
Malaya Journal of Matematik, Vol. 8, No. 3, 1321-1327, 2020

https://doi.org/10.26637/MJM0803/0103

A note on Frobenius inner product and the
m-distance matrices of a tree
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Abstract
The m-distance matrix Dm of a simple connected undirected graph has an important role in computing the
distance matrix D of the graph from the powers of the adjacency matrix using Hadamard product. This paper
shows that for an undirected tree T with diameter d, {D0.D1, . . . ,Dd} is an orthogonal basis for the space spanned
by the binary equivalent matrices of the first d +1 powers of the adjacency matrix of T and it gives an invertible
conversion matrix for finding the m-distance matrix of T using Frobenius inner product on matrices.
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1. Introduction
Consider a simple, connected, undirected graph G=(V,E)

of order n with vertex set V and edge set E throughout this
paper unless otherwise specified. Let AG be the n× n adja-
cency matrix [1] of G. Then i jth entry of Am

G (mth power of
AG), represent the number of walks of length m between the
vertices vi and v j of G.

Definition 1.1. ([2]) The distance matrix, D = (di j) of G is
defined as,

di j =

{
d(vi,v j) , if i 6= j
0 , if i = j

Where, d(vi,v j) is the distance between the vertices vi and v j.

Definition 1.2. ([3]) The diameter of a graph G is the maxi-
mum distance between any two vertices of G and it is denoted
by Diam(G).

Definition 1.3. (Hadamard product [4]) Consider the vector
space Rm× n of all m× n real matrices over the real field
R. For P, F ∈ Rm× n, the Hadamard product ◦ is a binary
operation on Rm× n defined by,

(P◦F)i j := (P)i j(F)i j, ∀ i, j.

Let B = {0,1} and let Bm×n denote the set of all binary matri-
ces in Rm×n.
Then for P, F ∈ Bm× n,

(P◦F)i j =

{
1, if pi j = 1 and fi j = 1
0, otherwise

Definition 1.4. (Frobenius inner product [5]) Consider the
vector space Rn× n over the field R. Then the Frobenius inner
product 〈,〉F : Rn× n×Rn× n→ R is defined by,

〈P,Q〉F =
n

∑
i=1

n

∑
j=1

pi jqi j =
n

∑
i=1

n

∑
j=1

(P◦Q)i j = Tr(PQT ),

where P,Q ∈ Rn×n. The Frobenius norm ‖ · ‖ induced by this

inner product on Rn×n is, ‖P‖F = (〈P,P〉F)
1
2 , P∈Rn×n. Then
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the metric dF induced by this norm on Rn×n is dF(P,Q) =
‖P−Q‖F , P,Q ∈ Rn×n.

Remark 1.5. (i) ‖P‖F = (〈P,P〉F)
1
2 =

(
Tr(PPT )

) 1
2 , P ∈

Rn×n

(ii) Let X ,Y ∈ R1×n. Then 〈X ,Y 〉F = ∑
n
i=1 xiyi and

d f (X ,Y ) = ‖X−Y‖F =

(
n

∑
i=1

(xi− yi)
2

) 1
2

which is the Euclidean distance between the vectors X
and Y of Rn.

(iii) For P ∈ Bn×n,

dF(P,0) = ‖P−0‖F = ‖P‖F =

(
n

∑
i=1

n

∑
j=1

p2
i j

) 1
2

Then (dF(P,0))2 represents the number of 1’s in P.
For P,Q ∈ Bn×n,

dF(P,Q) = ‖P−Q‖F =

(
n

∑
i=1

n

∑
j=1

(pi j−qi j)
2

) 1
2

Then (dF(P,Q))2 represent the number of non identical entries
in P and Q and the number of identical entries in P and Q is
n2− (dF(P,Q))2

2. Preliminaries
Definition 2.1. ([6]) The function δ : R→ B = {0,1} is de-
fined by

δ (a) :=
{

0, a≤ 0
1, otherwise ,a ∈ R

Also, δ : Rm×n→ Bm×n is defined by δ (D) = (δ (D))i j :=
(δ (di j)), ∀ i, j and D ∈ Rm×n. Then δ (Am

G) ∈ Bn×n, ∀ m ∈
{0,1,2, . . .} and it is the equivalent binary matrix representa-
tion of Am

G. Let A(m)
G = δ (Am

G). Then

(A(m)
G )i j =

 1, if there exist a walk of length m
from vi to v j in G

0, otherwise

Also, for C,F ∈ Bm×n, δ (C ◦F) = δ (C)◦δ (F).

Definition 2.2. (m-distance matrix [6]) Consider the graph
G = (V,E) with n vertices. Then the m- distance matrix Dm
of G is an n×n symmetric binary matrix defined by

(Dm)i j :=
{

1, if d(vi,v j) = m
0, otherwise

where, d(vi,v j) is the distance between the vertices vi and v j.

Remark 2.3. (i) Dm ∈ Bn×n, ∀ m = 0,1,2, . . .

(ii) D0 = In

(iii) D0 +D1 + . . .+Dd =

Jn =


1 1 . . . 1
1 1 . . . 1
. . . . . .
. . . . . .
. . . . . .
1 1 . . . 1

= The matrix of ones

(iv)
Diam(G) = Max{m : Dm 6= 0}

m

(v) Di ◦D j =

{
0, if i 6= j
Di, if i = j , for 0≤ i, j ≤ d.

i.e., {D0,D1, . . . ,Dd} is an orthogonal subset Rn×n

with respect to the binary operation ◦.

Theorem 2.4. ([6]) Let AG be the adjacency matrix of G =
(V,E) with diameter d. Then β2 = {D0,D1, . . . ,Dd} is a Lin-
early independent subset of the vector space Rn×n.

Theorem 2.5. ([6]) Let AG be the adjacency matrix of G =

(V,E) with diameter d. Then for 1 ≤ m ≤ d, Dm = A(m)
G −

δ

(
∑

m−1
s=0 A(m)

G ◦A(s)
G

)
, where Dm is the m-distance matrix of

G.

3. Main Resuls
Theorem 3.1. Let AG be the adjacency matrix of G = (V,E).
Let d = diam(G). Then for 0≤ K, m≤ d,

Dk ◦A(m)
G =

{
Dm, if K = m
0, if m < K.

Proof. Case(i): K = m(
Dm ◦A(m)

G

)
i j
= (Dm)i j(A

(m)
G )i j

=

{
1, if (Dm)i j = 1 and (A(m)

G )i j = 1
0, otherwise

=

{
1, if d(vi,v j) = m and (A(m)

G )i j = 1
0, otherwise.

But d(vi,v j) = m⇒ (A(m)
G )i j = 1

∴
(

Dm ◦A(m)
G

)
i j
= (Dm)i j(A

(m)
G )i j

=

{
1, if d(vi,v j) = m
0, otherwise = (Dm)i j

That is, (Dm ◦A(m)
G )i j = Dm.

Case(ii): K > m
(Dk ◦A(m)

G )i j = (Dk)i j(A
(m)
G )i j
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If (Dk)i j = 1, then d(vi,v j) = K.
That is, if there exist a shortest path of length K between
vi and v j. But then this path cannot be traversed by any of
the walk between vi and v j of length< K. Thus (A(m)

G )i j = 0.
(∵ K > m)

∴ (DK)i j(A
(m)
G )i j = 0

If (DK)i j = 0, then also (DK)i j(A
(m)
G )i j = 0.

Therefore, (DK ◦A(m)
G )i j = 0, ∀ i, j, ∀ K > m.

ie., DK ◦A(m)
G = 0 if K > m. Hence

DK ◦ A(m)
G =

{
Dm, if K = m
0, if m < K , for K ≤ d.

Theorem 3.2. Let AG be the adjacency matrix of G = (V,E).
Let d = diam(G). Then β1 = {A(0)

G ,A(1)
G , . . .A(d)

G } is a linearly
independent subset of the vector space Rn×n.

Proof. Suppose

c0 ·A(0)
G + c1 ·A(1)

G + . . .+ cd ·A
(d)
G = 0 (3.1)

for some c0,c1, . . . ,cd ∈R. By taking Hadamard product ◦ by
Dd

(3.1)⇒ Dd◦(c0 ·A(0)
G + c1 ·A(1)

G + . . .+ cd ·A
(d)
G ) = 0

c0 · (Dd ◦A(0)
G )+ c1 · (Dd ◦A(1)

G )+ . . .+ cd · (Dd ◦A(d)
G ) = 0

⇒ 0+0+ . . .0+ cd · (Dd ◦A(d)
G ) = 0(∵ T heorem 3.1)

⇒ cd ·Dd = 0⇒ cd = 0, as Dd 6= 0

(3.1)⇒c0 ·A(0)
G + c1 ·A(1)

G + . . .+ cd−1 ·A
(d−1)
G = 0

(3.2)

By taking Hadamard product ◦ by Dd−1 on both side of equa-
tion (3.2).

(3.2)⇒ Dd−1 ◦ (c0 ·A(0)
G + c1 ·A(1)

G + . . .+ cd−1 ·A
(d−1)
G ) = 0

c0 · (Dd−1 ◦A(0)
G )+ c1 · (Dd−1 ◦A(1)

G )+ . . .

+ cd−1 · (Dd−1 ◦A(d−1)
G ) = 0

⇒0+0+ . . .+0+ cd−1 · (Dd−1 ◦A(d−1)
G ) = 0

⇒cd−1Dd−1 = 0⇒ cd−1 = 0, as Dd−1 6= 0

(3.2)⇒c0 ·A(0)
G + c1 ·A(1)

G + . . .+ cd−1 ·A
(d−1)
G = 0

Continue the above process further a finite number of times,
we get c0 = 0, c1 = 0, . . . ,cd = 0.
⇒ β1 = {A(0)

G ,A(1)
G , . . . ,A(d)

G } is a linearly independent subset
of Rn×n.

Remark 3.3. β1 = {A(0)
G ,A(1)

G , . . . ,A(d)
G } is a basis for span

{A(0)
G ,A(1)

G , . . . ,A(d)
G }.

Lemma 3.4. Let G = (V,E) be a connected undirected graph
of order n(n > 1). Let di j denote the distance between vi and
v j. Then there always exist at least one walk between vi and
v j of length di j +2r, ∀ r = 0,1,2, . . .. That is,(

A
(di j+2r)
G

)
i j
= 1,∀r = 0,1,2, . . . .

Proof. Since G is a connected undirected graph, there exist
at least one path in between vi and v j. Let Pi j : v0(= vi)−
v1 − v2 − . . .− vdi j−1 − vdi j(= v j) denote the shortest path
between vi and v j of length di j. If we traverse back and forth
once along the last edge in Pi j, then we get a walk v0(=
vi)− v1− v2− . . .− vdi j−1− vdi j(= v j)− vdi j−1− vdi j(= v j)
of length di j +2 between vi and v j. Also If we traverse back
and forth twice along the last edge in Pi j, then we get a walk
v0(= vi)−v1−v2− . . .−vdi j−1−vdi j−vdi j−1−vdi j−vdi j−1−
vdi j(= v j) of length di j +4 between vi and v j. If we proceed
like this, then we always get a walk of length di j + 2r, ∀
r = 0,1,2, . . . between vi and v j in G. This walk will reflect

as 1 in the i jth entry of A
(di j+2r)
G .

∴
(

A
(di j+2r)
G

)
i j
= 1,∀ r = 0,1,2, . . .

Theorem 3.5. Let T = (V,E) be an undirected tree of order
n(n > 1). Let di j denote the distance between vi and v j. Then,(

A(m)
T

)
i j
=

{
1, if m = di j +2r,∀r = 0,1,2, . . .
0, otherwise

Proof. Let Ti j denote the unique path in T from vi to v j of
distance di j. Consider a walk Wi j from vi to v j such that length
of Wi j, l(Wi j)> di j. Now delete the edges of Ti j from Wi j. Let
W 1

i j be the remaining part of the walk Wi j. Then W 1
i j should

be disconnected. Otherwise W 1
i j and some of the edges of Ti j

together would form a cycle. But T has no cycle.
Let Wi j,1, Wi j,2, . . ., Wi j,s be the component walks of W 1

i j.
Then Wi j,h∩Ti j, (1≤ h≤ s) should be a single vertex vwi j ,h,
otherwise some of the edges of Wi j,h and Ti j together form a
cycle. Since each vertex vwi j ,h is a part of the walk Wi j, Wi j,h
should be either the single vertex vwi j ,h or a closed walk from
vwi j ,h to vwi j ,h.
But length of a closed walk in a tree is always even. So
l(W 1

i j) = ∑
s
h=1 l(Wi j,h) must be even.

Let l(W 1
i j) = ∑

s
h=1 l(Wi j,h) = 2r, for some r ∈ {0,1,2, . . .}

⇒ l(Wi j) = l(Ti j) + l(W 1
i j) = di j +∑

s
h=1 l(Wi j,h) = di j + 2r,

for some r ∈ {0,1,2, . . .}
⇒ length of every walk from vi to v j must be of the form
di j +2r, for r ∈ {0,1,2, . . .}.
By Lemma 3.4, there always exist a walk between vi and v j
of length di j +2r, for all r = 0,1,2, . . . . So(

A(m)
T

)
i j
=

{
1, if m = di j +2r,∀r = 0,1,2, . . .
0, otherwise
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Theorem 3.6. Let AT be the adjacency matrix of a tree T =
(V,E) of order n(n > 1). Let d = diam(T ). Then for 0≤ K ≤
d,

(i) DK ◦A(K+2r)
T = DK .

(ii) DK ◦A(K+2r+1)
T = 0, ∀ r = 0,1,2, . . ..

Proof.(
DK ◦A(m)

T

)
i j
= (DK)i j(A

(m)
T )i j

=

{
1, if (DK)i j = 1 and (A(m)

T )i j = 1
0, otherwise

(DK)i j = 1⇒ di j = K.
But then (A(K+2r)

T )i j = 1, ∀ r = 0,1,2, . . . . (∵ Theorem 3.5)
ie., (DK)i j = 1⇒ (A(K+2r)

T )i j = 1, ∀ r = 0,1,2, . . . .

∴
(

DK ◦A(K+2r)
T

)
i j
={

1, if K = di j
0, otherwise = (DK)i j,∀i, j and r = 0,1,2, . . . .

⇒ DK ◦A(K+2r)
T = DK , ∀ r = 0,1,2, . . . .

By Theorem 3.5 there does not exist a walk of length di j +
2r+1 between vi and v j, ∀ r = 0,1,2, . . . .

⇒
(

A
(di j+2r+1)
T

)
i j
= 0, ∀ i, j and r = 0,1,2, . . . .

⇒ DK ◦A(K+2r+1)
T = 0 ∀ r = 0,1,2, . . . .

Remark 3.7. Let AT be the adjacency matrix of a tree T =
(V,E) of order n(n > 1). Let d = diam(T ). Then for 0≤ K ≤
d. For m < K, A(m)

T ◦DK = 0, (by Theorem 3.1).
For m > K,

(i) DK ◦A(K+2r)
T = DK .

(ii) DK ◦A(K+2r+1)
T = 0. ∀r = 0,1,2, . . ., (by Theorem 3.6)

∴ A(m)
T ◦DK =

{
DK , m = K +2r,∀r = 0,1,2, . . .
0, otherwise

Theorem 3.8. Let AT be the adjacency matrix of T = (V,E)
with d = diam(G). Then β2 = {D0,D1, . . . ,Dd} is an orthog-
onal basis for span {A(0)

T ,A(1)
T , . . .A(d)

T }.

Proof. By Theorem 2.4, β2 = {D0,D1, . . . ,Dd} is linearly
independent. By Remark 2.3(v) β2 is orthogonal also. So
it is enough to prove that A(m)

T is a linear combination of
D0,D1, . . . ,Dd , for 0≤ m≤ d. By Remark 3.7,

∴ A(m)
T ◦DK =

{
DK , m = K +2r,∀r = 0,1,2, . . .
0, otherwise

⇒ ∑
d
K=0 A(m)

T ◦DK is a linear combination of D0,D1, . . . ,Dd .
i.e., ∑

d
K=0 A(m)

T ◦DK = ∑
d
K=0 cm,KDK , for cm,0,cm,1, . . . ,cm,d ∈

B = {0,1}. Now

A(m)
T = A(m)

T ◦ Jn = A(m)
T ◦ (D0 +D1 + · · ·+Dd),(∵ Remark2.3(iii))

=
d

∑
K=0

A(m)
T ◦DK =

d

∑
K=0

cm,KDK

⇒ A(m)
T is a linear combination of D0,D1, . . . ,Dd .

For finding the scalars cm,k, consider

〈A(m)
T ,D j〉F = 〈cm,0 ·D0 + cm,1 ·D1 + · · ·+ cm,d ·Dd ,D j〉F

= cm,0 · 〈D0,D j〉F + cm,1 · 〈D1,D j〉F + · · ·
+ cm,d · 〈Dd ,D j〉F

= 0+0+ · · ·+ cm, j〈D j,D j〉F +0+ · · ·+0
= cm, j〈D j,D j〉F(∵ Remark2.3(v))

⇒ cm, j =
〈A(m)

T ,D j〉F
〈D j,D j〉F

, j = 0,1, . . . ,d

the scalars, cm, j =
〈A(m)

T ,D j〉F
〈D j,D j〉F

∈ B = {0,1},∀0≤ m, j ≤ d,

So,

A(m)
T =cm,0 ·D0 + cm,1 ·D1 + · · ·+ cm,d ·Dd

=
〈A(m)

T ,D0〉F
〈D0,D0〉F

·D0 +
〈A(m)

T ,D1〉F
〈D1,D1〉F

·D1 + · · ·

+
〈A(m)

T ,Dd〉F
〈Dd ,Dd〉F

·Dd

A(m)
T =

d

∑
j=0

〈A(m)
T ,D j〉F
〈D j,D j〉F

D j

⇒ β2 = {D0,D1, . . . ,Dd} is an orthogonal basis for span
{A(0)

T ,A(1)
T , . . . ,A(d)

T }.

Remark 3.9. (i) We have

A(m)
T =

d

∑
j=0

〈A(m)
T ,D j〉F
〈D j,D j〉F

D j(∵ T heorem3.8)

A(m)
T =

〈A(m)
T ,Dd〉F
〈Dd ,Dd〉F

Dd +
d−1

∑
j=0

〈A(m)
T ,D j〉F
〈D j,D j〉F

D j

〈A(m)
T ,Dd〉F
〈Dd ,Dd〉F

Dd = A(m)
T −

d−1

∑
j=0

〈A(m)
T ,D j〉F
〈D j,D j〉F

D j

⇒ The orthogonal basis for span {A(0)
T ,A(1)

T , . . . ,A(d)
T }

obtained from the basis β1 by Gram-Schmidt process is
nothing but β2 itself.

(ii) A(m)
T = ∑

d
j=0 cm, jD j, by Theorem 3.8, where

cm, j =
〈A(m)

T ,D j〉F
〈D j,D j〉F

,m, j = 0,1, . . . ,d.
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This can be written in the matrix form as given below,



A(0)
T

A(1)
T
·
·
·

A(d)
T


=


c00 c01 · · · c0d
c10 c11 · · · c1d
· · · · · ·
· · · · ·
· · · · · ·

cd0 cd1 · · · cdd




D0
D1
·
·
·

Dd

 (3.3)

Let

Y =



A(0)
T

A(1)
T
·
·
·

A(d)
T


,C =


c00 c01 · · · c0d
c10 c11 · · · c1d
· · · · · ·
· · · · ·
· · · · · ·

cd0 cd1 · · · cdd

 ,X =


D0
D1
·
·
·

Dd


Then (3.3)⇒

Y =CX (3.4)

where, X, Y are (d +1)×1 column matrices whose elements
are n× n binary matrices and C is a (d + 1)× (d + 1) real
matrix. But by Theorem 3.1, cii = 1 and ci j = 0, when i <
j,(i, j = 0,1, . . . ,d). Which implies that C is a unit lower
triangular matrix.
∴ C is invertible and C−1 is a lower triangular unit matrix
with |C|= 1.
So, by multiplying C−1 on both sides od equation (3.4). Then
(3.4)⇒

X =C−1Y (3.5)

Then (3.3)⇒
D0
D1
·
·
·

Dd

=


c00 c01 · · · c0d
c10 c11 · · · c1d
· · · · · ·
· · · · ·
· · · · · ·

cd0 cd1 · · · cdd



−1


A(0)
T

A(1)
T
·
·
·

A(d)
T


⇒ C−1 and C are the conversion matrices for getting the
orthogonal basis β2 from β1 and vice versa.

4. Illustration
Consider the following tree T = (V,E). Then the adja-

cency matrix AT of T is

AT =

1 2 3 4 5 6
1 0 0 0 1 0 0
2 0 0 0 1 0 0
3 0 0 0 1 0 0
4 1 1 1 0 1 0
5 0 0 0 1 0 1
6 0 0 0 0 1 0

Figure 1

Here the maximum distance d = 3, A(0)
T = I,A(1)

T = δ (AT )=
AT

A2
T =


1 1 1 0 1 0
1 1 1 0 1 0
1 1 1 0 1 0
0 0 0 4 0 1
1 1 1 0 2 0
0 0 0 1 0 1

 ,

A(2)
T = δ (A(2)

T ) =


1 1 1 0 1 0
1 1 1 0 1 0
1 1 1 0 1 0
0 0 0 1 0 1
1 1 1 0 1 0
0 0 0 1 0 1



A(2)
T ∗A(1)

T =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



A3
T =


0 0 0 4 0 1
0 0 0 4 0 1
0 0 0 4 0 1
4 4 4 0 5 0
0 0 0 5 0 2
1 1 1 0 2 0
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A(3)
T = δ (A(3)

T ) =


0 0 0 1 0 1
0 0 0 1 0 1
0 0 0 1 0 1
1 1 1 0 1 0
0 0 0 1 0 1
1 1 1 0 1 0



A(3)
T ∗A(1)

T =


0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 1 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

 ,

A(3)
G ∗A(2)

T =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


A(1)

T ∗ I =0

D0 =A(0)
T = I

D1 =A(1)
T −δ (A(1)

T ∗ I) = A(1)
T −0 = A(1)

T(
A(2)

T ∗ I +A(2)
T ∗A(1)

T

)

=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

+


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



=


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


D2 =A(2)

T −δ (A(2)
T ∗ I +A(2)

T ∗A(1)
T )

=


0 1 1 0 1 0
1 0 1 0 1 0
1 1 0 0 1 0
0 0 0 0 0 1
1 1 1 0 0 0
0 0 0 1 0 0



(A(3)
T ∗ I +A(3)

T ∗A+A(3)
T ∗A2) =


0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
1 1 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0



D3 =A(3)
T −δ (A(3)

T ∗ I +A(3)
T ∗A(1)

T +A(3)
T ∗A(2)

T )

=


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 0 0 0


Let

Y =


A(0)

T

A(1)
T

A(2)
T

A(3)
T

 ,X =


D0
D1
D2
D3


Then Y =CX , where

cm, j =
〈A(m)

T ,D j〉F
〈D j,D j〉F

,m, j = 0,1,2,3

c00 =
〈A(0)

T ,D0〉F
〈D0,D0〉F

=
6
6
= 1,c01 = c02 = c03 = 0

c10 =
〈A(1)

T ,D0〉F
〈D0,D0〉F

=
0
6
= 0,

c11 =
〈A(1)

T ,D1〉F
〈D1,D1〉F

=
10
10

= 1,c12 = c13 = 0

c20 =
〈A(2)

T ,D0〉F
〈D0,D0〉F

=
6
6
= 1,c21 =

〈A(2)
T ,D1〉F
〈D1,D1〉F

=
0

10
= 0,

c22 =
〈A(2)

T ,D2〉F
〈D2,D2〉F

=
14
14

= 1,c23 = 0,

c30 =
〈A(3)

T ,D0〉F
〈D0,D0〉F

=
0
6
= 0,c31 =

〈A(3)
T ,D1〉F
〈D1,D1〉F

=
10
10

= 1,

c32 =
〈A(3)

T ,D2〉F
〈D2,D2〉F

=
0

14
= 0,c33 =

〈A(3)
T ,D3〉F
〈D3,D3〉F

=
6
6
= 1.

So,

C =


1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1

 ,C−1 =


1 0 0 0
0 1 0 0
−1 0 1 0
0 −1 0 1


Then Y =CX , also X =C−1Y

Y =CX ⇒ X =C−1Y ⇒

A(0)
T = D0 D0 = A(0)

T

A(1)
T = D1 D1 = A(1)

T

A(2)
T = D0 +D2 D2 = (−1)A(0)

T +A(2)
T

A(3)
T = D1 +D3 D3 = (−1)A(1)

T +A(3)
T
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5. Conclusion
Generally, β2 = {D0,D1, . . . ,Dd} is not an orthogonal

basis for span {A(0)
G ,A(1)

G , . . . ,A(d)
G }, for a simple connected

undirected graph G with diameter d. But we proved that this is
true for an undirected tree T with diameter d and also derived
an invertible conversion matrix for computing one basis β1
from the other basis β2 and vice versa. Further study may be
done on exploring some other connected undirected graphs
having this property other than trees.
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