =min{0.8,1} —0.7 = 0.1. Therefore
it is an imperfect edge. Hence the IVFG in figure(4) is non-
classic.

Remark 3.7. In the case of crisp and fuzzy graphs, for a given
complement graph [fuzzy graph], we can uniquely find the
original graph [fuzzy graph] for which the complement was
formed. But in the case of IVFGs, the situation is different.

Let ¢ be an IVFG and ¢ be its complement. Then we
shall refer to & as the pre-complement of 4. For a given IVFG
there is a unique complement. But for a given complement
IVFG there may be several non-isomorphic pre-complements.

Example 3.8. Consider the IVFGs G and 7€ given in fig-

ure(5).
[0.5,0.8] b
a
g . 2 [0.3,0.7] b
[0.5,0.8] .
L] a . -
H : H [0.2,0.7] o

Figure 5. Two non-isomorphic IVFGs having the same
complement.

They are obviuosly non-isomorphic. But they have the
same complement IVFG given in figure(6).

[0.5,0.8]
— b
g - H . : [0.1,0.1] °

Figure 6. Complement of the IVFGs given in figure(5)

Hence G and 7 are non-isomorphic pre-complements of
the IVFG in figure(6).

It may be noted that the IVFGs in figure(5) are non-classic.
But the complement IVFG in figure(6) is classic. We have
proved the following results in [5].

Theorem 3.9. [5] For any IVFG ¥, 4 is a classic IVFG.
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Theorem 3.10. [5] An IVFG ¥ is classic if and only zf? =9.

In view of theorem(3.9), we can say that, only classic
IVFGs can have pre-complement. Moreover, for every clas-
sic IVFG, we can make at least one pre-complement. This
observation gives us the following result.

Proposition 3.11. An IVFG has pre-complement if and only
if it is classic.

Proof. Straight forward O

4. Complement numbers and
pre-complements

In the previous section, we have seen that, a given comple-
ment IVFG may have several pre-complements. In the present
section we introduce an extra feature which can ensure unique-
ness of pre-complement.

Definition 4.1. [6] Let 4 = (V,E, ¥, &) be an IVFG and
&G = (V,E,¥,&) be its complement. Then the complement
number of an edge uv in G w.r.t. 4, denoted as cfv or simply
Cuy, 18 defined as

Con = {mln{%A?%} _éou;a

0, otherwise

if uv is an imperfect edge of ¢

In this section, if ¢, is not given for an edge uv of a
complement IVFG, we will assume that its complement num-
ber is 0. When a complement IVFG is given, along with
complement numbers of edges, we will call it a numbered
complement.

Example 4.2. Consider the non-isomorphic IVFGs 4 and
I in figure(5) having the same complement given in figure(6).
Their numbered complements are given in figure(7)

[0.5,0.8]

G: o

[0.5,0.8]
= 7 a

H

Figure 7. Numbered complements of the IVFGs in figure(5).

0.1,0.1],c., =02 P
[ I, cab o

0.1,0.1],ca, =03 P
[ I, cab o

We observe that they differ only in complement numbers.

A numbered complement has a unique pre-complement.
In [6], we have given a method to obtain the unique pre-
complement when a numbered complement is given. This
method is summarized in the following theorem.

Theorem 4.3. [6] Let any complement graphd = (V,E, V', &)
along with the complement numbers of each edge be given.

N %,
= 7

(N
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Then the unique IVFG from which 9 is made is
4G = (V,E, ¥ ,&) where

min {4,797} = cuvymin (V1) =8 ),
if cw #0

min {4,797} = E umin (4,15} = 8,
ifcuv =0

Example 4.4. Consider the complement IVFG given in fig-

ure(8). By using theorem(4.3), we can determine the IVFG
4G = (V,E, ¥ ,&) from which this complement is made.

éiw =

[0.50.8] a [0.1,0.1],c.,=02 P

Cac = 0.49,[0.45, 0.45]

¢[0.6,0.7]
Figure 8. A numbered complement IVFG.

Here, &(ab) = [0.1,0.1] with ¢, = 0.2. So,

&(ab) = [min{0.5,1} —0.2,min{0.8,1} —0.1]
=[0.5-0.2,0.8—0.1] =[0.3,0.7].

Similarly, & (ac) = [0.5—0.49,0.7 — 0.45] = [0.01,0.25].
Since cp, is not given we consider it as zero and hence & (bc) =
[0.6—0.3,0.7—0.5] = [0.15,0.2].

Hence we get its pre-complement as the IVFG in figure(9).

[0.5,0.8] a [0.3,0.7] b

[0.01,0.25]

c[0.6,0.7]

Figure 9. The unique pre-complement of the numbered
complement IVFG in figure(8)

It can be easily verified that the complement of IVFG
in figure(9) is the numbered complement IVFG given in fig-
ure(8).

Remark 4.5. In theorem(3.9), we have seen that the comple-
ment of any IVFG is classic. Conversely, any classic IVFG
is the complement of some IVFG. For example, consider any
classic IVFG 4. We can assign complement numbers 0 to
its edges and form a particular pre-complement for it, using
the technique given in theorem(4.3), with & in the formula
replaced by &.
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Example 4.6. Consider the classic IVFG G given in fig-
ure(10).

a [0.4,0.6]

G : [0.1,0.4] [0.2,0.5]

[0.2,0.9] b ¢ [0.3,0.8]

[0.1,0.7]

Figure 10. A classic IVFG for which pre-complement is
formed in figure(11)

Assuming the complement numbers of all its edges as 0,
we can form the pre-complement given in figure(11) for it.

a [0.4,0.6]

H : [0.1,0.2] [0.1,0.1]

[0.2,0.9] b ¢ [0.3,0.8]

[0.1,0.1]

Figure 11. A pre-complement of the classic IVFG in
figure(10)

One can easily verify that H = G; and hence H is a pre-
complement of G.

We have the following results regarding complement num-
bers.

Proposition4.7. [6] Letd = (V,E, V', &) be any IVFG. Then
in¥=(V,E,¥,&)

cuy = 0< uv is a perfect edge of 4.

Proposition 4.8. [6] Let & (uv) = [g;v,g:v] for an edge uv

in9g = (V,E,7,&). Then either c,, = 0 or ?:V < cp <
min (¥, ¥}

Now we give a necessary and sufficient condition for a
complement IVFG to have a unique pre-complement.

Theorem 4.9. Let G = (V,E, ¥ ,&) be any complement IVFG.
Then ¢ has a unique pre-complement if, and only if, for any
uv € E with & (uv) = r, a real number, then r =min{¥,”, ¥, }.

Proof. Let uv € E such that &(uv) = [£,,, &1 ] = r € [0,1].
Then r = min{¥,, ¥, }. Hence by proposition(4.8), ¢, = 0.

Let uv € E such that &(w) = [£,,,&..] #r € [0, 1].

= min{”f/Lf? /y/vi} - gu; < min{"f/f, nj/v+} - gut’ by defi-
nition(3.2).

= uv is a perfect edge, by definition(3.4).

= ¢,y = 0, by proposition(4.7).

Hence c,, = 0 for all uv € E and so by theorem(4.3), we
can uniquely determine an IVFG whose complement is ¢.



The lattice of pre-complements of a classic interval valued fuzzy graph — 1316/1320

To prove the converse part, it is enough to show that if
there exist uv € E such that & (uv) = [&, g:‘,] =re|0,1] but

uv?

r# min{¥,", ¥, }, then there exist infinitely many IVFGs
whose complement is 4.

Let uv € E such that &(uwv) = [£,,, & ] = r € [0,1] but
r # min{¥,”,%,”}. Then by proposition(4.8), ¢,, = 0 or
r<cy <min{¥,,%,}. Since r # min{¥,”, ¥, }, cu has
infinitely many choices and hence, by theorem(4.3), corre-
sponding to each collection of complement numbers, we will
get an IVFG whose complement is ¢. O

Corollary 4.10. Let 4 = (V,E, V' ,&) be any complement
IVFG and & (uv) = (&, & 14 re0,1) foralluv € E. Then
4 has a unique pre-complement, and it will be a classic IVFG.

Corollary 4.11. Any classic IVFG 4 = (V,E, V' ,&) has a
unique pre-complement if, and only if, for any uv € E with
&(uv) = r, a real number, then r = min{¥,”, 7, }.

Corollary 4.12. A classic IVFGY = (V,E, ¥V ,&) with & (uv) #

r €[0,1), for every edge uv € E, has a unique pre-complement,
which also is a classic IVFG.

5. The lattice of pre-complements

We have observed that a given complement IVFG may
have a unique or several pre-complements. The same is true
for a classic IVFG also. Let C~!(%) denote the collection of
pre-complements of a classic IVFG ¢. In this section, we
denote C~'(¥) by .

Definition 5.1. Let ¥ = (V,E, ¥, &) be any classic IVFG.
Then the pre-complement of & obtained by assigning c,, =0
to all edges uv € E is called the superior pre-complement of
¢ and is denoted as G*.

The pre-complement of ¢ obtained by assigning the com-
plement numbers

if &(uv) # r, a real number

0,
C =
“ {min {¥,7, 7}, otherwise
to each edge uv € E is called the inferior pre-complement of
4. It is denoted as Y..

Example 5.2. The IVFG H in figure(11) is the pre-complement
obtained by assigning the complement number 0 to each edge
of the IVFG G in figure(10). Therefore, H = G*.

Now, to make G, since all edges have non-degenerate
membership intervals, we have to assign complement number
0 to each edge, and form the pre-complement. Hence G, =
G*=H.

Remark 5.3. If¥ is a classic IVFG whose each edge has a
membership interval, which is not degenerate, then G, = G*.

Example 5.4. Consider the classic IVFG in figure(12).
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[0.5,0.8] a [0.1,0.1] b

[0.45,0.45]

¢[0.6,0.7]

Figure 12. A classic IVFG with non-degenerate membership
interval for an edge.

Assigning complement number 0 to each edge and forming
its pre-complement, we get the IVFG in figure(13)

[0.5,0.8] a [0.4,0.7] b

[0.05,0.25]

¢[0.6,0.7]

Figure 13. Superior pre-complement for the IVFG in
figure(12).

Now, we proceed to make 9. First we assign complement
numbers ¢ = min{0.5,1} = 0.5, ¢ =min{0.5,0.6} = 0.5,
cac = 0 and then form the pre-complement. Then we get the
IVFG in figure(14) as 9.

[0.5,0.8] a [0,0.7] b

[0,0.25]

¢[0.6,0.7]

Figure 14. Inferior pre-complement of the IVFG in
figure(12).

Here in ¢, the membership interval is non-degenerate for
one edge; and so ¥* # ¥,

Remark 5.5. .

1. If 9 has at least one edge whose membership interval
is not degenerate, then 9* #+ 9.

2. For every classic IVFG ¥, 9* and 9, are uniquely
formed.

3. Using theorem(4.3), we can rewrite the definitions of ¢*
and 9, directly without involving complement numbers,
as follows.

Let 9 = (V.E, ¥ ,&) be any classic IVFG. Then
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(a) 4* = (V,E,V,&*) where for every edge uv € E
E*(wv) =
[min{/y/uivni/vi}7gu;7min{7/u+77/v+}7@@1;]

(b) 4. = (V,E, ¥V &) where for each edge uv € E
& (uv) =

[min{%_v %_} - ‘gu;amin {7/u+’ 7/v+} - (g)ut]v
if &(uv) # a real number

[O,I’I’lil’l {A//quv 7/1/+} - r],
if &(uv) = r, a real number

Theorem 5.6. Let ¥ = (V,E, ¥ ,&) be any classic IVFG.
Then 9* = %, if, and only if, for any uv € E with &(uv) =r,
a real number, then r = min{¥,”, ¥, }.

Proof. Let 9* = (V,E,¥,&*) and %, = (V,E, ¥ ,&,). As-
sume, for any uv € E such that &(uwv) = [&,,,65] =1 €
[0,1] = r =min{¥,,¥, }. To show that ¥* = ¥,, it is
enough to prove &*(uv) = & (uv) for all uv € E.

Let uv € E such that &(uv) # r € [0,1]. Then by defini-
tion(5.1), ¢Z" =0and ¢ =0. = &*(uwv) = [min { ¥, , ¥, } —
& ymin{ ¥, VT — &) = E(uv), by theorem(4.3).

Now, let uv € E such that &(uv) =r € [0,1]
= r=min{¥,”, ¥, } (given). Then by definition(5.1), ¢/, =
0 and hence, by theorem(4.3)

*

Oy

(uv)

i (9 %)~ g min (95 5 85
= [min {9} —r,min{¥,"  ¥;* } — 1]

= [r—rmin {9, %"} 1]

= [0,min {¥,", ¥} —r]

Case 1. min{¥,, ¥, }=0

By definition(5.1), ¢% = min{¥,,%,"} =0
= Ec(uv) = [min{¥,, "} = &, min {7V, V7 = &1 by

theorem(4.3).
= [mln {7/14_77/»’_} - r7Min {41/14+a ﬂj/v_‘—} - r}
= [min{¥," 9} —min{ ¥,V } min {V; =]
+

= [Ovmin{%+v% }7 ]

Case 2. min{¥,, Y, }#0

By definition(5.1), ¢ = min {¥,", %"} #0

= & (uv) = [min {¥,7, 9,7} — e, min { V7, 1,7} = 65, by
theorem(4.3).

= [0,min {7, 4,7} —r]

Hence &*(uv) = &, (uv) for all uv € E.

Conversely, suppose there exist uv € E such that & (uv) =
(£, &5 =re[0,1] but r £ min{¥,”, ¥, }. To show that
G* £ 9, it is enough to prove &*(uv) # & (uv)
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Case 1. =0
= min{¥,", 7, } =0, by definition(5.1)
= &(uv) =10,8,}] (since 4 is an IVFG, 0 < &, and &, <
min {7, %, })
= &(uv) = 0 (since &(uv) = [&,,,E,5] =1)
= r = 0, which is a contradiction to our assumption r #
min{ V", V7).

Case 2. 240
= ‘g*(uv) = [min{%_a ,7/\/_} _Cﬁvmin{%+v %v-i_} - éaut} , by
theorem(4.3).

= [0,min{¥,", ¥, } —r],by definition(5.1)

Now, by definition(5.1) ¢ = 0.
= & (w) = [min{¥,”, 7"} =&,

Vﬂmin{/yld+ﬂ q//v+} 76;;]’ by
theorem(4.3).

= [min {9} —r,min{¥," ;" } —r]
#[0,min { ¥, 9,5} —r] (since r # min{ ¥, , ;" })

= &*(uv) # &.(uv). Hence proved. O

Corollary 5.7. Let 4 = (V,E, ¥ ,&) be any classic IVFG.
Then ¢ has unique pre-complement if, and only if, §* = ¥,.

We need some more ideas to develop the lattice structure
of # =C1(¥), where ¢ is some classic IVFG.

Definition 5.8. [I10] Let ¢ = (V,E,¥,&) and
H = (V,E,T,%) be two fuzzy graphs. Then J is said
to be a fuzzy partial-subgraph of G if 7 (u) < ¥ (u) for all
ueVand % (uv) < &(uv) forall uv € E.

Definition 5.9. Ler Y = (V,E, ¥V, &) and 7 = (V,E, T, U )
be two IVFGs. Then S€ is said to be a interval valued fuzzy
partial-subgraph (IVFPSG) of 9, denoted as % 9, if it

satisfies the following conditions:
1. 7 <Y and T <Y, forallu € V; and

2. Uy <&, and U5 < &

uv?

foralluv € E.

The following proposition is a direct consequence of defi-
nition(5.9)

Proposition 5.10. For any classic IVFGY = (V,E, ¥V ,&)
1. 9, % G*: and
2. (2, %) is a poset.

Proof. Straight forward O

Proposition 5.11. Let 4 = (V,E, ¥ ,&) be any classic IVFG
and P = C~Y(94). Then G* is the greatest element in the
poset (2, % ).
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Proof. Let9* = (V,E, ¥ ,&*) and let G| = (V,E, ¥ ,&)) be
any IVFG in . To prove Gy 5 4%, it is enough to show that
Ey <, foralluy € E.
By definition(5.1) ¢ = 0, for all uv € E
=&, =min{¥,, ¥, } =&, foralluv € E, by theorem(4.3).
Similarly, co! =0 = &, =min{¥,, ¥, }— &
= & w= g*;v
Now, let uv € E such that cgv‘ #0.
= uv is an imperfect edge of G| and &1, = min{¥, , ¥, } —
&, by proposition(4.7) and by theorem(4.3) respectively.
= Bl = ?Jv (from definitions(3.2 and 3.4)) and &7, =
min{¥,, ¥, } — S
= &1, < ¢4 (since, by proposition(4.8) ?Jv <G and
Elyy = min{"//Lf, %7} - cMGVl
= &, < Sl (since Gy € ?, G, = %) and & ,;v
= min{¥, ¥, } -Gl
= min{¥, ¥, Y —cSl <min{¥,, ¥} =&, and &, =
min{¥,, ¥, } — g,
=81, <&,
Hence &1, < &, for all uv € E, which completes our proof
O

Using similar arguments we can prove the following result.
We state it without proof.

Proposition 5.12. Let ¥ = (V,E, ¥, &) be any classic IVFG
and P = C~1(4). Then 9, is the least element in the poset
(P, 5 ).

Theorem 5.13. Let 4 = (V,E, ¥ ,&) be any classic IVFG
and P = C~1(9). Then the poset (2, 5 ) is a lattice.

Proof. Consider R={uv € E: &(uv) =r € [0,1]}. Let Gy =
(V.E,¥,&) and G, = (V,E, ¥ ,6,) be any two IVFGs in
Z. Define two IVFGs, Gy = (V,E, 7 ,é1) and Gy, =
(V,E, ¥ ,&y) where

8, (wv) &1 (uv), ifuv¢ R
uv) =
t [min{ &1, Erm } ], ifuv €R

and

é if R
By (av) = 1 (uv), - X 1 uv ¢
[max{ &, 620}, 610, ifuv €R

We can easily verify that Gg 5, Grup € &5 G1V G2 = Gy
and G| A G2 = Gg 5. This completes the proof ]

Theorem 5.14. Let 4 = (V,E, ¥V ,&) be any classic IVFG
and P = C~N(Y). Then the poset (2, 5 ) is a chain if,
and only if, there exist atmost one uv € E such that & (uv) =
(&, &8 =r€[0,1] but r # min{¥,”, 7, }.

Proof. Let¥,% € &. Suppose there exist atmost one edge
uv € E such that & (uv) = [£,,,&,5] =r €[0,1] but
r# min{¥,, ¥, } (say) ab. Then for all other uv, either
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Euv) #ror &wv) =rand r=min{¥,”, %, }. We want to
show that ¢ % % or %, % 9.
If &(uv) # r, then ¢,, = 0 (by definitions(3.2, 3.4) and
proposition(4.7)).
If &(uv) = rand r = min{¥,, ¥, }, then either ¢,, =0
or &, < cy <min{¥,”,%, } (by proposition(4.8)).
= ¢y =0.
Now, for edge ab, &(ab) = r but r #min{¥,", %, }.
= capy =00rr <cq <min{¥,,, } (by proposition(4.8)).
Hence we can conclude that :

1. for all edges uv € E — {ab}, ci‘fv‘ =0 and c(;iz, =0; and

G D 23 G
2. ¢ Scporc <cp
=>g2 % 541 or% % gz.
= (32,% ) is a chain.

Conversely, suppose there exist more than one edge uv € E
such that &(uv) = r but r # min{¥,”, 7, } (say) ab and ef.
Then as in proof of sufficient part we can conclude that :

1. eitherc,, =0o0rr) < cyp < min {”f/a_, Y, } where r| =
& (ab); and

2. either ¢,y = 0 or 1y < cep < min{”//e‘,”f/f_}, where
r=:&(ef).

@. [ @,
Choose ¥4,% ¢ & such that c‘fg <c,} and c‘e’]% < c’e’}.

Then %, %\ % and ¢, % %,. Hence (<, % )is not a chain [

Example 5.15. Consider the classic IVFG Y = (V,E, ¥V ,&)
in figure(15).

a [0.1,0.1] b

[1,1] [1,1]

Figure 15. Classic IVFG satisfying the condition in
theorem(5.14)

Here ab is the only edge with &(ab) = 0.1 =r € [0,1]
but r # min{¥, ¥, } since ¥, =¥, = 1. We can make
pre-complements for ¢, by assigning infinitely many comple-
ment numbers to edge ab. Some of the pre-complements are
displayed in figure(16).
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whenc?b=0, ° g* a [09,09] b

[ J
c

a b
G, ° [0.89999, 0.9] -

[ J
c

when Cap = 0.10001,

when Cap= 0.2,

G. a_ [08,09 b

[ J
c

0.3,09] b
[ I 3

| J
c

[0,09] b
-

|
c

[ 1Y

when Cap = 0.7,

[ X

when Cab = 1,

Figure 16. A section of the infinite chain of
pre-complements of the IVFG in figure(15) constructed by
allotting ¢, = 0, ¢4 = 0 and varying values of ¢, as :
cap=0and 0.1 < ¢y < 1.

Obviously they form an infinite chain, with uncountably
many elements, with ¢* as greatest element and 9, as least
element.

Remark 5.16. We can conclude, from remark(5.3), that if
9 is a classic IVFG whose all edges have non-degenerate
intervals as membership intervals, then &2 is the singleton
lattice {9*}. If 9 has exactly one edge uv satisfying the
condition &(uv) =r € [0,1), where r # min{¥,”, ¥, }, then
P is an infinite chain, with uncountable many members, and
having G* as the greatest element and 9, as the least element.
Further, if 9 has more than one edge satisfying the above
condition, then & is just an infinite lattice. It does not become
a chain.

6. Conclusion

This paper is a continuation of our work reported in [4], [5]
and [6]. We begin with a summary of relevant ideas and results
from those papers which are required for a proper understand-
ing of the concepts discussed in this paper. Thus we discuss
our new definition of complement of an interval valued fuzzy
graph(IVFG), the concepts of classic and non-classic IVFGs
and the complement numbers which we have introduced and
developed. We observe that, unlike the crisp and fuzzy cases,
a complement IVFG may have several non-isomorphic pre-
complements. But by assigning complement numbers to its
edges we can ensure uniqueness of pre-complement. It is
proved that an IVFG has a pre-complement if, and only if,
it is classic. In theorem(4.9), we give a necessary and suf-
ficient condition for a general complement IVFG, without
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complement numbers, to have a unique pre-complement; and
in corollary(4.11) we extend it to classic IVFGs.

For any given classic IVFG ¢, we describe a method to
construct its superior pre-complement 4* and inferior pre-
complement ¢,. In theorem(5.6), we obtain a necessary and
sufficient condition for the coincidence of ¢* and ¥,. We
have defined a partial order 5 on & = C~!(%), the collection
of all pre-complements of a classic IVFG ¢, and proved that
(2, % ) is a lattice with ¢* as the greatest element and %,
as the least element. Further, we have proved that (<2, % )
becomes a chain if, and only if, ¢ has atmost one edge uv
such that & (uv) = r € [0,1], where r # min{¥,, ¥, }. We
observe that this is the trivial singleton chain {¢*} when there
is no edge in ¢ satisfying the condition, and an infinite chain,
with uncountably many members, if there is exactly one such
edge. Moreover, we have included several structure revealing
examples and constructions.
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