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A note on Frobenius inner product and the
m-distance matrices of a tree
PA. Asharaf'* and Bindhu K. Thomas?

Abstract

The m-distance matrix D,, of a simple connected undirected graph has an important role in computing the
distance matrix D of the graph from the powers of the adjacency matrix using Hadamard product. This paper
shows that for an undirected tree T with diameter d, {Dy.Dy,...,D;} is an orthogonal basis for the space spanned
by the binary equivalent matrices of the first d + 1 powers of the adjacency matrix of T and it gives an invertible
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conversion matrix for finding the m-distance matrix of T using Frobenius inner product on matrices.
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1. Introduction

Consider a simple, connected, undirected graph G = (V, E)
of order n with vertex set V and edge set E throughout this
paper unless otherwise specified. Let Ag be the n X n adja-
cency matrix [1] of G. Then i entry of AL (m'" power of
Ag), represent the number of walks of length m between the
vertices v; and v; of G.

Definition 1.1. (/2]) The distance matrix, D = (d;;) of G is
defined as,
d"_ d(vi,vj) ,lfl7éj
Y10 Jifi=j

Where, d(vi,v;) is the distance between the vertices v; and v;.

Definition 1.2. (/3]) The diameter of a graph G is the maxi-
mum distance between any two vertices of G and it is denoted
by Diam(G).

Definition 1.3. (Hadamard product [4]) Consider the vector
space R™ " of all m x n real matrices over the real field
R. For P, F € R"* " the Hadamard product o is a binary
operation on R™* " defined by,

(POF)Z']‘ = (P)ij(F>ij’

Let B=1{0,1} and let Byyxy denote the set of all binary matri-
ces in R™*",
Then for P, F € Byx n,

Vi, j.

L 1, ifp,-jzlandf,‘jzl
(PoF)ij= { 0, otherwise

Definition 1.4. (Frobenius inner product [5]) Consider the
vector space R"* " over the field R. Then the Frobenius inner
product (,)p : R " x R"™ " — R is defined by,

where P,Q € R"*". The Frobenius norm || - || induced by this
1
inner product on R is, ||P||p = ((P,P)F)%, P € R™". Then

1quj:

|IM:
-

i — Tr(PO"),
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the metric dr induced by this norm on R™" is dp(P,Q) =

|P—QllFr, PO € R™™.
1
Remark 1.5. (i) |P|r = (P.P)r)? = (Tr(PPT))?, P €
Rnxn

(i) Let XY € R™" Then (X,Y)r =Y, x;y; and

1

dy(X,Y) = X — Y||F—<i1 )

which is the Euclidean distance between the vectors X
and Y of R™.
(iii) For P € By«»,

dr(P.0) = ||P— op—|PF—<ZZp,J>

i=1j

Then (dp(P,0))? represents the number of 1’s in P.
For P,Q € By,

dr(P,Q)=|IP-Q|r = (iipij_%'j>

Then (dr (P,Q))? represent the number of non identical entries
in P and Q and the number of identical entries in P and Q is

n* —(dr(P,Q))?

2. Preliminaries

Definition 2.1. ([6]) The function 6 : R — B =1{0,1} is de-
fined by

5(a) ::{ ?:

Also, 6 : R™*" — By, is defined by (D) = (8(D));j :=
(8(dij)), ¥ i,j and D € R™". Then 8(A™) € Byyn, ¥ m €
{0,1,2,...} and it is the equivalent binary matrix representa-

tion of A7}. Let A(Gm) = 6(A%). Then

a<0

. R
otherwise <

,a

1, if there exist a walk of length m
fromv; tov;in G
0, otherwise

Also, for C,F € Byyxp, 6(CoF)=06(C)od(F).

Definition 2.2. (m-distance matrix [6]) Consider the graph
G = (V,E) with n vertices. Then the m- distance matrix D,,
of G is an n X n symmetric binary matrix defined by

1, ifd(vi,vy) =m
(Dm)ij '_{ 0, otherwise

where, d(vi,v j) is the distance between the vertices v; and v;.
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Remark 2.3. (i) D, € Byx,, Vm=0,1,2,...
(ii) Do = I,

(iii) Do+D1+...+ Dy =

1 1
1 1
J,= = The matrix of ones
1 1 1
. Diam(G) = Max{m : D, # 0}
(iv)
m
[0, ifi#j ..
(v) DZODJ{ Di. ifie ,for0<i,j<d.
e, {Do,Dy,...,Dg} is an orthogonal subset R""

with respect to the binary operation o.

Theorem 2.4. ([6]) Let Ag be the adjacency matrix of G =
(V,E) with diameter d. Then 3, = {Dy,Dy,...,D;} is a Lin-
early independent subset of the vector space R"*".

Theorem 2.5. ([6]) Let Ag be the adjacency matrix of G =
(V,E) with diameter d. Then for 1 <m <d, D, = A<Gm) —
1) (Z;”:_OIA(Gm) 0A<GS)>, where Dy, is the m-distance matrix of

3. Main Resuls

Theorem 3.1. Let Ag be the adjacency matrix of G =
Let d = diam(G). Then for 0 < K, m <d,

m _ | Dp, ifK=m
DioAg _{0, ifm< K.

(V,E).

Proof. Case(i): K =m

(Dm 0Ag">) = (D) (AL

)

_ [ 1, if(Dn)i=1and (AU); =1
0, otherwise

_J L ifd(v,-,vj):mand(A(Gm))ijzl
0, otherwise.

Butd(v;,vj) =m= (A(Gm>),-j =1
- (Dwe ) = (Da)if (A"

That is, (D, oA(C';")),- =Dy
Case(ii): K >m
(DeoAG ) = (D) (AT");s

ifd(vi,v;)=m

otherwise = (Dm)ij
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If (Dk)ij =1, then d(vi,Vj) =K.
That is, if there exist a shortest path of length K between
v; and v;. But then this path cannot be traversed by any of

the walk between v; and v; of length< K. Thus (Ag")),-j =0.
(K >m)

< (DR)ij(Ag)ij =0

If (DK),'j =0, then also (DK),']'(A(Gm))ij =0.

Therefore, (Dg oA<Gm)),»j =0,Yi,j,VK>m.

ie., Dg oA"Y — 0 if K > m. Hence

D,(oAg”)_{Dm’ HK=m  fork<d.

0, ifm<K
O

Theorem 3.2. Let Ag be the adjacency matrix of G = (V,E).
Let d = diam(G). Then B = {A<GO),A(GU7 . .A(Gd)} is a linearly
independent subset of the vector space R™ ",

Proof. Suppose

C0~Ag))+cl-Ag)+...+Cd-A(Gd>:0 3.1

for some cy,c1,...,cq € R. By taking Hadamard product o by
Dy
B.1) = Dgo(co- AV 41 AW + .. 4 A9 =0
co-(DgoAY) ¢y (DgoA) +.. 4 ¢y (DgoA?) =0
= 0+40+...04cq- (DgoAY) = 0(. Theorem 3.1)
=cyDg=0=c¢;4=0,asDy;#0

-1) _ 0
(3.2)

G =AY 4o AV 4 ey oAl

By taking Hadamard product o by D;_; on both side of equa-
tion (3.2).

(32)=Dy_;0 (co-Ag)) +c1 ~A8> + .. Fci 'A(Gdil)) =0
co- (Da-1 OA(C(}))) +c1-(Da-1 OA((;I))+"'

+ca—1-(Dg-1 OA(GtF])) =0

¢0+0+...+0+cd_1'(Dd—1OA(Gd_1)) =0

=cq_1Dg_1=0=c¢c4_1=0,as Dy 7&0

(d—1)

(32 =co-AY 41 AV 4 ey A4 =0

Continue the above process further a finite number of times,
we getco=0,c1=0,...,¢4 =0.

=B = {Ag)) 7A(Gl), . ,A(Gd>} is a linearly independent subset
of R™", O

Remark 3.3. 3 = {Ag)),A(Gl), ... ,A(Gd)} is a basis for span

0 1 d
(A9 AN Ay,
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Lemma 3.4. Let G = (V,E) be a connected undirected graph
of order n(n > 1). Let d;; denote the distance between v; and
vj. Then there always exist at least one walk between v; and
vjof length d;j +2r,¥V r=0,1,2,.... That is,

(Ag"f'“”) = 1LVr=0,1,2,....
ij
Proof. Since G is a connected undirected graph, there exist
at least one path in between v; and v;. Let P;j : vo(=v;) —
VI = V2 — ... = Vg1 — Vg, (= v;) denote the shortest path
between v; and v; of length d;;. If we traverse back and forth
once along the last edge in P;;, then we get a walk vo(=
V,‘) — V] —V2—...— le.j_l - vdij(: vj) - Vd,-j—l - vdij(: Vj)
of length d;; + 2 between v; and v;. Also If we traverse back
and forth twice along the last edge in P,;, then we get a walk
VO(= Vi) =VI—Va— ... = Va1 = Vd;; = Vdyj—1 — Vd;; — Vd;—1 —
vg;;(=v;) of length d;; + 4 between v; and v;. If we proceed
like this, then we always get a walk of length d;; +2r, V

r=0,1,2,... between v; and v; in G. This walk will reflect

(d,'_,'+2r)

" entry of A .

as 1 in the ij

3 (Ag’"f“’))” —1Vr=0,12,...
ij

O

Theorem 3.5. Let T = (V,E) be an undirected tree of order
n(n > 1). Let d;; denote the distance between v; and v;. Then,

(A<m>) [ L ifm=dy42n¥r=0,1.2,...
T )ij 0, otherwise

Proof. Let T;; denote the unique path in T from v; to v; of
distance d;;. Consider a walk W;; from v; to v; such that length
of W;;, [(W;;) > d;;. Now delete the edges of 7;; from W;;. Let
W;; be the remaining part of the walk W;;. Then W} should
be disconnected. Otherwise Wi} and some of the edges of T;;
together would form a cycle. But T has no cycle.
Let W;; 1, Wijo, ..., W;j s be the component walks of Wl}
Then W;; , N T;j, (1 < h <s) should be a single vertex Vir,j hs
otherwise some of the edges of W;;;, and T;; together form a
cycle. Since each vertex vy, 5 is a part of the walk Wi;, Wi;
should be either the single vertex Vyy,;j,h OF @ closed walk from
Vwijh to Vi he
But length of a closed walk in a tree is always even. So
[(W}) = X)_; L(W;j ) must be even.
Let [(W}) = X5 [(W;j ) = 2r, for some r € {0,1,2,...}
= 1(Wij) = U(Tyj) + 1(Wyj) = dij + Lhey L(Wijp) = dij +2r,
for some r € {0,1,2,...}
= length of every walk from v; to v; must be of the form
dij+2r, forre{0,1,2,...}.
By Lemma 3.4, there always exist a walk between v; and v;
of length d;; +2r, forall r =0,1,2,.... So

(A(m)) _ { 1, ifm=d;j+2rvr=0,1,2,...

T Jii 71 0, otherwise
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Theorem 3.6. Let At be the adjacency matrix of a tree T =
(V,E) of order n(n > 1). Let d = diam(T). Then for 0 <K <
d,

(K+2r)

(i) DoA™ = Dy

(i) DoAY =0, vr=01,2,...

Proof.

(DK oA(Tm))‘_ —

)

(D) (AP
_ [ 1, if(Dg)iy=1and (A" =1
0, otherwise

(D[()ij=1:>dU—K
But then (A% "2)),; =1,V r=0,1,2,.... (.- Theorem 3.5)
ie., (Dg)ij=1= A%, =1,vr=0,1,2,..

( OA(K+2r)) _

ij

L, itK=dij B
{ 0. otherwise = (Dk)ij,Vi,jand r=0,1,2,....
= Dg oA ™) =D vr=0,12,. ...

By Theorem 3.5 there does not exist a walk of length d;; +
2r+1betweenv;and v;,Vr=0,1,2,....
N (A(Td"f”’“>) —0,Vi,jandr=0,1,2,....

ij

OA(K+2r+1)

0Vr=0,1,2,.... O

Remark 3.7. Let At be the adjacency matrix of a tree T =
(V,E) of order n(n > 1). Let d = diam(T). Then for 0 < K <
d. Form <K, A<Tm) oDk =0, (by Theorem 3.1).

Form > K,

(i) Dx oAY ™) = Dy.
(ii) Dy oA ) = 0.vr=0,1,2,..., (by Theorem 3.6)

. 4(m) | Dk, m=K+2rVr=0,1,2,...
Az ODK_{ 0, otherwise

Theorem 3.8. Let At be the adjacency matrix of T = (V,E)
with d = diam(G). Then B = {Do,D,...,D4} is an orthog-
onal basis for span {A(TO) ,A(Tl), . .A(Td> }.

Proof. By Theorem 2.4, B, = {Do,D,...,D4} is linearly
independent. By Remark 2.3(v) f3; is orthogonal also. So
(m)

it is enough to prove that A is a linear combination of
Dy,Dy,...,Dg, for 0 <m < d. By Remark 3.7,

[ Dk, m=K+2r¥r=0,1.2,...
" A7 ODK{ 0,  otherwise
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= ZK OA (m) ODK is a linear combination of Do, D1,...,Dy.

ie, Y4 oDK—ZK 0 Cm.k DK, TOr ¢ 0, Cim 15+ s Cma €
B =0, 1} Now
A = A 6 g, =AY o (Dg+ Dy + -+ + Dy), (- Remark2.3iii))
d
Z (m) oDk = Z Cm,KDK
K=0 K=0
= Ag") is a linear combination of Dy, D1, ...,Dy,.

For finding the scalars ¢, ¢, consider

<A§~m)7Dj>F:<Cm()-D0—‘rCm1~D1+---—|—Cmd~Dd,Dj>F
=Cpo- <D0,D> +Cm,1- <D17D VP
+Cma-(Da;Dj)F
=0+0+--+¢nj(Dj;Dj)r +0+4---+0
=cm,j(Dj,Dj)F (. Remark2.3(v))

(A" .Dj)r
= Cyy i = 5 :0717...7d
(A7 D)) .
the scalars, ¢, j = ———— € B={0,1},Y0<m, j<d,
m,j <DJ7DJ>F { } J
So,
A(Tm) =Cm,0-Do+cm1 D1+ +Cma-Da
Ay”.Doe . (A7 Do)
= . D . Dl _|_ cen
(Do,Do)r (D1,D1)r
(m)
Ay, D,
+< T » d>F 'Dd
(Da,Da)F
)\ (AP DpE
Ap’ = Z ———D;
= (Dj;Dj)r
= B, = {Do,Dy,...,D4} is an orthogonal basis for span
(a0l Ay m
Remark 3.9. (i) We have
d (a0m)
Ar’.D
A(Tm> =Y Ar, ]>FDj(','Theorem3.8)
j=0 <Dj7DJ>F
(m)
m) _ Ay Da)r
A "D+ j
T "Dy, Da)r ¢ Z DD) D;
<A(Tm>7Dd>FDd _Alm _di (A7 )7D/>FD
(Da,Da)F T & (D,DyF
= The orthogonal basis for span {A(T()>,A(Tl), e ,A(Zfi)}
obtained from the basis By by Gram-Schmidt process is
nothing but B itself.
(ii) A Z? oCm,jDj, by Theorem 3.8, where

(A D)

m,j=0,1,....d.
DDy "

Cm,j =
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This can be written in the matrix form as given below,

- ()
AT1 co co1 -+ - - coal| |Do
Al cio ¢ - - - ca| D1
= . . (3.3)
A(Td> €0 ¢t Cdd] |Da
Let
-
A(T]) co co1 -+ Cod Dy
A(T) clo ci1 v ¢ Cld D,
Y = C= X =
A(Td> Cdo Ca1 * Cdd Dy
Then (3.3) =
Y =CX (3.4

where, X, Y are (d+ 1) x 1 column matrices whose elements
are n x n binary matrices and C is a (d+1) x (d + 1) real
matrix. But by Theorem 3.1, ¢;; = 1 and c;j =0, when i <
J,(i,j=0,1,...,d). Which implies that C is a unit lower
triangular matrix.

. C is invertible and C~" is a lower triangular unit matrix
with |C| = 1.

So, by multiplying C~' on both sides od equation (3.4). Then
(3.4) =

x=cly (3.5)
Then (3.3) =
1 [ 4(0)7
Dy o0 Co1 - Cod A(T)
D, clo ¢+ -+ Cud A(Tl)
Dy €do Ca1 © Cdd A<Td)

= C~! and C are the conversion matrices for getting the
orthogonal basis B, from By and vice versa.

4. lllustration

Consider the following tree T = (V,E). Then the adja-

cency matrix Ay of T is

1 2 3 4 5 6

1[0 0 0 1 0 O]
2{0 0 01 0 O
Ar= 310 0 0 1 0 O
411 1 1 0 1 O
50 0 0 1 0 1
6/0 0 0 0 1 O
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Figure 1

Here the maximum distance d = 3, A(TO) = I,A(T]) =6(Ar)=
Ar

1 1101 0
1 1101 0
A%:111010
000 4 0 1]’

1 11020

0 0 0 1 0 1]

(1 1 1 0 1 0]

1 1101 0

2 2 1 1.1 0 1 0
A(T)ZS(A(T)):000101
1 1101 0
000 1 0 1]

0 0 0 0 0 0]
00000 O
@.,0_10 00 0 0O
Ar 47 =10 0 0 0 0 0
000000

0 0 00 0 0f

[0 0 0 4 0 1]

000 401
L0004 01

T=14 4 4 0 5 0
00050 2

11 10 2 0f



A note on Frobenius inner product and the m-distance matrices of a tree — 1326/1327

00010
00010
(3) _ @3, _ (0 0 0 10
Ap =0UAr) =11 1 1 o
00010
1110 1
0 0 0 1 0
00010
3., _10 0 01 0
Ar*ATT= 0 1 1 01
000710
000 0 1
0 0 0 0 O
00000
3., (00 0 00
A6 *A1" =10 0 0 0 0
00000
000 0 0
AW 1=0
Dy =AY =1

Dy =AY —5(A <y =A) —0=4

(AP <144 <al)

cococo~ococococo~
cooco—~o0 cooco~o

Dy —A®

|
b S
o N

O = O = =

AV 144

S = O = O =

(=)
[=NeoNeBoNoNel
[eNeoNeBoNeohel

S OO OO OO OoO OO
— o000 0o oo 0ooo

SO~ OO0 OO ~=O O
O OO0 O~ OO0 O

— (AP s1+ AP A

O = O O = =
-0 O OO
SO O~ =
SO = OO

O A+AP) xa%) =

SO~ O OO

SO OD DO O~ OO0 OO ===

[eNeoNeBoNeoNel

SO = OO0

)

T

[eNeoNeBoNeNel

SO = O OO

[N eNoNoNo Nl

O = O = = =

[sNeoNeBoNeohel

—_ o = O O O

Dy =AY —5(AY «1+ 4

00 0 0 O
00 0 0 O
100 0 0 0
10 0 0 0 O
00 0 0O
1 1.1 0 0
Let
0
4
_ AT _ |D
YT [T |
A?) D3
Then Y = CX, where
(A" .D))r

Cm,j =
" (D), Dj)r

<TS> *A(Tl) +A(TS) *A(Tz>)
1

SO O =

7m’j:0)172’3

)
<A(TO ,Do)F 6
_Mr 2 ZF0F Py — = Cn —
00 <D0~,DO>F 6 ;€01 =co2 = cp3 =0
<A(Tl),D0>F 0
=5y = =0
(Do,Do)r 6
@Y e 10
r o FUF Y L —ea =
1 Dy.Dy 10 ,c12=c13=0
AP 6 AP D00
2T Do, Doy 6 T (DiDye 10
AP Dy 14 B
c2 <D2.,D2>F ﬁ 1,c03 =0,
_ @by _0_ A7 Dr 10
P Do, Doy 6 T (DiDye 1077
AP Dy)r 0 AP Dy)r 6
3= =—=0cp3=—"——"-=-=1
(D3,Dy)r 14 (D3,D3)F 6
So,
1 0 0 O 1 0O 0 O
ot oo ., |0 1 00
=11 010" |21 0 1 0
01 0 1 0 -1 0 1
ThenY =CX, also X =C 'y
Y =CX = X=Clvy=
8 Ay =Dy Do = A
0 A =p, Dy =AY
| AP = Dy +D; Dy = (~1)AY) 4P
0 A(TS)=D1+D3 D3=(—1)A(T]>+A(T3)
1326 L
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5. Conclusion

Generally, B, = {Dy,D;,...,D;} is not an orthogonal
basis for span {A(GO),A(GI), e ,Ag”}, for a simple connected
undirected graph G with diameter d. But we proved that this is
true for an undirected tree 7 with diameter d and also derived
an invertible conversion matrix for computing one basis f;
from the other basis 8, and vice versa. Further study may be
done on exploring some other connected undirected graphs
having this property other than trees.
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