

A note on Frobenius inner product and the *m*-distance matrices of a tree

P.A. Asharaf¹* and Bindhu K. Thomas²

Abstract

The m-distance matrix D_m of a simple connected undirected graph has an important role in computing the distance matrix D of the graph from the powers of the adjacency matrix using Hadamard product. This paper shows that for an undirected tree T with diameter d, $\{D_0.D_1,\ldots,D_d\}$ is an orthogonal basis for the space spanned by the binary equivalent matrices of the first d+1 powers of the adjacency matrix of T and it gives an invertible conversion matrix for finding the m-distance matrix of T using Frobenius inner product on matrices.

Keywords

Adjacency matrix, Distance matrix, Binary matrix, Diameter, Hadamard product, m-distance matrix, Frobenius inner product, Frobenius norm.

AMS Subject Classification

05C12, 05C40, 05C50, 05C62, 05B20, 46C05, 15A60.

Article History: Received 12 April 2020; Accepted 19 August 2020

©2020 MJM

Contents

1	Introduction	1321
2	Preliminaries	1322
3	Main Resuls	1322
4	Illustration	1325
	Conclusion	1327
	References	1327

1. Introduction

Consider a simple, connected, undirected graph G = (V, E) of order n with vertex set V and edge set E throughout this paper unless otherwise specified. Let A_G be the $n \times n$ adjacency matrix [1] of G. Then ij^{th} entry of A_G^m (m^{th} power of A_G), represent the number of walks of length m between the vertices v_i and v_j of G.

Definition 1.1. ([2]) The distance matrix, $D = (d_{ij})$ of G is defined as,

$$d_{ij} = \begin{cases} d(v_i, v_j) & \text{, if } i \neq j \\ 0 & \text{, if } i = j \end{cases}$$

Where, $d(v_i, v_j)$ is the distance between the vertices v_i and v_j .

Definition 1.2. ([3]) The diameter of a graph G is the maximum distance between any two vertices of G and it is denoted by Diam(G).

Definition 1.3. (Hadamard product [4]) Consider the vector space $\mathbb{R}^{m \times n}$ of all $m \times n$ real matrices over the real field \mathbb{R} . For $P, F \in \mathbb{R}^{m \times n}$, the Hadamard product \circ is a binary operation on $\mathbb{R}^{m \times n}$ defined by,

$$(P \circ F)_{ij} := (P)_{ij}(F)_{ij}, \quad \forall i, j.$$

Let $B = \{0,1\}$ and let $B_{m \times n}$ denote the set of all binary matrices in $\mathbb{R}^{m \times n}$.

Then for $P, F \in B_{m \times n}$,

$$(P \circ F)_{ij} = \begin{cases} 1, & \text{if } p_{ij} = 1 \text{ and } f_{ij} = 1 \\ 0, & \text{otherwise} \end{cases}$$

Definition 1.4. (Frobenius inner product [5]) Consider the vector space $\mathbb{R}^{n \times n}$ over the field \mathbb{R} . Then the Frobenius inner product $\langle , \rangle_F : \mathbb{R}^{n \times n} \times \mathbb{R}^{n \times n} \to \mathbb{R}$ is defined by,

$$\langle P, Q \rangle_F = \sum_{i=1}^n \sum_{j=1}^n p_{ij} q_{ij} = \sum_{i=1}^n \sum_{j=1}^n (P \circ Q)_{ij} = Tr(PQ^T),$$

where $P,Q \in \mathbb{R}^{n \times n}$. The Frobenius norm $\|\cdot\|$ induced by this inner product on $\mathbb{R}^{n \times n}$ is, $\|P\|_F = (\langle P, P \rangle_F)^{\frac{1}{2}}$, $P \in \mathbb{R}^{n \times n}$. Then

¹ Mathematics Research Centre, Mary Matha Arts and Science College, Mananthavady-670645, Kerala, India.

² Department of Mathematics, Mary Matha Arts and Science College, Mananthavady-670645, Kerala, India.

^{*}Corresponding author: 1 asharafpa@gecwyd.ac.in; 2bindhukthomas@gmail.com

the metric d_F induced by this norm on $\mathbb{R}^{n \times n}$ is $d_F(P,Q) = \|P - Q\|_F$, $P,Q \in \mathbb{R}^{n \times n}$.

Remark 1.5. (i)
$$||P||_F = (\langle P, P \rangle_F)^{\frac{1}{2}} = (Tr(PP^T))^{\frac{1}{2}}, P \in \mathbb{R}^{n \times n}$$

(ii) Let $X, Y \in \mathbb{R}^{1 \times n}$. Then $\langle X, Y \rangle_F = \sum_{i=1}^n x_i y_i$ and

$$d_f(X,Y) = ||X - Y||_F = \left(\sum_{i=1}^n (x_i - y_i)^2\right)^{\frac{1}{2}}$$

which is the Euclidean distance between the vectors X and Y of \mathbb{R}^n .

(iii) For $P \in B_{n \times n}$,

$$d_F(P,0) = \|P - 0\|_F = \|P\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n p_{ij}^2\right)^{\frac{1}{2}}$$

Then $(d_F(P,0))^2$ represents the number of 1's in P. For $P,Q \in B_{n \times n}$,

$$d_F(P,Q) = \|P - Q\|_F = \left(\sum_{i=1}^n \sum_{j=1}^n (p_{ij} - q_{ij})^2\right)^{\frac{1}{2}}$$

Then $(d_F(P,Q))^2$ represent the number of non identical entries in P and Q and the number of identical entries in P and Q is $n^2 - (d_F(P,Q))^2$

2. Preliminaries

Definition 2.1. ([6]) The function $\delta : \mathbb{R} \to B = \{0,1\}$ is defined by

$$\delta(a) := \begin{cases} 0, & a \le 0 \\ 1, & \text{otherwise} \end{cases}, a \in \mathbb{R}$$

Also, $\delta: \mathbb{R}^{m \times n} \to B_{m \times n}$ is defined by $\delta(D) = (\delta(D))_{ij} := (\delta(d_{ij})), \ \forall \ i,j \ \text{and} \ D \in \mathbb{R}^{m \times n}$. Then $\delta(A_G^m) \in B_{n \times n}, \ \forall \ m \in \{0,1,2,\ldots\}$ and it is the equivalent binary matrix representation of A_G^m . Let $A_G^{(m)} = \delta(A_G^m)$. Then

$$(A_G^{(m)})_{ij} = \begin{cases} 1, & \text{if there exist a walk of length } m \\ & \text{from } v_i \text{ to } v_j \text{ in } G \\ 0, & \text{otherwise} \end{cases}$$

Also, for $C, F \in B_{m \times n}$, $\delta(C \circ F) = \delta(C) \circ \delta(F)$.

Definition 2.2. (m-distance matrix [6]) Consider the graph G = (V, E) with n vertices. Then the m- distance matrix D_m of G is an $n \times n$ symmetric binary matrix defined by

$$(D_m)_{ij} := \begin{cases} 1, & \text{if } d(v_i, v_j) = m \\ 0, & \text{otherwise} \end{cases}$$

where, $d(v_i, v_j)$ is the distance between the vertices v_i and v_j .

Remark 2.3. (*i*) $D_m \in B_{n \times n}, \forall m = 0, 1, 2, ...$

(ii)
$$D_0 = I_n$$

(iii)
$$D_0 + D_1 + \ldots + D_d =$$

(iv)
$$Diam(G) = Max\{m : D_m \neq 0\}$$

$$m$$

(v)
$$D_i \circ D_j = \begin{cases} 0, & \text{if } i \neq j \\ D_i, & \text{if } i = j \end{cases}$$
, for $0 \leq i, j \leq d$.
i.e., $\{D_0, D_1, \dots, D_d\}$ is an orthogonal subset $\mathbb{R}^{n \times n}$ with respect to the binary operation \circ .

Theorem 2.4. ([6]) Let A_G be the adjacency matrix of G = (V, E) with diameter d. Then $\beta_2 = \{D_0, D_1, \dots, D_d\}$ is a Linearly independent subset of the vector space $\mathbb{R}^{n \times n}$.

Theorem 2.5. ([6]) Let A_G be the adjacency matrix of G = (V, E) with diameter d. Then for $1 \le m \le d$, $D_m = A_G^{(m)} - \delta\left(\sum_{s=0}^{m-1} A_G^{(m)} \circ A_G^{(s)}\right)$, where D_m is the m-distance matrix of G.

3. Main Resuls

Theorem 3.1. Let A_G be the adjacency matrix of G = (V, E). Let d = diam(G). Then for $0 \le K$, $m \le d$,

$$D_k \circ A_G^{(m)} = \left\{ \begin{array}{ll} D_m, & \text{if } K = m \\ 0, & \text{if } m < K. \end{array} \right.$$

Proof. Case(i): K = m

$$\begin{split} \left(D_{m} \circ A_{G}^{(m)}\right)_{ij} &= (D_{m})_{ij} (A_{G}^{(m)})_{ij} \\ &= \left\{ \begin{array}{l} 1, & \text{if } (D_{m})_{ij} = 1 \text{ and } (A_{G}^{(m)})_{ij} = 1 \\ 0, & \text{otherwise} \end{array} \right. \\ &= \left\{ \begin{array}{l} 1, & \text{if } d(v_{i}, v_{j}) = m \text{ and } (A_{G}^{(m)})_{ij} = 1 \\ 0, & \text{otherwise.} \end{array} \right. \end{split}$$

But
$$d(v_i, v_j) = m \Rightarrow (A_G^{(m)})_{ij} = 1$$

$$\therefore \left(D_m \circ A_G^{(m)}\right)_{ij} = (D_m)_{ij} (A_G^{(m)})_{ij}$$

$$= \begin{cases} 1, & \text{if } d(v_i, v_j) = m \\ 0, & \text{otherwise} \end{cases} = (D_m)_{ij}$$

That is,
$$(D_m \circ A_G^{(m)})_{ij} = D_m$$
.
Case(ii): $K > m$
 $(D_k \circ A_G^{(m)})_{ij} = (D_k)_{ij} (A_G^{(m)})_{ij}$

If $(D_k)_{ij} = 1$, then $d(v_i, v_j) = K$.

That is, if there exist a shortest path of length K between v_i and v_j . But then this path cannot be traversed by any of the walk between v_i and v_j of length K. Thus $(A_G^{(m)})_{ij} = 0$. $(\because K > m)$

$$\therefore (D_K)_{ij}(A_G^{(m)})_{ij} = 0$$

If $(D_K)_{ij} = 0$, then also $(D_K)_{ij} (A_G^{(m)})_{ij} = 0$.

Therefore, $(D_K \circ A_G^{(m)})_{ij} = 0, \forall i, j, \forall K > m$.

ie., $D_K \circ A_G^{(m)} = 0$ if K > m. Hence

$$D_K \circ A_G^{(m)} = \left\{ \begin{array}{ll} D_m, & \text{if } K = m \\ 0, & \text{if } m < K \end{array} \right., \text{ for } K \leq d.$$

Theorem 3.2. Let A_G be the adjacency matrix of G = (V, E). Let d = diam(G). Then $\beta_1 = \{A_G^{(0)}, A_G^{(1)}, \dots A_G^{(d)}\}$ is a linearly independent subset of the vector space $\mathbb{R}^{n \times n}$.

Proof. Suppose

$$c_0 \cdot A_G^{(0)} + c_1 \cdot A_G^{(1)} + \dots + c_d \cdot A_G^{(d)} = 0$$
 (3.1)

for some $c_0, c_1, \ldots, c_d \in \mathbb{R}$. By taking Hadamard product \circ by D_d

$$(3.1) \Rightarrow D_{d} \circ (c_{0} \cdot A_{G}^{(0)} + c_{1} \cdot A_{G}^{(1)} + \dots + c_{d} \cdot A_{G}^{(d)}) = 0$$

$$c_{0} \cdot (D_{d} \circ A_{G}^{(0)}) + c_{1} \cdot (D_{d} \circ A_{G}^{(1)}) + \dots + c_{d} \cdot (D_{d} \circ A_{G}^{(d)}) = 0$$

$$\Rightarrow 0 + 0 + \dots 0 + c_{d} \cdot (D_{d} \circ A_{G}^{(d)}) = 0 (\because Theorem \ 3.1)$$

$$\Rightarrow c_{d} \cdot D_{d} = 0 \Rightarrow c_{d} = 0, \text{ as } D_{d} \neq 0$$

$$(3.1) \Rightarrow c_{0} \cdot A_{G}^{(0)} + c_{1} \cdot A_{G}^{(1)} + \dots + c_{d-1} \cdot A_{G}^{(d-1)} = 0$$

$$(3.2)$$

By taking Hadamard product \circ by D_{d-1} on both side of equation (3.2).

$$(3.2) \Rightarrow D_{d-1} \circ (c_0 \cdot A_G^{(0)} + c_1 \cdot A_G^{(1)} + \dots + c_{d-1} \cdot A_G^{(d-1)}) = 0$$

$$c_0 \cdot (D_{d-1} \circ A_G^{(0)}) + c_1 \cdot (D_{d-1} \circ A_G^{(1)}) + \dots$$

$$+ c_{d-1} \cdot (D_{d-1} \circ A_G^{(d-1)}) = 0$$

$$\Rightarrow 0 + 0 + \dots + 0 + c_{d-1} \cdot (D_{d-1} \circ A_G^{(d-1)}) = 0$$

$$\Rightarrow c_{d-1}D_{d-1} = 0 \Rightarrow c_{d-1} = 0, \text{ as } D_{d-1} \neq 0$$

$$(3.2) \Rightarrow c_0 \cdot A_G^{(0)} + c_1 \cdot A_G^{(1)} + \dots + c_{d-1} \cdot A_G^{(d-1)} = 0$$

Continue the above process further a finite number of times, we get $c_0 = 0$, $c_1 = 0, \dots, c_d = 0$.

 $\Rightarrow \beta_1 = \{A_G^{(0)}, A_G^{(1)}, \dots, A_G^{(d)}\} \text{ is a linearly independent subset of } \mathbb{R}^{n \times n}.$

Remark 3.3. $\beta_1 = \{A_G^{(0)}, A_G^{(1)}, \dots, A_G^{(d)}\}\$ is a basis for span $\{A_G^{(0)}, A_G^{(1)}, \dots, A_G^{(d)}\}.$

Lemma 3.4. Let G = (V, E) be a connected undirected graph of order n(n > 1). Let d_{ij} denote the distance between v_i and v_j . Then there always exist at least one walk between v_i and v_j of length $d_{ij} + 2r$, $\forall r = 0, 1, 2, ...$ That is,

$$\left(A_G^{(d_{ij}+2r)}\right)_{ij} = 1, \forall r = 0, 1, 2, \dots$$

Proof. Since *G* is a connected undirected graph, there exist at least one path in between v_i and v_j . Let $P_{ij}: v_0(=v_i) - v_1 - v_2 - \ldots - v_{d_{ij}-1} - v_{d_{ij}}(=v_j)$ denote the shortest path between v_i and v_j of length d_{ij} . If we traverse back and forth once along the last edge in P_{ij} , then we get a walk $v_0(=v_i) - v_1 - v_2 - \ldots - v_{d_{ij}-1} - v_{d_{ij}}(=v_j) - v_{d_{ij}-1} - v_{d_{ij}}(=v_j)$ of length $d_{ij} + 2$ between v_i and v_j . Also If we traverse back and forth twice along the last edge in P_{ij} , then we get a walk $v_0(=v_i) - v_1 - v_2 - \ldots - v_{d_{ij}-1} - v_{d_{ij}} - v_{d_{ij}-1} - v_{d_{ij}}(=v_j)$ of length $d_{ij} + 4$ between v_i and v_j . If we proceed like this, then we always get a walk of length $d_{ij} + 2r$, \forall $r = 0, 1, 2, \ldots$ between v_i and v_j in *G*. This walk will reflect as 1 in the ij^{th} entry of $A_G^{(d_{ij}+2r)}$.

$$\therefore \left(A_G^{(d_{ij}+2r)}\right)_{ij} = 1, \forall \ r = 0, 1, 2, \dots$$

Theorem 3.5. Let T = (V, E) be an undirected tree of order n(n > 1). Let d_{ij} denote the distance between v_i and v_j . Then,

$$(A_T^{(m)})_{ij} = \begin{cases} 1, & \text{if } m = d_{ij} + 2r, \forall r = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

Proof. Let T_{ij} denote the unique path in T from v_i to v_j of distance d_{ij} . Consider a walk W_{ij} from v_i to v_j such that length of W_{ij} , $l(W_{ij}) > d_{ij}$. Now delete the edges of T_{ij} from W_{ij} . Let W_{ij}^1 be the remaining part of the walk W_{ij} . Then W_{ij}^1 should be disconnected. Otherwise W_{ij}^1 and some of the edges of T_{ij} together would form a cycle. But T has no cycle.

Let $W_{ij,1}$, $W_{ij,2}$, ..., $W_{ij,s}$ be the component walks of W_{ij}^1 . Then $W_{ij,h} \cap T_{ij}$, $(1 \le h \le s)$ should be a single vertex $v_{w_{ij},h}$, otherwise some of the edges of $W_{ij,h}$ and T_{ij} together form a cycle. Since each vertex $v_{w_{ij},h}$ is a part of the walk W_{ij} , $W_{ij,h}$ should be either the single vertex $v_{w_{ij},h}$ or a closed walk from $v_{w_{ij},h}$ to $v_{w_{ij},h}$.

But length of a closed walk in a tree is always even. So $l(W_{ij}^1) = \sum_{h=1}^{s} l(W_{ij,h})$ must be even.

Let $l(W_{ij}^1) = \sum_{h=1}^{s} l(W_{ij,h}) = 2r$, for some $r \in \{0, 1, 2, ...\}$ $\Rightarrow l(W_{ij}) = l(T_{ij}) + l(W_{ij}^1) = d_{ij} + \sum_{h=1}^{s} l(W_{ij,h}) = d_{ij} + 2r$, for some $r \in \{0, 1, 2, ...\}$

 \Rightarrow length of every walk from v_i to v_j must be of the form $d_{ij} + 2r$, for $r \in \{0, 1, 2, ...\}$.

By Lemma 3.4, there always exist a walk between v_i and v_j of length $d_{ij} + 2r$, for all $r = 0, 1, 2, \dots$ So

$$(A_T^{(m)})_{ij} = \begin{cases} 1, & \text{if } m = d_{ij} + 2r, \forall r = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

1323

Theorem 3.6. Let A_T be the adjacency matrix of a tree T =(V,E) of order n(n > 1). Let d = diam(T). Then for $0 \le K \le$

$$(i) D_K \circ A_T^{(K+2r)} = D_K.$$

(ii)
$$D_K \circ A_T^{(K+2r+1)} = 0, \forall r = 0, 1, 2, \dots$$

Proof.

$$\left(D_K \circ A_T^{(m)}\right)_{ij} = (D_K)_{ij} (A_T^{(m)})_{ij}
= \begin{cases} 1, & \text{if } (D_K)_{ij} = 1 \text{ and } (A_T^{(m)})_{ij} = 1 \\ 0, & \text{otherwise} \end{cases}$$

$$(D_K)_{ij} = 1 \Rightarrow d_{ij} = K.$$

But then $(A_T^{(K+2r)})_{ij} = 1, \forall r = 0, 1, 2, ...$ (: Theorem 3.5)
ie., $(D_K)_{ij} = 1 \Rightarrow (A_T^{(K+2r)})_{ij} = 1, \forall r = 0, 1, 2, ...$

$$\therefore \left(D_K \circ A_T^{(K+2r)}\right)_{ij} =$$

$$\begin{cases} 1, & \text{if } K = d_{ij} \\ 0, & \text{otherwise} \end{cases} = (D_K)_{ij}, \forall i, j \text{ and } r = 0, 1, 2, \dots.$$

$$\Rightarrow D_K \circ A_T^{(K+2r)} = D_K, \forall r = 0, 1, 2, \dots$$

 \Rightarrow $D_K \circ A_T^{(K+2r)} = D_K$, $\forall r = 0, 1, 2, \dots$ By Theorem 3.5 there does not exist a walk of length d_{ij} + 2r+1 between v_i and v_j , $\forall r=0,1,2,...$

$$\Rightarrow \left(A_T^{(d_{ij}+2r+1)}\right)_{ij} = 0, \forall i, j \text{ and } r = 0, 1, 2, \dots$$

$$\Rightarrow D_K \circ A_T^{(K+2r+1)} = 0 \ \forall \ r = 0, 1, 2, \dots$$

Remark 3.7. Let A_T be the adjacency matrix of a tree T =(V,E) of order n(n > 1). Let d = diam(T). Then for $0 \le K \le T$ d. For m < K, $A_T^{(m)} \circ D_K = 0$, (by Theorem 3.1). For m > K,

$$(i) D_K \circ A_T^{(K+2r)} = D_K.$$

(ii)
$$D_K \circ A_T^{(K+2r+1)} = 0$$
. $\forall r = 0, 1, 2, ..., (by Theorem 3.6)$

$$\therefore A_T^{(m)} \circ D_K = \begin{cases} D_K, & m = K + 2r, \forall r = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

Theorem 3.8. Let A_T be the adjacency matrix of T = (V, E)with d = diam(G). Then $\beta_2 = \{D_0, D_1, \dots, D_d\}$ is an orthogonal basis for span $\{A_T^{(0)}, A_T^{(1)}, \dots A_T^{(d)}\}$.

Proof. By Theorem 2.4, $\beta_2 = \{D_0, D_1, \dots, D_d\}$ is linearly independent. By Remark 2.3(v) β_2 is orthogonal also. So it is enough to prove that $A_T^{(m)}$ is a linear combination of D_0, D_1, \dots, D_d , for $0 \le m \le d$. By Remark 3.7,

$$\therefore A_T^{(m)} \circ D_K = \begin{cases} D_K, & m = K + 2r, \forall r = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

$$\Rightarrow \sum_{K=0}^{d} A_{T}^{(m)} \circ D_{K}$$
 is a linear combination of $D_{0}, D_{1}, \dots, D_{d}$. i.e., $\sum_{K=0}^{d} A_{T}^{(m)} \circ D_{K} = \sum_{K=0}^{d} c_{m,K} D_{K}$, for $c_{m,0}, c_{m,1}, \dots, c_{m,d} \in B = \{0,1\}$. Now

$$\begin{split} A_{T}^{(m)} &= A_{T}^{(m)} \circ J_{n} = A_{T}^{(m)} \circ (D_{0} + D_{1} + \dots + D_{d}), (\because Remark2.3(iii)) \\ &= \sum_{K=0}^{d} A_{T}^{(m)} \circ D_{K} = \sum_{K=0}^{d} c_{m,K} D_{K} \end{split}$$

 $\Rightarrow A_T^{(m)}$ is a linear combination of D_0, D_1, \dots, D_d . For finding the scalars $c_{m,k}$, consider

$$\begin{split} \langle A_T^{(m)}, D_j \rangle_F &= \langle c_{m,0} \cdot D_0 + c_{m,1} \cdot D_1 + \dots + c_{m,d} \cdot D_d, D_j \rangle_F \\ &= c_{m,0} \cdot \langle D_0, D_j \rangle_F + c_{m,1} \cdot \langle D_1, D_j \rangle_F + \dots \\ &+ c_{m,d} \cdot \langle D_d, D_j \rangle_F \\ &= 0 + 0 + \dots + c_{m,j} \langle D_j, D_j \rangle_F + 0 + \dots + 0 \\ &= c_{m,j} \langle D_j, D_j \rangle_F (\because Remark2.3(v)) \end{split}$$

$$\Rightarrow c_{m,j} = \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_j, D_j \rangle_F}, j = 0, 1, \dots, d$$

the scalars, $c_{m,j} = \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_i, D_j \rangle_F} \in B = \{0, 1\}, \forall 0 \le m, j \le d,$

So,

$$\begin{split} A_T^{(m)} = & c_{m,0} \cdot D_0 + c_{m,1} \cdot D_1 + \dots + c_{m,d} \cdot D_d \\ = & \frac{\langle A_T^{(m)}, D_0 \rangle_F}{\langle D_0, D_0 \rangle_F} \cdot D_0 + \frac{\langle A_T^{(m)}, D_1 \rangle_F}{\langle D_1, D_1 \rangle_F} \cdot D_1 + \dots \\ & + \frac{\langle A_T^{(m)}, D_d \rangle_F}{\langle D_d, D_d \rangle_F} \cdot D_d \\ A_T^{(m)} = & \sum_{i=0}^d \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_j, D_j \rangle_F} D_j \end{split}$$

$$\Rightarrow$$
 $\beta_2=\{D_0,D_1,\ldots,D_d\}$ is an orthogonal basis for span $\{A_T^{(0)},A_T^{(1)},\ldots,A_T^{(d)}\}.$

Remark 3.9. (i) We have

$$\begin{split} A_T^{(m)} &= \sum_{j=0}^d \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_j, D_j \rangle_F} D_j (\because Theorem 3.8) \\ A_T^{(m)} &= \frac{\langle A_T^{(m)}, D_d \rangle_F}{\langle D_d, D_d \rangle_F} D_d + \sum_{j=0}^{d-1} \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_j, D_j \rangle_F} D_j \\ &\frac{\langle A_T^{(m)}, D_d \rangle_F}{\langle D_d, D_d \rangle_F} D_d = A_T^{(m)} - \sum_{j=0}^{d-1} \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_j, D_j \rangle_F} D_j \end{split}$$

 \Rightarrow The orthogonal basis for span $\{A_T^{(0)}, A_T^{(1)}, \dots, A_T^{(d)}\}$ obtained from the basis β_1 by Gram-Schmidt process is nothing but β_2 itself.

(ii)
$$A_T^{(m)} = \sum_{j=0}^{d} c_{m,j} D_j$$
, by Theorem 3.8, where

$$c_{m,j} = \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_j, D_j \rangle_F}, m, j = 0, 1, \dots, d.$$

This can be written in the matrix form as given below,

$$\begin{bmatrix} A_{T}^{(0)} \\ A_{T}^{(1)} \\ \vdots \\ \vdots \\ A_{T}^{(d)} \end{bmatrix} = \begin{bmatrix} c_{00} & c_{01} & \cdot & \cdot & \cdot & c_{0d} \\ c_{10} & c_{11} & \cdot & \cdot & \cdot & c_{1d} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ c_{d0} & c_{d1} & \cdot & \cdot & \cdot & c_{dd} \end{bmatrix} \begin{bmatrix} D_{0} \\ D_{1} \\ \vdots \\ D_{d} \end{bmatrix}$$
(3.3)

Let

$$Y = \begin{bmatrix} A_T^{(0)} \\ A_T^{(1)} \\ \vdots \\ \vdots \\ A_T^{(d)} \end{bmatrix}, C = \begin{bmatrix} c_{00} & c_{01} & \cdot & \cdot & \cdot & c_{0d} \\ c_{10} & c_{11} & \cdot & \cdot & \cdot & c_{1d} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ c_{d0} & c_{d1} & \cdot & \cdot & \cdot & c_{dd} \end{bmatrix}, X = \begin{bmatrix} D_0 \\ D_1 \\ \vdots \\ \vdots \\ D_d \end{bmatrix}$$

Then $(3.3) \Rightarrow$

$$Y = CX \tag{3.4}$$

where, X, Y are $(d+1) \times 1$ column matrices whose elements are $n \times n$ binary matrices and C is a $(d+1) \times (d+1)$ real matrix. But by Theorem 3.1, $c_{ii} = 1$ and $c_{ij} = 0$, when $i < j, (i, j = 0, 1, \ldots, d)$. Which implies that C is a unit lower triangular matrix.

 \therefore C is invertible and C^{-1} is a lower triangular unit matrix with |C| = 1.

So, by multiplying C^{-1} on both sides od equation (3.4). Then (3.4) \Rightarrow

$$X = C^{-1}Y \tag{3.5}$$

Then $(3.3) \Rightarrow$

$$\begin{bmatrix} D_0 \\ D_1 \\ \vdots \\ D_d \end{bmatrix} = \begin{bmatrix} c_{00} & c_{01} & \cdot & \cdot & \cdot & c_{0d} \\ c_{10} & c_{11} & \cdot & \cdot & \cdot & c_{1d} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ c_{d0} & c_{d1} & \cdot & \cdot & \cdot & c_{dd} \end{bmatrix}^{-1} \begin{bmatrix} A_T^{(0)} \\ A_T^{(1)} \\ \vdots \\ A_T^{(d)} \end{bmatrix}$$

 \Rightarrow C^{-1} and C are the conversion matrices for getting the orthogonal basis β_2 from β_1 and vice versa.

4. Illustration

Consider the following tree T = (V, E). Then the adjacency matrix A_T of T is

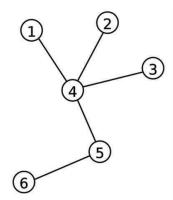


Figure 1

Here the maximum distance d=3 , $A_T^{(0)}=I$, $A_T^{(1)}=\delta(A_T)=A_T$

$$\begin{split} D_2 = & A_T^{(2)} - \delta(A_T^{(2)}*I + A_T^{(2)}*A_T^{(1)}) \\ = & \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \end{split}$$

$$(A_T^{(3)} * I + A_T^{(3)} * A + A_T^{(3)} * A^2) = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \begin{matrix} A_T^{(0)} = D_0 \\ A_T^{(1)} = D_1 \\ A_T^{(1)} = D_1 \\ A_T^{(2)} = D_0 + D_2 \\ A_T^{(2)} = D_0 + D_2 \\ A_T^{(3)} = D_1 + D_3 \end{matrix} \qquad \begin{matrix} D_1 = A_T^{(1)} \\ D_2 = (-1)A_T^{(0)} + A_T^{(2)} \\ D_3 = (-1)A_T^{(1)} + A_T^{(3)} \\ A_T^{(3)} = D_1 + D_3 \end{matrix}$$

Let

$$Y = \begin{bmatrix} A_T^{(0)} \\ A_T^{(1)} \\ A_T^{(2)} \\ A_T^{(3)} \end{bmatrix}, X = \begin{bmatrix} D_0 \\ D_1 \\ D_2 \\ D_3 \end{bmatrix}$$

Then Y = CX, where

$$c_{m,j} = \frac{\langle A_T^{(m)}, D_j \rangle_F}{\langle D_j, D_j \rangle_F}, m, j = 0, 1, 2, 3$$

$$D_{0} = A_{T} = I$$

$$D_{1} = A_{T}^{(1)} - \delta(A_{T}^{(1)} * I) = A_{T}^{(1)} - 0 = A_{T}^{(1)}$$

$$C_{00} = \frac{\langle A_{T}^{(0)}, D_{0} \rangle_{F}}{\langle D_{0}, D_{0} \rangle_{F}} = \frac{6}{6} = 1, c_{01} = c_{02} = c_{03} = 0$$

$$\begin{pmatrix} A_{T}^{(2)} * I + A_{T}^{(2)} * A_{T}^{(1)} \end{pmatrix}$$

$$c_{10} = \frac{\langle A_{T}^{(1)}, D_{0} \rangle_{F}}{\langle D_{0}, D_{0} \rangle_{F}} = \frac{6}{6} = 1, c_{01} = c_{02} = c_{03} = 0$$

$$c_{10} = \frac{\langle A_{T}^{(1)}, D_{0} \rangle_{F}}{\langle D_{0}, D_{0} \rangle_{F}} = \frac{6}{6} = 1, c_{01} = c_{02} = c_{03} = 0$$

$$c_{10} = \frac{\langle A_{T}^{(1)}, D_{0} \rangle_{F}}{\langle D_{0}, D_{0} \rangle_{F}} = \frac{6}{6} = 0,$$

$$c_{11} = \frac{\langle A_{T}^{(1)}, D_{1} \rangle_{F}}{\langle D_{1}, D_{1} \rangle_{F}} = \frac{10}{10} = 1, c_{12} = c_{13} = 0$$

$$c_{20} = \frac{\langle A_{T}^{(2)}, D_{0} \rangle_{F}}{\langle D_{0}, D_{0} \rangle_{F}} = \frac{6}{6} = 1, c_{21} = \frac{\langle A_{T}^{(2)}, D_{1} \rangle_{F}}{\langle D_{1}, D_{1} \rangle_{F}} = \frac{0}{10} = 0,$$

$$c_{22} = \frac{\langle A_{T}^{(2)}, D_{0} \rangle_{F}}{\langle D_{2}, D_{0} \rangle_{F}} = \frac{6}{6} = 1, c_{21} = \frac{\langle A_{T}^{(2)}, D_{1} \rangle_{F}}{\langle D_{1}, D_{1} \rangle_{F}} = \frac{0}{10} = 0,$$

$$c_{22} = \frac{\langle A_{T}^{(2)}, D_{0} \rangle_{F}}{\langle D_{2}, D_{0} \rangle_{F}} = \frac{14}{14} = 1, c_{23} = 0,$$

$$c_{30} = \frac{\langle A_{T}^{(3)}, D_{0} \rangle_{F}}{\langle D_{0}, D_{0} \rangle_{F}} = \frac{6}{6} = 0, c_{31} = \frac{\langle A_{T}^{(3)}, D_{1} \rangle_{F}}{\langle D_{1}, D_{1} \rangle_{F}} = \frac{10}{10} = 1,$$

$$c_{32} = \frac{\langle A_{T}^{(3)}, D_{2} \rangle_{F}}{\langle D_{2}, D_{2} \rangle_{F}} = \frac{0}{14} = 0, c_{33} = \frac{\langle A_{T}^{(3)}, D_{3} \rangle_{F}}{\langle D_{2}, D_{2} \rangle_{F}} = \frac{6}{6} = 1.$$

So,

$$C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, C^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix}$$

Then Y = CX, also $X = C^{-1}Y$

$$Y = CX \Rightarrow$$
 $X = C^{-1}Y \Rightarrow$ $A_T^{(0)} = D_0$ $D_0 = A_T^{(0)}$ $D_1 = A_T^{(1)}$ $A_T^{(2)} = D_0 + D_2$ $D_2 = (-1)A_T^{(0)} + A_T^{(2)}$ $A_T^{(3)} = D_1 + D_3$ $D_3 = (-1)A_T^{(1)} + A_T^{(3)}$

5. Conclusion

Generally, $\beta_2 = \{D_0, D_1, \dots, D_d\}$ is not an orthogonal basis for span $\{A_G^{(0)}, A_G^{(1)}, \dots, A_G^{(d)}\}$, for a simple connected undirected graph G with diameter d. But we proved that this is true for an undirected tree T with diameter d and also derived an invertible conversion matrix for computing one basis β_1 from the other basis β_2 and vice versa. Further study may be done on exploring some other connected undirected graphs having this property other than trees.

References

- [1] L. Graham and L. Lovasz, Distance matrix polynomials of trees, *Advances in Mathematics*, 29(1978), 60–88.
- [2] Bapat, *Graphs and Matrices*, Universitext, Springer, 2010.
- [3] Narsingh Deo, *Graph Theory with applications to Engineering and Computer Science*, Courier Dover Publications, 2016.
- [4] F. Harary, *Graph Theory*, Addison-Wesley, 1994.
- [5] Xiao-Qing Jin, Seak-Weng Vong, An Introduction to Applied Matrix Analysis, P.112, Higher Education Press Ltd, 2016.
- [6] P. A. Asharaf and Bindhu K. Thomas, Distance matrix from adjacency matrix using Hadamard product, *Malaya Journal of Matematik*, 8(3)(2020), 877–881.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
