

https://doi.org/10.26637/MJM0803/0102

The lattice of pre-complements of a classic interval valued fuzzy graph

S. Deepthi Mary Tresa¹, S. Divya Mary Daise² and Shery Fernandez^{3*}

Abstract

We prove that a complement Interval Valued Fuzzy Graph (IVFG), unlike the crisp and fuzzy cases, may have several non-isomorphic pre-complements. We introduce the notion of complement numbers, and show that, by assigning complement numbers to the edges of a complement IVFG, we can ensure uniqueness of pre-complement. We introduce the concepts *superior pre-complement G*[∗] and *inferior pre-complement G*_∗, for any given classic IVFG $\mathscr{G}.$ A partial order $\frac{c}{P}$ is defined on $\mathscr{P}=C^{-1}(\mathscr{G}),$ the collection of all pre-complements of $\mathscr G.$ It is proved that ($\mathscr P,$ $\frac\subset P$) is a lattice with $\mathscr G^*$ as the greatest element and $\mathscr G_*$ as the least element. We derive a necessary and sufficient condition for this lattice to become a chain.

Keywords

Interval Valued Fuzzy Graph, Complement, Complement Number, Lattice.

AMS Subject Classification

05C72, 06B99.

1,2*Department of Mathematics, St. Alberts College, Ernakulam-682018, Kerala, India.*

³*Department of Mathematics, Cochin University of Science and Technology, Ernakulam-682022, Kerala, India.*

***Corresponding author**: ¹ deepthimtresa@gmail.com; ²divyamarydaises@gmail.com; ³sheryfernandezaok@gmail.com

Article History: Received **13** April **2020**; Accepted **19** July **2020** ©2020 MJM.

Contents

1. Introduction

In 1736, Euler who solved the *Königsberg bridge problem* laid the foundation of Graph theory. It has grown into a significant area of mathematical research, with applications in chemistry, operations research, social sciences, computer science, etc. In 1965, L. A. Zadeh [\[15\]](#page-9-0) introduced the notion of *fuzzy set* and in 1975, Rosenfeld [\[3\]](#page-8-2) used the idea of fuzzy set to develop the concept *fuzzy graph*. Mordeson and Peng [\[14\]](#page-9-1) defined the concept of complement of fuzzy graph and described some operations on fuzzy graphs. In [\[22\]](#page-9-2), the definition of complement of a fuzzy graph was modified so that the complement of the complement is the original fuzzy

graph, which agrees with the crisp graph case. In [\[16\]](#page-9-3), Zadeh extended the concept of fuzzy sets to *interval valued fuzzy sets* , in which the values of the membership degree are intervals of numbers instead of fixed numbers between 0 and 1. Ju and Wang gave the definition of interval-valued fuzzy graph (IVFG) in [\[9\]](#page-8-3). Akram et al. $(17] - [21]$ $(17] - [21]$) introduced many new concepts including bipolar fuzzy graphs, interval-valued line fuzzy graphs, and strong intuitionistic fuzzy graphs. [\[2\]](#page-8-4), [\[12\]](#page-9-6), [\[24\]](#page-9-7) are some recent works in this area. In [\[1\]](#page-8-5) *complement of interval valued fuzzy graphs* was defined as an extension of complement fuzzy graph [\[22\]](#page-9-2).

We observed that the definition of complement of IVFG in [\[1\]](#page-8-5) does not work in all cases and so redefined the concept in [\[5\]](#page-8-6). Some properties of the new definition was studied in [\[4\]](#page-8-7) and [\[6\]](#page-8-8). It was noted that several non-isomorphic IVFGs provide the same complement. To overcome this limitation we introduced the notion of *complement number* of an edge in [\[6\]](#page-8-8) and proved that by assigning complement numbers to the edges of a complement IVFG, we can ensure uniqueness of pre-complement. In this paper, we give a necessary and sufficient condition for a complement IVFG to have a unique pre-complement, without using complement numbers. We observe that a given classic IVFG $\mathscr G$ may have a unique or infinitely many pre-complements. We construct two spe-

cial pre-complements \mathscr{G}^* and \mathscr{G}_* for a classic IVFG \mathscr{G} . The notation $\mathscr{P} = C^{-1}(\mathscr{G})$ is used for the collection of all precomplements of \mathscr{G} . We define a partial order $\frac{\subset}{P}$ on \mathscr{P} , and prove that $(\mathscr{P}, \frac{\subseteq}{P})$ is a lattice with \mathscr{G}^* as greatest element and \mathscr{G}_* as least element. We have proved that the lattice $(\mathscr{P}, \frac{\subseteq}{P})$) becomes a chain if, and only if, $\mathscr G$ has atmost one edge *uv* with real number membership *r*, where $r \neq min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}$ and \mathcal{V}_u^- represents the lower end point of the interval membership of the vertex *u*.

2. Preliminaries

In this section, we present the basic concepts and results used in this work. Most of them are well-known, and yet we include them for the sake of completeness.

Definition 2.1. [\[7\]](#page-8-9) A relation \mathcal{R} on a non-empty set A is *called a partial ordering (or partial order) if it satisfies the following conditions:*

- *1. Reflexivity* ($x \mathcal{R} x$, for all $x \in A$).
- *2. Anti-symmetry (xRy and yRx* \Rightarrow *x = y, for all x, y* \in *A).*
- *3. Transitivity (xRy and yRz* \Rightarrow *xRz, for all x,y,z* \in *A).*

A set A together with a partial ordering $\mathcal R$ *is called a partially ordered set* (*or poset*) and is denoted as (A, \mathcal{R}) .

Let x and *y be the elements of the poset* (A, \mathcal{R}) *. Then x* and *y are said to <i>comparable* if either $x \mathcal{R}y$ *or* $y \mathcal{R}x$. Otherwise, x *and y are said to be incomparable. If every two element of a poset* (A, \mathcal{R}) are comparable, we call it a *totally ordered set or a chain.*

An element x in the poset (A,R*) is said to be the greatest element if* $y\Re x$, *for all* $y \in A$ *; and the least element if* $x\Re y$ *, for all* $y \in A$.

Let S be any subset of A. Then $x \in A$ *is called an upper bound of S if* $y\Re x$ *for all* $y \in S$ *; and a lower bound of S if x* $\mathcal{R}y$ *for all* $y \in S$ *. Let U and L denote the set of all upper bounds and lower bounds of S, respectively. Then, if there exist* $u \in U$ *such that* $u\mathcal{R}x$ *for all* $x \in U$ *, we say that,* u *is the least upper bound* $(l.u.b)$ *of S and if there exist* $l \in L$ *such that x* \mathcal{R} *l for all* $x \in L$ *, we say that, l is the greatest lower bound (g.l.b) of S.*

We use the notations $x \vee y$ and $x \wedge y$, respectively, for the l.u.b and g.l.b of $\{x, y\}$.

Definition 2.2. [\[7\]](#page-8-9) A poset (A, \mathcal{R}) is said to be a *lattice* if *both* $x \vee y$ *and* $x \wedge y$ *exist in A for all* $x, y \in A$.

Definition 2.3. *[\[13\]](#page-9-9) A graph (or crisp graph) is defined as a pair* $G = (V, E)$ *consisting of a non-empty finite set V of elements called vertices and a finite set E of elements called edges such that each edge e in E is assigned unordered pair of vertices* (*u*, *v*) *called the end vertices of e. We can represent e by uv or vu.*

An edge $e = uv$ *is called a <i>loop* if $u = v$ *and two edges* e *and f are said to be parallel if they have the same end vertices.* *A graph with no loops and parallel edges is called a simple graph.*

The complement \overline{G} *of a simple graph* G *is defined as the simple graph with the same vertex set as G and there is an edge connecting vertices u and v if, and only if, there is no such edge in G.*

From the above definition it is clear that for any graph *G*, $\overline{\overline{G}} = G$.

Definition 2.4. *[\[8\]](#page-8-10) A fuzzy set A on a set X is characterized by a mapping* $M : X \to [0,1]$ *, which is called the membership function and the fuzzy set A on X is denoted by* $A = \{(x, \mathcal{M}(x)) | x \in X\}$. Here $\mathcal{M}(x)$ is called the member*ship level of x in A.*

Definition 2.5. *[\[22\]](#page-9-2) A fuzzy graph* $G_F = (V, E, \mathcal{V}, \mathcal{E})$ *consists of a non-empty vertex set V together with an edge set E of all unordered pairs of vertices and a pair of functions* V *:* $V \rightarrow [0,1]$ *, E* : $E \rightarrow [0,1]$ *such that* $\mathcal{V}(u) \neq 0$ for at least one $u \in V$ *and* $\mathscr{E}(uv) \leq min\{\mathscr{V}(u), \mathscr{V}(v)\}\text{, for all } uv \in E.$

The complement of fuzzy graph $G_F = (V, E, V, E)$ *is a fuzzy graph* $\overline{G_F}$ = $(V,E,\mathcal{V},\overline{\mathcal{E}})$ *where* $\overline{\mathcal{E}}(uv)$ $= min\{\mathcal{V}(u), \mathcal{V}(v)\} - \mathcal{E}(uv).$

Similar to any crisp graph, all fuzzy graphs will satisfy the property $\overline{\overline{G_F}} = G_F$.

Definition 2.6. *[\[16\]](#page-9-3) An interval valued fuzzy set (IVFS) A on X is defined by* $A = \{(x, i(x)) | x \in X\}$ *where <i>i is an interval–valued function from X to P*[0,1]*, set of all subsets of* [0,1]*, such that* $i(x) = [A_x^-, A_x^+]$ *where* $0 \le A_x^- \le A_x^+ \le 1$ *. Here* $i(x)$ *is called the membership interval of x*

Definition 2.7. *[\[9\]](#page-8-3) An interval valued fuzzy graph (IVFG)* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ consists of a non–empty vertex set V to*gether with an edge set E of all unordered pairs of vertices and a pair of interval valued functions* V *and* E *which satisfy the following conditions:*

- *1.* $\mathcal{V}: V \to P[0,1]$ such that $\mathcal{V}(u) = [\mathcal{V}_u^-, \mathcal{V}_u^+]$, $0 \leq \mathcal{V}_u^- \leq$ $\mathscr{V}_u^+ \leq 1.$
- *2.* $\mathcal{V}(u) \neq 0$ *for atleast one* $u \in V$.
- 3. $\mathcal{E}: E \to P[0,1]$ such that $\mathcal{E}(uv) = [\mathcal{E}_{uv}^-, \mathcal{E}_{uv}^+]$, $0 \leq \mathcal{E}_{uv}^-\leq \mathcal{E}_{uv}$ $\mathscr{E}_{uv}^+ \leq 1$ *; and*
- *4.* $\mathscr{E}_{uv}^{-} \leq \min \{ \mathscr{V}_{u}^{-}, \mathscr{V}_{v}^{-} \}$ and $\mathscr{E}_{uv}^{+} \leq \min \{ \mathscr{V}_{u}^{+}, \mathscr{V}_{v}^{+} \}$, for *all* $u, v \in V$.

Definition 2.8. *[\[11\]](#page-8-11) Let* $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ *and* $\mathcal{H} = (W, F, \sigma, \mu)$ *be two IVFGs. Then* $\mathscr G$ *and* $\mathscr H$ *are said to be isomorphic if there exist a bijection h*: $V \rightarrow W$ *such that*

\n- 1.
$$
\mathcal{V}_u^- = \sigma_{h(u)}^-, \mathcal{V}_u^+ = \sigma_{h(u)}^+
$$
 for every $u \in V$; and
\n- 2. $\mathcal{E}_{uv}^- = \mu_{h(u)h(v)}^-$, $\mathcal{E}_{uv}^+ = \mu_{h(u)h(v)}^+$ for any $uv \in E$.
\n

We write $\mathscr{G} \cong \mathscr{H}$ for the statement " \mathscr{G} is isomorphic to H ".

3. Complement of an Interval Valued Fuzzy Graph

The complement of an IVFG $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ is defined in [\[1\]](#page-8-5) as the IVFG $\overline{\mathscr{G}} = (V, E, \mathscr{V}, \overline{\mathscr{E}})$ where

$$
\overline{\mathcal{E}}(uv) = [\min \{ \mathcal{V}_u^-, \mathcal{V}_v^- \} - \mathcal{E}_{uv}^-, \min \{ \mathcal{V}_u^+, \mathcal{V}_v^+ \} - \mathcal{E}_{uv}^+]
$$

for every edge $uv \in E$. This is a direct extension of the notion of *complement* in crisp graph theory and *fuzzy complement* in fuzzy graph theory. But it has a serious defect. It does not apply to all IVFGs.

Example 3.1. *Consider the IVFG G given in figure[\(1\)](#page-2-0).*

$$
G : [0.7, 0.9] \, u \stackrel{[0.1, 0.8]}{\bullet} v \, [0.5, 1]
$$

Figure 1. An IVFG for which complement cannot be formed using the definition in [\[1\]](#page-8-5)

Using the above definition we cannot construct its complement since

$$
min\{0.7, 0.5\} - 0.1 = 0.4 > min\{0.9, 1\} - 0.8 = 0.1
$$

and so the membership-interval of the edge uv has to be [0.4,0.1] *which is absurd.*

So in [\[5\]](#page-8-6) we have redefined complement of an IVFG as follows.

Definition 3.2. *[\[5\]](#page-8-6) The complement of IVFG* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ *is an IVFG* $\overline{\mathscr{G}} = (V, E, \mathscr{V}, \overline{\mathscr{E}})$ *where* $\overline{\mathscr{E}}(uv) = [\overline{\mathscr{E}}_{uv}^-, \overline{\mathscr{E}}_{uv}^+]$

$$
= \left\{\begin{array}{l} \left[\min\left\{\mathscr{V}_{u^-},\mathscr{V}_{v^-}\right\}-\mathscr{E}_{uv}^-, \min\left\{\mathscr{V}_{u^+}^+,\mathscr{V}_{v^+}^+\right\}-\mathscr{E}_{uv}^+\right]; \\ \quad \text{if}\; \min\left\{\mathscr{V}_{u^-},\mathscr{V}_{v^-}\right\}-\mathscr{E}_{uv}^-\leq \min\left\{\mathscr{V}_{u^+},\mathscr{V}_{v^+}^+\right\}-\mathscr{E}_{uv}^+\\ \quad \text{.}[\min\left\{\mathscr{V}_{u^+},\mathscr{V}_{v^+}^+\right\}-\mathscr{E}_{uv}^+,\min\left\{\mathscr{V}_{u^+},\mathscr{V}_{v^+}^+\right\}-\mathscr{E}_{uv}^+]; \\ \quad \text{otherwise} \end{array} \right.
$$

Using the above definition, we can form the complement of every IVFG. For example, the complement of the IVFG *G* given in figure[\(1\)](#page-2-0), whose complement could not be formed using the definition in [\[1\]](#page-8-5), is obtained as the IVFG *G* given in figure (2)

$$
\overline{G} : [0.7, 0.9] u \bullet [0.1, 0.1] = 0.1 \bullet v [0.5, 1]
$$

Figure 2. Complement of the IVFG *G* in figure[\(1\)](#page-2-0) obtained using definition[\(3.2\)](#page-2-2).

Moreover, definition[\(3.2\)](#page-2-2) generalises the notions of complement and fuzzy complement.

These observations motivate the following definitions.

Definition 3.3. [\[5\]](#page-8-6) An IVFG $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ is called a *classic IVFG if it satisfies the condition*

$$
\min \left\{ \mathcal{V}_u^- , \mathcal{V}_v^- \right\} - \mathcal{E}_{uv}^- \le \min \left\{ \mathcal{V}_u^+ , \mathcal{V}_v^+ \right\} - \mathcal{E}_{uv}^+ \text{, for all edges}
$$

$$
uv \in E.
$$

The above condition is called the classic condition. Otherwise we call it a non-classic IVFG.

Definition 3.4. *[\[5\]](#page-8-6)* Let $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ be an IVFG. Then an ℓ *edge* $uv \in E$ *is called a* **perfect edge** *if* $min\{\mathcal{V}_u^-, \mathcal{V}_v^-\} - \mathcal{E}_{uv}^-\leq \mathcal{E}_{uv}$ $min\{\mathcal{V}_u^+,\mathcal{V}_v^+\}-\mathcal{E}_{uv}^+$ *. Otherwise, edge* $uv \in E$ *is called an imperfect edge.*

It may be noted that all edges of a classic IVFG are perfect. An IVFG is non-classic, if and only if, it has atleast one imperfect edge.

Throughout this paper, we use the convention that, if the membership-interval of a vertex is not given, it will be assumed as 1 = [1,1]*. Also, if the membership-interval of an edge is not given, or if an edge is not drawn, its membershipinterval will be assumed as* 0 = [0,0]*. Intervals of the form* [*r*,*r*] *represent the real number r and is refered to as a degenerate interval.*

Example 3.5. *Consider the IVFG given in figure[\(3\)](#page-2-3).*

Figure 3. Example for classic IVFG.

We will show that it is a classic IVFG. The condition for being classic IVFG is

$$
min\{\mathcal{V}_u^-, \mathcal{V}_v^-\} - \mathcal{E}_{uv}^- \leq min\{\mathcal{V}_u^+, \mathcal{V}_v^+\} - \mathcal{E}_{uv}^+
$$

for each edge uv. Consider the edges one by one.

- *1. ab* (Memership-interval is [0.1,0.1]) : $min\{\mathcal{V}_a^-, \mathcal{V}_b^-\}$ \mathscr{E}_{ab}^- = *min* {1,0.5} - 0.1 = 0.4 < *min* { \mathscr{V}_a^+ , \mathscr{V}_b^+ } - \mathscr{E}_{ab}^+ = $min\{1,0.8\}-0.1 = 0.7$.
- 2. *ac* (Not drawn. So, memership-interval is $0 = [0,0]$) : $min\{\mathcal{V}_a^-, \mathcal{V}_c^-\}$ – \mathcal{E}_{ac}^- = $min\{1,1\}$ – 0 = 1 $= min\{\mathcal{V}_a^+, \mathcal{V}_c^+\} - \mathcal{E}_{ac}^+ = min\{1,1\} - 0 = 1.$

In a similar way, we can verify the property for edges ad, bc, bd and cd. Hence every edge in the IVFG in figure[\(3\)](#page-2-3) is perfect, and so it is a classic IVFG.

Next, we will give an example of a non-classic IVFG.

Example 3.6. *Consider the edge bc in the IVFG given in figure[\(4\)](#page-3-1).*

Figure 4. Example for non-classic IVFG.

Here, $\min \{ \mathcal{V}_b^-, \mathcal{V}_c^-\} - \mathcal{E}_{bc}^- = \min \{0.5, 1\} - 0.3 = 0.2 > 0$ $min\{\mathcal{V}_b^+, \mathcal{V}_c^+\} - \mathcal{E}_{bc}^+ = min\{0.8, 1\} - 0.7 = 0.1$ *. Therefore it is an imperfect edge. Hence the IVFG in figure[\(4\)](#page-3-1) is nonclassic.*

Remark 3.7. *In the case of crisp and fuzzy graphs, for a given complement graph [fuzzy graph], we can uniquely find the original graph [fuzzy graph] for which the complement was formed. But in the case of IVFGs, the situation is different.*

Let $\mathscr G$ be an IVFG and $\overline{\mathscr G}$ be its complement. Then we shall refer to $\mathscr G$ as the *pre-complement* of $\overline{\mathscr G}$. For a given IVFG there is a unique complement. But for a given complement IVFG there may be several non-isomorphic pre-complements.

Example 3.8. *Consider the IVFGs* $\mathscr G$ *and* $\mathscr H$ *given in figure[\(5\)](#page-3-2).*

Figure 5. Two non-isomorphic IVFGs having the same complement.

They are obviuosly non-isomorphic. But they have the same complement IVFG given in figure[\(6\)](#page-3-3).

Figure 6. Complement of the IVFGs given in figure[\(5\)](#page-3-2)

Hence G *and* H *are non-isomorphic pre-complements of the IVFG in figure[\(6\)](#page-3-3).*

It may be noted that the IVFGs in figure[\(5\)](#page-3-2) are non-classic. But the complement IVFG in figure[\(6\)](#page-3-3) is classic. We have proved the following results in [\[5\]](#page-8-6).

Theorem 3.9. *[\[5\]](#page-8-6) For any IVFG* \mathscr{G} *,* $\overline{\mathscr{G}}$ *is a classic IVFG.*

Theorem 3.10. *[\[5\]](#page-8-6)* An *IVFG* $\mathscr G$ *is classic if and only if* $\overline{\mathscr G} = \mathscr G$ *.*

In view of theorem (3.9) , we can say that, only classic IVFGs can have pre-complement. Moreover, for every classic IVFG, we can make at least one pre-complement. This observation gives us the following result.

Proposition 3.11. *An IVFG has pre-complement if and only if it is classic.*

Proof. Straight forward

 \Box

4. Complement numbers and pre-complements

In the previous section, we have seen that, a given complement IVFG may have several pre-complements. In the present section we introduce an extra feature which can ensure uniqueness of pre-complement.

Definition 4.1. *[\[6\]](#page-8-8)* Let $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ be an IVFG and $\overline{\mathscr{G}} = (V, E, \mathscr{V}, \overline{\mathscr{E}})$ *be its complement. Then the complement* \bm{n} **umber of an edge** \bm{u} v \bm{in} $\overline{\mathscr{G}}$ **w.r.t.** \mathscr{G} , denoted as $c^{\mathscr{G}}_{uv}$ or simply *cuv, is defined as*

$$
c_{uv} = \begin{cases} \min\left\{\mathcal{V}_u^-, \mathcal{V}_v^-\right\} - \mathcal{E}_{uv}^-, & \text{if } uv \text{ is an imperfect edge of } \mathcal{G} \\ 0, & \text{otherwise} \end{cases}
$$

In this section, if c_{uv} is not given for an edge *uv* of a complement IVFG, we will assume that its complement number is 0. When a complement IVFG is given, along with complement numbers of edges, we will call it a *numbered complement.*

Example 4.2. *Consider the non-isomorphic IVFGs* $\mathscr G$ *and* H *in figure[\(5\)](#page-3-2) having the same complement given in figure[\(6\)](#page-3-3). Their numbered complements are given in figure[\(7\)](#page-3-5)*

Figure 7. Numbered complements of the IVFGs in figure[\(5\)](#page-3-2).

We observe that they differ only in complement numbers.

A numbered complement has a unique pre-complement. In [\[6\]](#page-8-8), we have given a method to obtain the unique precomplement when a numbered complement is given. This method is summarized in the following theorem.

Theorem 4.3. [\[6\]](#page-8-8) Let any complement graph $\overline{\mathscr{G}} = (V, E, \mathscr{V}, \overline{\mathscr{E}})$ *along with the complement numbers of each edge be given.*

Then the unique IVFG from which $\overline{\mathscr{G}}$ *is made is* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ where

$$
\mathcal{E}_{uv} = \begin{cases}\n[\min \{ \mathcal{V}_u^-, \mathcal{V}_v^- \} - c_{uv}, \min \{ \mathcal{V}_u^+, \mathcal{V}_v^+ \} - \overline{\mathcal{E}}_{uv}^+],\\ \quad \text{if } c_{uv} \neq 0\\ \left[\min \{ \mathcal{V}_u^-, \mathcal{V}_v^- \} - \overline{\mathcal{E}}_{uv}^-, \min \{ \mathcal{V}_u^+, \mathcal{V}_v^+ \} - \overline{\mathcal{E}}_{uv}^+ \right],\\ \quad \text{if } c_{uv} = 0\n\end{cases}
$$

Example 4.4. *Consider the complement IVFG given in figure[\(8\)](#page-4-0). By using theorem[\(4.3\)](#page-3-6), we can determine the IVFG* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ *from which this complement is made.*

Figure 8. A numbered complement IVFG.

Here,
$$
\mathcal{E}(ab) = [0.1, 0.1]
$$
 with $c_{ab} = 0.2$. So,
\n $\mathcal{E}(ab) = [min\{0.5, 1\} - 0.2, min\{0.8, 1\} - 0.1]$
\n $= [0.5 - 0.2, 0.8 - 0.1] = [0.3, 0.7].$

Similarly, $\mathcal{E}(ac) = [0.5 - 0.49, 0.7 - 0.45] = [0.01, 0.25]$. *Since* c_{bc} *is not given we consider it as zero and hence* $\mathcal{E}(bc)$ = $[0.6-0.3, 0.7-0.5] = [0.15, 0.2]$.

Hence we get its pre-complement as the IVFG in figure[\(9\)](#page-4-1).

Figure 9. The unique pre-complement of the numbered complement IVFG in figure[\(8\)](#page-4-0)

It can be easily verified that the complement of IVFG in figure[\(9\)](#page-4-1) is the numbered complement IVFG given in fig- $ure(8)$ $ure(8)$.

Remark 4.5. *In theorem[\(3.9\)](#page-3-4), we have seen that the complement of any IVFG is classic. Conversely, any classic IVFG is the complement of some IVFG. For example, consider any classic IVFG* G *. We can assign complement numbers 0 to its edges and form a particular pre-complement for it, using the technique given in theorem* (4.3) *, with* $\overline{\mathscr{E}}$ *in the formula replaced by* $\mathscr E$ *.*

Example 4.6. *Consider the classic IVFG G given in figure[\(10\)](#page-4-2).*

Figure 10. A classic IVFG for which pre-complement is formed in figure[\(11\)](#page-4-3)

Assuming the complement numbers of all its edges as 0, we can form the pre-complement given in figure[\(11\)](#page-4-3) for it.

Figure 11. A pre-complement of the classic IVFG in figure[\(10\)](#page-4-2)

One can easily verify that $\overline{H} = G$; and hence H is a pre*complement of G.*

We have the following results regarding complement numbers.

Proposition 4.7. *[\[6\]](#page-8-8) Let* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ *be any IVFG. Then* $in \overline{\mathscr{G}} = (V.E, \mathscr{V}, \overline{\mathscr{E}})$

 $c_{uv} = 0 \Leftrightarrow uv$ *is a perfect edge of* \mathscr{G} *.*

Proposition 4.8. *[\[6\]](#page-8-8)* Let $\overline{\mathscr{E}}(uv) = [\overline{\mathscr{E}}_{uv}^-, \overline{\mathscr{E}}_{uv}^+]$ for an edge *uv* $\overline{\mathscr{G}}$ = $(V, E, \mathscr{V}, \overline{\mathscr{E}})$ *. Then either* $c_{uv} = 0$ or $\overline{\mathscr{E}}_{uv}^+ < c_{uv} \leq$ *min* { \mathcal{V}_u^- , \mathcal{V}_v^- }*.*

Now we give a necessary and sufficient condition for a complement IVFG to have a unique pre-complement.

Theorem 4.9. *Let* $\overline{\mathscr{G}} = (V, E, \mathscr{V}, \overline{\mathscr{E}})$ *be any complement IVFG. Then* $\overline{\mathscr{G}}$ *has a unique pre-complement if, and only if, for any* $uv \in E$ with $\overline{\mathscr{E}}(uv) = r$, a real number, then $r = min\{\mathscr{V}_u^-, \mathscr{V}_v^-\}.$

Proof. Let $uv \in E$ such that $\overline{\mathscr{E}}(uv) = [\overline{\mathscr{E}}_{uv}^-, \overline{\mathscr{E}}_{uv}^+] = r \in [0,1].$ Then $r = min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}$. Hence by proposition[\(4.8\)](#page-4-4), $c_{uv} = 0$.

Let $uv \in E$ such that $\overline{\mathscr{E}}(uv) = [\overline{\mathscr{E}}_{uv}^-, \overline{\mathscr{E}}_{uv}^+] \neq r \in [0,1].$

 $\Rightarrow min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}-\mathcal{E}_{uv}^-\leq min\{\mathcal{V}_u^+, \mathcal{V}_v^+\}-\mathcal{E}_{uv}^+,$ by defi-nition[\(3.2\)](#page-2-2).

 $\Rightarrow uv$ is a perfect edge, by definition[\(3.4\)](#page-2-4).

 \Rightarrow $c_{uv} = 0$, by proposition[\(4.7\)](#page-4-5).

Hence $c_{uv} = 0$ for all $uv \in E$ and so by theorem[\(4.3\)](#page-3-6), we can uniquely determine an IVFG whose complement is $\overline{\mathscr{G}}$.

To prove the converse part, it is enough to show that if there exist $uv \in E$ such that $\overline{\mathscr{E}}(uv) = [\overline{\mathscr{E}}_{uv}^-, \overline{\mathscr{E}}_{uv}^+] = r \in [0,1]$ but $r \neq min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}$, then there exist infinitely many IVFGs whose complement is $\overline{\mathscr{G}}$.

Let $uv \in E$ such that $\overline{\mathscr{E}}(uv) = [\overline{\mathscr{E}}_{uv}^-, \overline{\mathscr{E}}_{uv}^+] = r \in [0,1]$ but $r \neq min{\lbrace \mathcal{V}_u^-, \mathcal{V}_v^- \rbrace}$. Then by proposition[\(4.8\)](#page-4-4), $c_{uv} = 0$ or $r < c_{uv} \le \min{\{\mathcal{V}_u^-, \mathcal{V}_v^-\}}$. Since $r \ne \min{\{\mathcal{V}_u^-, \mathcal{V}_v^-\}}$, c_{uv} has infinitely many choices and hence, by theorem[\(4.3\)](#page-3-6), corresponding to each collection of complement numbers, we will get an IVFG whose complement is \mathscr{G} . \Box

Corollary 4.10. *Let* $\overline{\mathscr{G}} = (V, E, \mathscr{V}, \overline{\mathscr{E}})$ *be any complement IVFG and* $\overline{\mathscr{E}}(uv) = [\overline{\mathscr{E}}_{uv}^-, \overline{\mathscr{E}}_{uv}^+] \neq r \in [0,1)$ *for all* $uv \in E$. *Then* G *has a unique pre-complement, and it will be a classic IVFG.*

Corollary 4.11. *Any classic IVFG* $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ *has a unique pre-complement if, and only if, for any* $uv \in E$ *with* $\mathscr{E}(uv) = r$, a real number, then $r = min\{\mathscr{V}_u^-, \mathscr{V}_v^-\}.$

Corollary 4.12. *A classic IVFG* $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ *with* $\mathcal{E}(uv) \neq$ $r \in [0,1)$, for every edge $uv \in E$, has a unique pre-complement, *which also is a classic IVFG.*

5. The lattice of pre-complements

We have observed that a given complement IVFG may have a unique or several pre-complements. The same is true for a classic IVFG also. Let $C^{-1}(\mathscr{G})$ denote the collection of pre-complements of a classic IVFG $\mathscr G$. In this section, we denote $C^{-1}(\mathscr{G})$ by \mathscr{P} .

Definition 5.1. *Let* $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ *be any classic IVFG. Then the pre-complement of G obtained by assigning* $c_{uv} = 0$ *to all edges* $uv \in E$ *is called the superior pre-complement of* G *and is denoted as* G ∗ *.*

The pre-complement of $\mathscr G$ obtained by assigning the com*plement numbers*

$$
c_{uv} = \begin{cases} 0, & \text{if } \mathscr{E}(uv) \neq r, \text{ a real number} \\ \min \{ \mathscr{V}_u^-, \mathscr{V}_v^- \}, & \text{otherwise} \end{cases}
$$

to each edge $uv \in E$ *is called the inferior* pre-complement of G *. It is denoted as* G∗*.*

Example 5.2. *The IVFG H in figure[\(11\)](#page-4-3) is the pre-complement obtained by assigning the complement number 0 to each edge of the IVFG G in figure*[\(10\)](#page-4-2)*. Therefore,* $H = G^*$ *.*

Now, to make G∗*, since all edges have non-degenerate membership intervals, we have to assign complement number 0 to each edge, and form the pre-complement. Hence* $G_* =$ $G^* = H$.

Remark 5.3. If $\mathscr G$ *is a classic IVFG whose each edge has a membership interval, which is not degenerate, then* $G_* = G^*$.

Example 5.4. *Consider the classic IVFG in figure[\(12\)](#page-5-1).*

Figure 12. A classic IVFG with non-degenerate membership interval for an edge.

Assigning complement number 0 to each edge and forming its pre-complement, we get the IVFG in figure[\(13\)](#page-5-2)

Figure 13. Superior pre-complement for the IVFG in figure (12) .

Now, we proceed to make G∗*. First we assign complement numbers* $c_{ab} = min\{0.5, 1\} = 0.5$, $c_{bc} = min\{0.5, 0.6\} = 0.5$, *cac* = 0 *and then form the pre-complement. Then we get the IVFG in figure* (14) *as* \mathscr{G}_* *.*

Figure 14. Inferior pre-complement of the IVFG in figure (12) .

Here in $\mathscr G$, the membership interval is non-degenerate for one edge; and so $\mathscr{G}^* \neq \mathscr{G}_*$

Remark 5.5. *.*

- *1. If* G *has at least one edge whose membership interval is not degenerate, then* $\mathscr{G}^* \neq \mathscr{G}_*$ *.*
- *2. For every classic IVFG* $\mathscr{G}, \mathscr{G}^*$ *and* \mathscr{G}_* *are uniquely formed.*
- 3. Using theorem[\(4.3\)](#page-3-6), we can rewrite the definitions of \mathscr{G}^* *and* G[∗] *directly without involving complement numbers, as follows.*

Let $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ *be any classic IVFG. Then*

- (a) $\mathscr{G}^* = (V, E, \mathscr{V}, \mathscr{E}^*)$ *where for every edge uv* $\in E$ $\mathscr{E}^*(uv) =$ $\left[\min\left\{\mathscr{V}_{u}^{-},\mathscr{V}_{v}^{-}\right\}-\mathscr{E}_{uv}^{-},\min\left\{\mathscr{V}_{u}^{+},\mathscr{V}_{v}^{+}\right\}-\mathscr{E}_{uv}^{+}\right]$
- *(b)* $\mathscr{G}_* = (V, E, \mathscr{V}, \mathscr{E}_*)$ *where for each edge uv* $\in E$

$$
\mathcal{E}_*(uv) =
$$
\n
$$
\begin{cases}\n[\min \{ \mathcal{V}_u^-, \mathcal{V}_v^-\} - \mathcal{E}_{uv}^-, \min \{ \mathcal{V}_u^+, \mathcal{V}_v^+\} - \mathcal{E}_{uv}^+], \\
\quad \text{if } \mathcal{E}(uv) \neq a \text{ real number} \\
[0, \min \{ \mathcal{V}_u^+, \mathcal{V}_v^+\} - r], \\
\quad \text{if } \mathcal{E}(uv) = r, a \text{ real number}\n\end{cases}
$$

Theorem 5.6. Let $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ be any classic IVFG. *Then* $\mathscr{G}^* = \mathscr{G}_*$ *if, and only if, for any* $uv \in E$ *with* $\mathscr{E}(uv) = r$, *a* real number, then $r = min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}.$

Proof. Let $\mathscr{G}^* = (V, E, \mathscr{V}, \mathscr{E}^*)$ and $\mathscr{G}_* = (V, E, \mathscr{V}, \mathscr{E}_*)$. Assume, for any $uv \in E$ such that $\mathscr{E}(uv) = [\mathscr{E}_{uv}^-, \mathscr{E}_{uv}^+] = r \in$ $[0,1] \Rightarrow r = \min{\{\mathcal{V}_u^-, \mathcal{V}_v^-\}}$. To show that $\mathcal{G}^* = \mathcal{G}_*$, it is enough to prove $\mathscr{E}^*(uv) = \mathscr{E}_*(uv)$ for all $uv \in E$.

Let $uv \in E$ such that $\mathscr{E}(uv) \neq r \in [0,1]$. Then by defini- $\text{tion}(5.1), c_{uv}^{g*} = 0 \text{ and } c_{uv}^{g*} = 0. \Rightarrow \mathcal{E}^*(uv) = [\min \{ \mathcal{V}_u^-, \mathcal{V}_v^- \} \text{tion}(5.1), c_{uv}^{g*} = 0 \text{ and } c_{uv}^{g*} = 0. \Rightarrow \mathcal{E}^*(uv) = [\min \{ \mathcal{V}_u^-, \mathcal{V}_v^- \} \text{tion}(5.1), c_{uv}^{g*} = 0 \text{ and } c_{uv}^{g*} = 0. \Rightarrow \mathcal{E}^*(uv) = [\min \{ \mathcal{V}_u^-, \mathcal{V}_v^- \} \mathscr{E}_{uv}^-$, *min* { \mathscr{V}_{u}^+ , \mathscr{V}_{v}^+ } – \mathscr{E}_{uv}^+] = $\mathscr{E}_{*}(uv)$, by theorem[\(4.3\)](#page-3-6).

Now, let $uv \in E$ such that $\mathscr{E}(uv) = r \in [0,1]$ \Rightarrow *r* = *min* { \mathcal{V}_u^- , \mathcal{V}_v^- } (given). Then by definition[\(5.1\)](#page-5-4), $c_{uv}^{\mathcal{G}^*}$ = 0 and hence, by theorem[\(4.3\)](#page-3-6)

$$
\begin{aligned}\n\mathscr{E}^*(uv) \\
&= \left[\min \left\{ \mathscr{V}_u^-, \mathscr{V}_v^- \right\} - \mathscr{E}_{uv}^-, \min \left\{ \mathscr{V}_u^+, \mathscr{V}_v^+ \right\} - \mathscr{E}_{uv}^+ \right] \\
&= \left[\min \left\{ \mathscr{V}_u^-, \mathscr{V}_v^- \right\} - r, \min \left\{ \mathscr{V}_u^+, \mathscr{V}_v^+ \right\} - r \right] \\
&= \left[r - r, \min \left\{ \mathscr{V}_u^+, \mathscr{V}_v^+ \right\} - r \right] \\
&= \left[0, \min \left\{ \mathscr{V}_u^+, \mathscr{V}_v^+ \right\} - r \right]\n\end{aligned}
$$

Case 1. $\min \{ \mathcal{V}_u^- , \mathcal{V}_v^- \} = 0$ By definition[\(5.1\)](#page-5-4), $c_{uv}^{\mathscr{G}_*} = min\{\mathscr{V}_u^-, \mathscr{V}_v^-\} = 0$ $\Rightarrow \mathscr{E}_*(uv) = [\min \{ \mathscr{V}_u^- , \mathscr{V}_v^- \} - \mathscr{E}_{uv}^- , \min \{ \mathscr{V}_u^+ , \mathscr{V}_v^+ \} - \mathscr{E}_{uv}^+]$, by theorem (4.3) .

$$
= [\min \{ \mathcal{V}_u^- , \mathcal{V}_v^- \} - r, \min \{ \mathcal{V}_u^+ , \mathcal{V}_v^+ \} - r]
$$

= $[\min \{ \mathcal{V}_u^- , \mathcal{V}_v^- \} - \min \{ \mathcal{V}_u^- , \mathcal{V}_v^- \}, \min \{ \mathcal{V}_u^+ , \mathcal{V}_v^+ \} - r]$
= $[0, \min \{ \mathcal{V}_u^+ , \mathcal{V}_v^+ \} - r]$

Case 2. $\qquad \qquad \min \{ \mathcal{V}_u^- , \mathcal{V}_v^- \} \neq 0$ By definition[\(5.1\)](#page-5-4), $c_{uv}^{g_*} = min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}\neq 0$ $\Rightarrow \mathscr{E}_*(uv) = [\min \{ \mathscr{V}_u^-, \mathscr{V}_v^- \} - c_{uv}^{\mathscr{G}_*}, \min \{ \mathscr{V}_u^+, \mathscr{V}_v^+ \} - \mathscr{E}_{uv}^+],$ by theorem (4.3) .

 $=[0, min\{\mathcal{V}_u^+, \mathcal{V}_v^+\} - r]$

Hence $\mathscr{E}^*(uv) = \mathscr{E}_*(uv)$ for all $uv \in E$.

Conversely, suppose there exist $uv \in E$ such that $\mathscr{E}(uv) =$ $[\mathscr{E}_{uv}^-, \mathscr{E}_{uv}^+] = r \in [0, 1]$ but $r \neq min{\lbrace \mathscr{V}_u^-, \mathscr{V}_v^-\rbrace}$. To show that $\mathscr{G}^* \neq \mathscr{G}_*$, it is enough to prove $\mathscr{E}^*(uv) \neq \mathscr{E}_*(uv)$

Case 1. $c_{uv}^{\mathcal{G}_*} = 0$ $\Rightarrow min\{\mathcal{V}_u^-, \mathcal{V}_v^-\} = 0$, by definition[\(5.1\)](#page-5-4) \Rightarrow $\mathscr{E}(uv) = [0, \mathscr{E}_{uv}^+]$ (since \mathscr{G} is an IVFG, $0 \leq \mathscr{E}_{uv}^-$ and $\mathscr{E}_{uv}^- \leq$ $min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}\)$ \Rightarrow $\mathscr{E}(uv) = 0$ (since $\mathscr{E}(uv) = [\mathscr{E}_{uv}^-, \mathscr{E}_{uv}^+] = r$) \Rightarrow *r* = 0, which is a contradiction to our assumption *r* \neq

 $min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}.$ *Case 2.* $c_{uv}^{\mathscr{G}_*} \neq 0$ $\Rightarrow \mathscr{E}_*(uv) = [\min \{ \mathscr{V}_u^-, \mathscr{V}_v^-\} - c_{uv}^{\mathscr{G}_*}, \min \{ \mathscr{V}_u^+, \mathscr{V}_v^+\} - \mathscr{E}_{uv}^+],$ by theorem (4.3) .

$$
= [0, min\{\mathcal{V}_u^+, \mathcal{V}_v^+\} - r], \text{by definition}(5.1)
$$

Now, by definition[\(5.1\)](#page-5-4) $c_{uv}^{\mathscr{G}^*} = 0$. $\Rightarrow \mathscr{E}^*(uv) = [\min \{ \mathscr{V}_u^-, \mathscr{V}_v^-\} - \mathscr{E}_{uv}^-, \min \{ \mathscr{V}_u^+, \mathscr{V}_v^+\} - \mathscr{E}_{uv}^+],$ by theorem (4.3) .

$$
= [\min \left\{ \mathcal{V}_u^- , \mathcal{V}_v^- \right\} - r, \min \left\{ \mathcal{V}_u^+ , \mathcal{V}_v^+ \right\} - r]
$$

$$
\neq [0, \min \left\{ \mathcal{V}_u^+ , \mathcal{V}_v^+ \right\} - r] \text{ (since } r \neq \min \left\{ \mathcal{V}_u^- , \mathcal{V}_v^- \right\})
$$

$$
\Rightarrow \mathscr{E}^*(uv) \neq \mathscr{E}_*(uv).
$$
 Hence proved.

Corollary 5.7. Let $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ be any classic IVFG. *Then* $\mathscr G$ *has unique pre-complement if, and only if,* $\mathscr G^* = \mathscr G_*$.

We need some more ideas to develop the lattice structure of $\mathscr{P} = C^{-1}(\mathscr{G})$, where \mathscr{G} is some classic IVFG.

Definition 5.8. [\[10\]](#page-8-12) Let $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ and $\mathscr{H} = (V, E, \mathscr{T}, \mathscr{U})$ be two fuzzy graphs. Then \mathscr{H} is said *to be a fuzzy partial-subgraph of G if* $\mathcal{T}(u) \leq \mathcal{V}(u)$ *for all* $u \in V$ *and* $\mathscr{U}(uv) \leq \mathscr{E}(uv)$ *for all* $uv \in E$ *.*

Definition 5.9. *Let* $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ *and* $\mathcal{H} = (V, E, \mathcal{T}, \mathcal{U})$ *be two IVFGs. Then* H *is said to be a interval valued fuzzy* $\bm{partial\text{-}subgraph}$ (**IVFPSG**) of $\mathscr G$, denoted as $\mathscr H\ \frac{\subset}{P}\ \mathscr G$, if it *satisfies the following conditions:*

1. $\mathscr{T}_u^- \leq \mathscr{V}_u^-$ and $\mathscr{T}_u^+ \leq \mathscr{V}_u^+$, for all $u \in V$; and 2. $\mathscr{U}_{uv}^- \leq \mathscr{E}_{uv}^-$ and $\mathscr{U}_{uv}^+ \leq \mathscr{E}_{uv}^+$, for all $uv \in E$.

The following proposition is a direct consequence of definition (5.9)

Proposition 5.10. *For any classic IVFG* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$

1. $\mathscr{G}_* \subsetneqq \mathscr{G}^*$; and 2. $(\mathscr{P}, \frac{\subseteq}{P})$ is a poset. *Proof.* Straight forward

Proposition 5.11. Let $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ be any classic IVFG and $\mathscr{P} = C^{-1}(\mathscr{G})$. Then \mathscr{G}^* is the greatest element in the *poset* ($\mathscr{P}, \frac{\subseteq}{P}$).

 \Box

Proof. Let $\mathscr{G}^* = (V, E, \mathscr{V}, \mathscr{E}^*)$ and let $G_1 = (V, E, \mathscr{V}, \mathscr{E}_1)$ be any IVFG in \mathscr{P} . To prove $G_1 \subsetneq^{\subseteq} \mathscr{G}^*$, it is enough to show that $\mathscr{E}_{1}_{uv} \leq \mathscr{E}_{uv}^{*-}$ for all $uv \in E$.

By definition[\(5.1\)](#page-5-4) $c_{uv}^{g*} = 0$, for all $uv \in E$ $\Rightarrow \mathscr{E}^*_{uv} = \min \{ \mathscr{V}_u^-, \mathscr{V}_v^- \} - \mathscr{E}_{uv}^-$ for all $uv \in E$, by theorem[\(4.3\)](#page-3-6). Similarly, $c_{uv}^{G_1} = 0 \Rightarrow \mathcal{E}_{1uv} = min\{\mathcal{V}_u^-, \mathcal{V}_v^-\} - \mathcal{E}_{uv}^ \Rightarrow$ $\mathscr{E}_{1}^{-} =$ \mathscr{E}^{*}^{-} _{*uv*}

Now, let $uv \in E$ such that $c_{uv}^{G_1} \neq 0$.

 $\Rightarrow uv$ is an imperfect edge of G_1 and $\mathscr{E}_{1uv}^--min\{\mathscr{V}_u^-, \mathscr{V}_v^-\}$ $c_{uv}^{G_1}$, by proposition[\(4.7\)](#page-4-5) and by theorem[\(4.3\)](#page-3-6) respectively. $\Rightarrow \overline{\mathscr{E}_{1}}_{uv} = \overline{\mathscr{E}_{1}}_{uv}^+$ (from definitions[\(3.2](#page-2-2) and [3.4\)](#page-2-4)) and $\mathscr{E}_{1uv}^$ $min\{\mathcal{V}_u^-, \mathcal{V}_v^-\} - c_{uv}^{G_1}.$ $\Rightarrow \overline{\mathscr{E}_{1}}_{uv} < c_{uv}^{G_1}$ (since, by proposition[\(4.8\)](#page-4-4) $\overline{\mathscr{E}_{1}}_{uv}^+ < c_{uv}^{G_1}$) and $\mathscr{E}_{1}_{uv}^{\text{}} = \min \{ \mathscr{V}_{u}^{\text{-}}, \mathscr{V}_{v}^{\text{-}} \} - c_{uv}^{G_1}.$ $\Rightarrow \mathscr{E}_{uv}^- \leq c_{uv}^{G_1}$ (since $G_1 \in \mathscr{P}, \overline{G_1} = \mathscr{G}$) and $\mathscr{E}_{1uv}^ = min\{\mathcal{V}_u^-, \mathcal{V}_v^-\} - c_{uv}^{G_1}.$ \Rightarrow *min* { \mathcal{V}_u^- , \mathcal{V}_v^- } – $c_{uv}^{G_1}$ < *min* { \mathcal{V}_u^- , \mathcal{V}_v^- } – \mathcal{E}_{uv}^- and $\mathcal{E}_{1}_{uv}^-$ =

$$
\overline{m} \overline{m} \left\{ \frac{\gamma_u}{w}, \frac{\gamma_v}{w} \right\} - c_{uv}^G
$$
\n
$$
\Rightarrow \mathcal{E}_1 \overline{w} < \mathcal{E}^* \overline{w}
$$
\n
$$
\Rightarrow \mathcal{E}_2 \overline{w}
$$

 $\Rightarrow \infty_{1_{uv}} < \infty_{uv}$

Hence $\mathcal{E}_{1_{uv}} \leq \mathcal{E}_{uv}^{*-}$ for all $uv \in E$, which completes our proof \Box

Using similar arguments we can prove the following result. We state it without proof.

Proposition 5.12. *Let* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ *be any classic IVFG* and $\mathscr{P} = C^{-1}(\mathscr{G})$. Then \mathscr{G}_* is the least element in the poset *(*P*,* ⊆ *P).*

Theorem 5.13. Let $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ be any classic IVFG *and* $\mathscr{P} = C^{-1}(\mathscr{G})$ *. Then the poset* $(\mathscr{P}, \frac{\subseteq}{P})$ *is a lattice.*

Proof. Consider $R = \{uv \in E : \mathcal{E}(uv) = r \in [0,1]\}.$ Let $G_1 =$ (V, E, V, \mathscr{E}_1) and $G_2 = (V, E, V, \mathscr{E}_2)$ be any two IVFGs in \mathscr{P} . Define two IVFGs, $G_{g.l.b} = (V, E, \mathscr{V}, \mathscr{E}_L)$ and $G_{l.u.b} =$ $(V, E, \mathcal{V}, \mathcal{E}_U)$ where

$$
\mathcal{E}_L(uv) = \begin{cases} \mathcal{E}_1(uv), & \text{if } uv \notin R \\ \left[min\left\{ \mathcal{E}_{1uv}, \mathcal{E}_{2uv} \right\}, \mathcal{E}_{1uv}^+ \right], & \text{if } uv \in R \end{cases}
$$

and

$$
\mathcal{E}_U(uv) = \begin{cases} \mathcal{E}_1(uv), & \text{if } uv \notin R \\ \left[max \left\{ \mathcal{E}_{1uv}^-, \mathcal{E}_{2uv}^-\right\}, \mathcal{E}_{1uv}^+ \right], & \text{if } uv \in R \end{cases}
$$

We can easily verify that $G_{g.l.b}, G_{l.u.b} \in \mathcal{P}; G_1 \vee G_2 = G_{l.u.b}$ and $G_1 \wedge G_2 = G_{g.l.b}$. This completes the proof

Theorem 5.14. *Let* $\mathcal{G} = (V, E, \mathcal{V}, \mathcal{E})$ *be any classic IVFG and* $\mathscr{P} = C^{-1}(\mathscr{G})$ *. Then the poset* $(\mathscr{P}, \frac{\subset}{P})$ *is a chain if, and only if, there exist atmost one* $uv \in E$ *such that* $\mathcal{E}(uv) =$ $[\mathscr{E}_{uv}^{-}, \mathscr{E}_{uv}^{+}] = r \in [0, 1]$ *but* $r \neq min{\psi_{u}^{-}, \psi_{v}^{-}}.$

Proof. Let $\mathscr{G}_1, \mathscr{G}_2 \in \mathscr{P}$. Suppose there exist atmost one edge $uv \in E$ such that $\mathscr{E}(uv) = [\mathscr{E}_{uv}^-, \mathscr{E}_{uv}^+] = r \in [0, 1]$ but $r \neq min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}$ (say) *ab*. Then for all other *uv*, either

 $\mathscr{E}(uv) \neq r$ or $\mathscr{E}(uv) = r$ and $r = \min{\{\mathscr{V}_u^-, \mathscr{V}_v^-\}}$. We want to show that $\mathscr{G}_1 \subsetneq \mathscr{G}_2$ or $\mathscr{G}_2 \subsetneq \mathscr{G}_1$.

If $\mathcal{E}(uv) \neq r$, then $c_{uv} = 0$ (by definitions[\(3.2,](#page-2-2) [3.4\)](#page-2-4) and proposition[\(4.7\)](#page-4-5)).

If $\mathscr{E}(uv) = r$ and $r = \min{\{\mathscr{V}_u^-, \mathscr{V}_v^-\}}$, then either $c_{uv} = 0$ or $\mathscr{E}_{uv}^- < c_{uv} \le \min\{\mathscr{V}_u^-,\mathscr{V}_v^-\}$ (by proposition[\(4.8\)](#page-4-4)). $\Rightarrow c_{uv} = 0.$

Now, for edge *ab*, $\mathscr{E}(ab) = r$ but $r \neq min\{\mathscr{V}_a^-, \mathscr{V}_b^-\}.$

- \Rightarrow $c_{ab} = 0$ or $r < c_{ab} \le \min\{\mathcal{V}_a^-, \mathcal{V}_b^-\}$ (by proposition[\(4.8\)](#page-4-4)). Hence we can conclude that :
	- 1. for all edges $uv \in E \{ab\}$, $c_{uv}^{g_1} = 0$ and $c_{uv}^{g_2} = 0$; and

2.
$$
c_{ab}^{g_1} \leq c_{ab}^{g_2}
$$
 or $c_{ab}^{g_2} \leq c_{ab}^{g_1}$
\n $\Rightarrow g_2 \subseteq g_1$ or $g_1 \subseteq g_2$.
\n $\Rightarrow (\mathcal{P}, \subseteqg)$ is a chain.

Conversely, suppose there exist more than one edge $uv \in E$ such that $\mathscr{E}(uv) = r$ but $r \neq min\{\mathscr{V}_u^-, \mathscr{V}_v^-\}$ (say) *ab* and *ef*. Then as in proof of sufficient part we can conclude that :

- 1. either $c_{ab} = 0$ or $r_1 < c_{ab} \le \min\{\mathcal{V}_a^-, \mathcal{V}_b^-\}$, where $r_1 =$ $\mathscr{E}(ab)$; and
- 2. either $c_{ef} = 0$ or $r_2 < c_{ef} \le \min\left\{\mathcal{V}_e^-, \mathcal{V}_f^-\right\}$, where $r_2 = \mathscr{E}(ef)$.

Choose $\mathscr{G}_1, \mathscr{G}_2 \in \mathscr{P}$ such that $c_{ab}^{\mathscr{G}_1} < c_{ab}^{\mathscr{G}_2}$ and $c_{ef}^{\mathscr{G}_2} < c_{ef}^{\mathscr{G}_1}$. Then \mathscr{G}_2 \overleftarrow{S} \mathscr{G}_1 and \mathscr{G}_1 \overleftarrow{S} \mathscr{G}_2 . Hence $(\mathscr{P}, \frac{\subseteq}{P})$ is not a chain

Example 5.15. *Consider the classic IVFG* $\mathscr{G} = (V, E, \mathscr{V}, \mathscr{E})$ *in figure[\(15\)](#page-7-0).*

Figure 15. Classic IVFG satisfying the condition in theorem (5.14)

Here ab is the only edge with $\mathscr{E}(ab) = 0.1 = r \in [0,1]$ *but* $r \neq min\{\mathcal{V}_a^-, \mathcal{V}_b^-\}$ since $\mathcal{V}_a^- = \mathcal{V}_b^- = 1$. We can make *pre-complements for* G *, by assigning infinitely many complement numbers to edge ab. Some of the pre-complements are displayed in figure[\(16\)](#page-8-13).*

Figure 16. A section of the infinite chain of pre-complements of the IVFG in figure[\(15\)](#page-7-0) constructed by allotting $c_{bc} = 0$, $c_{ac} = 0$ and varying values of c_{ab} as : $c_{ab} = 0$ and $0.1 < c_{ab} \leq 1$.

Obviously they form an infinite chain, with uncountably many elements, with G [∗] *as greatest element and* G[∗] *as least element.*

Remark 5.16. *We can conclude, from remark[\(5.3\)](#page-5-5), that if* G *is a classic IVFG whose all edges have non-degenerate intervals as membership intervals, then* $\mathscr P$ *is the singleton lattice* {G [∗]}*. If* G *has exactly one edge uv satisfying the condition* $\mathscr{E}(uv) = r \in [0,1]$ *, where* $r \neq min\{\mathscr{V}_u^-, \mathscr{V}_v^-\}$ *, then* P *is an infinite chain, with uncountable many members, and having* G [∗] *as the greatest element and* G[∗] *as the least element. Further, if* G *has more than one edge satisfying the above condition, then* $\mathcal P$ *is just an infinite lattice. It does not become a chain.*

6. Conclusion

This paper is a continuation of our work reported in [\[4\]](#page-8-7), [\[5\]](#page-8-6) and [\[6\]](#page-8-8). We begin with a summary of relevant ideas and results from those papers which are required for a proper understanding of the concepts discussed in this paper. Thus we discuss our new definition of complement of an interval valued fuzzy graph(IVFG), the concepts of classic and non-classic IVFGs and the complement numbers which we have introduced and developed. We observe that, unlike the crisp and fuzzy cases, a *complement IVFG* may have several non-isomorphic precomplements. But by assigning complement numbers to its edges we can ensure uniqueness of pre-complement. It is proved that an IVFG has a pre-complement if, and only if, it is classic. In theorem[\(4.9\)](#page-4-6), we give a necessary and sufficient condition for a general complement IVFG, without

complement numbers, to have a unique pre-complement; and in corollary[\(4.11\)](#page-5-6) we extend it to classic IVFGs.

For any given *classic IVFG* $\mathscr G$, we describe a method to construct its *superior pre-complement* \mathcal{G}^* and *inferior precomplement* \mathscr{G}_* . In theorem[\(5.6\)](#page-6-1), we obtain a necessary and sufficient condition for the coincidence of \mathscr{G}^* and \mathscr{G}_* . We have defined a partial order $\frac{C}{P}$ on $\mathscr{P} = C^{-1}(\mathscr{G})$, the collection of all pre-complements of a classic IVFG $\mathscr G$, and proved that $(\mathscr{P}, \frac{\mathbb{C}}{P})$ is a lattice with \mathscr{G}^* as the greatest element and \mathscr{G}_* as the least element. Further, we have proved that $(\mathscr{P}, \frac{\subseteq}{P})$ becomes a chain if, and only if, G has atmost one edge *uv* such that $\mathscr{E}(uv) = r \in [0,1]$, where $r \neq min\{\mathcal{V}_u^-, \mathcal{V}_v^-\}$. We observe that this is the trivial singleton chain $\{\mathscr{G}^*\}$ when there is no edge in $\mathscr G$ satisfying the condition, and an infinite chain, with uncountably many members, if there is exactly one such edge. Moreover, we have included several structure revealing examples and constructions.

References

- [1] A. A. Talebi and H. Rashmanlou, Isomorphism on interval-valued fuzzy graphs, *Annals of Fuzzy Mathematics and Informatics*, 6(1)(2013), 47–58.
- [2] A. A. Talebi, H. Rashmanlou, and S. H. Sadati, Intervalvalued Intuitionistic Fuzzy Competition Graph, *Journal of Multiple-Valued Logic and Soft Computing*, 34, 2020.
- [3] A. Rosenfeld, Fuzzy graphs, *Fuzzy Sets and Their Applications to Cognitive and Decision Processes*, 1975, 77-95.
- [4] Deepthi Mary Tresa S, Divya Mary Daise S and Shery Fernandez, A Study on Classic and Non-Classic Interval Valued Fuzzy Graphs, *Proceedings of the International Conference on Mathematics 2018*, 72–77.
- [5] Deepthi Mary Tresa S, Divya Mary Daise S and Shery Fernandez, Classic and Non-classic Interval Valued Fuzzy Graphs, *International Journal of Applied Engineering Research*, 13(3)(2018), 1–4.
- [6] Deepthi Mary Tresa S, Divya Mary Daise S and Shery Fernandez, Interval Valued Fuzzy Graph and Complement Number, *American Institute of Physics (AIP) Conference Proceedings* , (accepted).
- [7] G. Gratzer, *Lattice Theory: First Concepts and Distributive Lattices*, Dover Publications, New York, 2009.
- [8] George J. Klir and Bo Yuan, *Fuzzy Sets And Fuzzy Logic Theory And Applications*, Prentice Hall P T R, New Jersey, 2009.
- [9] H. Ju and L. Wang, Interval-valued fuzzy subsemigroups and subgroups associated by interval valued fuzzy graphs, *Proceedings of the WRI Global Congress on Intelligent Systems (GCIS '09)*, 484–487, Xiamen, China, May 2009.
- [10] H. Rashmanlou and Madhumangal Pal, Balanced Interval-Valued Fuzzy Graphs, *Journal of Physical Sciences*, 17(2013), 43–57.
- [11] H. Rashmanlou and Madhumangal Pal, Some Properties of Highly Irregular Interval Valued Fuzzy Graphs, *World Applied Sciences Journal*, 2013, 1756–1773.

- [12] H. Rashmanlou, R. A. Borzooei, S. Samanta, and M. Pal, Properties of interval valued intuitionistic (S, T)–Fuzzy graphs, *Pacific Science Review A: Natural Science and Engineering*, 18(1)(2016), 30–37.
- [13] J. Clark and D. A. Holton, *A First Look at Graph Theory*, Allied Publishers Ltd., New Delhi, 1995.
- [14] J. N. Mordeson and C.S. Peng, Operations on fuzzy graphs, *Information Sciences*, 79(3-4)(1994), 159–170.
- [15] L. A. Zadeh, Fuzzy sets, *Information and Control*, 8(1965), 338–353.
- [16] L. A. Zadeh, The concept of a linguistic and application to approximate reasoning, *Information Sci.*, 8(3)(1975), 199–249.
- [17] M. Akram and B. Davvaz, Strong intuitionistic fuzzy graphs, *Filomat*, 26(1)(2012), 177–196.
- [18] M. Akram, Bipolar fuzzy graphs, *Information Sciences*, 181(24)(2011), 5548–5564.
- [19] M. Akram, Bipolar fuzzy graphs with applications, *Knowledge Based Systems*, 39(2013), 1–8.
- [20] M. Akram, Interval-valued fuzzy line graphs, *Neural Computing and Applications*, 21(2012), 145–150.
- [21] M. Akram and W. A. Dudek, Interval-valued fuzzy graphs, *Computers and Mathematics with Applications*, 61(2)(2011), 289–299.
- [22] M. S. Sunitha and A. V. Kumar , Complement of a fuzzy graph, *Indian Journal of Pure and Applied Mathematics*, 33(9)(2002), 1451–1464.
- [23] R. A. Borzooei, and H. Rashmanlou, Cayley intervalvalued fuzzy graphs, *UPB Sci. Bull. Ser. A*, 78(3)(2016), 83–94.
- [24] T. Pramanik, S. Samanta and M. Pal, Interval-valued fuzzy planar graphs, *International Journal of Machine Learning and Cybernetics*, 7(4)(2016), 653–664.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

