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On bounds of perfect number
Uma Dixit∗

Abstract
In this paper we discuss about odd perfect numbers. We first prove an important inequality and use it to discuss
about bounds of sum of reciprocal prime divisors of the perfect number. We then derive an important conclusion
about improving the upper bound incase when (15,n) = 5.
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1. Introduction
For any positive integer n, let σ(n) denote the sum of the

positive divisors of n. It is well known that a positive integer
n is said to be perfect if σ(n) = 2n. According to Euler
an even number n is perfect if and only if it is of the form
n = 2k−1

(
2k−1

)
, where 2k−1 is a prime number. However

the existence or otherwise of an odd perfect number is still an
open question. Lot of research has been done on odd perfect
numbers problem and various results in various directions
are given. Review of these results can be seen in [1]. If
we consider all the primes which actually divide n and then
consider addition of all the inverse primes that is adding the
reciprocals and denote it by R ( n ), then much of the research
was done on calculating upper and lower bounds for R ( n ).
The first study was done by [4] and later lot of improvement
in these was done, which we can refer in [1],[3],[5],[2] and
[6] and the best bounds given by researchers is in table below.

A result by Euler also gives that:
If n is product of prime powers where exactly one pk,

is such that pk ≡ αk ≡ 1(mod 4), then whenever i and k are
different, then we get αi is even and pi is an odd prime. (1.1)

I II III
Lower bound Upper bound

(15,n) = 5 0.64738 0.677637
(15,n) = 1 0.66745 0.69315
(15,n) = 15 0.59606 0.673634
(15,n) = 3 0.60383 0.65731

Table 1. Upper and Lower bound

2. Preliminaries
We require the following result already given by John A.

Ewell [2].

Theorem 2.1. ([2], Theorem 3) let us consider n which is
of the form (1.1), where pi 6= 3 for i = 1,2, . . . , t; pi = 2πi−
1,αi = 2ei then for distinct i&k and αk = 4ε+1, the following
congruences hold.

(i) ε = 0 or −1(mod 3).

(ii) πiei ≡ o or -1 (mod 3 ) and finally

(iii) pk ≡ 1(mod 12).

We state the following lemma.

Lemma 2.2. Whenever 0< x< 1
7 we get 1+x+x2 > e(x+c1x2)

where c1 = 0.406.

Lemma 2.3. Whenever n is quasi-perfect and α is of the
form 2+ 1

n ,m < n m is divisor of n and where R1(n) = R(n)
and R2(n) = ∑

t
i=1

1
p2

i
, then we get R1(n)< R1(m)+cR2(m)+
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log
(

αm
βσ(m)

)
− cR2(n)given

β =



1 if (n,15) = 1 or (n,15) = (m,15) = 3
or (n,15) = (m,15) = 5
or (n,15) = (m,15) = 15

1+ 1
3 +

1
32 if (n,15) = 3 and (m,15) = 1

or(n,15) = 15 and (m,15) = 5

1+ 1
5 +

1
52 if (n,15) = 5 and (m,15) = 1

or (n,15) = 15 and (m,15) = 3(
1+ 1

3 +
1

32

)(
1+ 1

5 +
1

52

)
if (n,15) = 15 and (m,15) = 1.

Lemma 2.4. If m is divisor of n′ with m < n′ and n is odd
perfect number of the form (1.1) and n′= n

pkαk
·we get R1(n)<

R1(m)+cR2(m)+ log
(

αm
βσ(m)

)
−cR2(n) where c and β have

the same value as Lemma 2.2 and Lemma 2.3 respectively.

Proof. Suppose n = ∏
t
i=1 pαi

i , where pi ’s are odd primes,
pk ≡ αk ≡ 1(mod4) for exactly one k and αi ≡ 0 (mod 2 )
for i 6= k. Then

2 =
σ(n)

n
=

t

∏
i=1

(
1+

1
pi

+
1
p2

i
+ · · ·+ 1

pαi
i

)
. (1.2)

Suppose m is a divisor of n′ with m < n′, then m = ∏
t
i=1
i 6=k

pbi
i

where 0 ≤ bi ≤ αi for each i and bi < αi for at least one i.
Therefore

σ(m)

m
=

t

∏
i=1
i 6=k

(
1+

1
pi

+
1
p2

i
+ · · ·+ 1

pbi
i

)
. (1.3)

Now from (1.2), (1.3) and Lemma 2.2 we get

2 =
t

∏
i=1
pi |m

(
1+

1
pi

+ · · ·+ 1
pαi

i

) t

∏
i=1
pi -m

(
1+

1
pi

+ · · ·+ 1
pαi

i

)

>
t

∏
i=1
pi |m

(
1+

1
pi

+ · · ·+ 1

pbi
i

)
t

∏
i=1
pi -m

(
1+

1
pi

+
1
p2

i

)

=
σ(m)

m ∏
pi |n
pi -m

(
1+

1
pi

+
1
p2

i

)

=
σ(m)

m ∏
pi|n

pi -m,pi≥7

(
1
pi

+ c · 1
p2

i

)
·β

>
σ(m)

m ∏
pi|n

pi -m,pi≥7

(
1
pi

+ c · 1
p2

i

)
·β

= β · σ(m)

m
· exp

∑
p|n
p-m

(
1
p
+

c
p2

) ,

which on taking logarithm gives

log2 > log
(

βσ(m)

m

)
+ ∑

p|n
p-m

(
1
p
+

c
p2

)

= log
(

βσ(m)

m

)
+ ∑

p|n
p-m

1
p
+ c ·∑

p|n
p-m

1
p2

= log
(

βσ(m)

m

)
+R1(n)−R1(m)+ c [R2(n)−R2(m)]

Therefore,

R1(n)< R1(m)+ cR2(m)+ log
(

2m
βσ(m)

)
− cR2(n).

3. Main Results
In this section we improve the upper-bound in the first

case i.e. (15,n) = 5 which means 5 is a divisor and 3 is not a
divisor and also 52 does not divide n unitarily.

Theorem 3.1. If (15,n) = 5 then p1 = 5 and pi 6= 3 for i =
2,3, . . . , t. It follows from (i) and (ii) of Theorem 2.1, that
k 6= 1, pk ≥ 13 and αk = 4ε+1 where ε ≡ 0 or−1 (mod 3).
Therefore, pk ≥ 13,k > 1 and αk ≡ 1 or −3(mod12). Also
since π1 = 3, we get from Theorem 2.1 (iii), that π1e1 ≡
0(mod 3) so that e1 ≥ 1 and hence α1 ≥ 2. Thus 52 divides n
whenever (15,n) = 5. By our assumption, 52 does not unitar-
ily divide n and hence 54 divides n.

Proof. Case (i) I f pk = 13 and αk = 1. Then since σ(13) =
14 divides 2n, we get 7 divides n. Therefore p2 = 7, so that
π2 = 4. Again by Theorem ( 2.1 ) (iii), we have e2 ≡ 0 or -1
(mod 3 ) so that e2 ≥ 2 and hence α2 ≥ 4. That is, 74 divides n
in this case. Also since 54 divides n,σ

(
54
)
= 781 = 11×71

divides n. Taking m = 54 ·112 ·712, where m divides n′ and
m < n′, we get by Lemma 2.4 that

R1(n)< 1
5 +

1
11 +

1
71 +(0.406)

(
1
52 +

1
112 +

1
712

)
+ log

[
2·54·112·712·4·10·70

(55−1)(113−1)(713−1)

]
−(0.406)

[
1
52 +

1
72 +

1
112 +

1
132 +

1
712

]

=
1
5
+

1
11

+
1

71
+(0.406)

(
1
52 +

1
112 +

1
712

)
+ log

(
54 ·112 ·712 ·80 ·70

)
− log

[(
55−1

)(
113−1

)(
713−1

)]
− (0.406)

(
1
52 +

1
72 +

1
112 +

1
132 +

1
712

)
= 0.2+0.09090909+0.014084507+0.019675911
+28.38942383−28.02784057−0.030363992

= 0.655888773. (1.4)

Subcase(i): If pk = 13 and αk > 1.
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Then again taking m = 54 ·112 ·712, where m divides n′

and m < n′, by Lemma 2.4, we get

R1(n)< 1
5 +

1
11 +

1
71 +(0.406)

(
1
52 +

1
112 +

1
712

)
+ log

[
2·54·112·712·4·10·70

(55−1)·(113−1)·(713−1)

]
− (0.406)

(
1
52 +

1
112 +

1
712

)
= 1

5 +
1
11 +

1
71 + log

(
54 ·112 ·712 ·80 ·70

)
− log

[(
55−1

)(
113−1

)(
713−1

)]
= 0.2+0.09090909+0.014084507−28.38942383
−28.02784057

= 0.666576854. (1.5)

Case(ii): If pk 6= 13, then pk > 13.
Taking m = 54 ·112 ·712, where m divides n′ and m < n′,

we get by Lemma 2.4 that

R1(n)< 1
5 +

1
11 +

1
71 +(0.406)

(
1
52 +

1
112 +

1
712

)
+ log

[(
2·54·112·712·4·10·70

(55−1)·(113−1)·(713−1)

]
− (0.406)

(
1
52 +

1
112 +

1
712

)
= 0.2+0.09090909+0.014084507−28.38942383
−28.02784057

= 0.666576854. (1.6)

By the results (1.4), (1.5) and (1.6), we get

R1(n)< 0.666576854.

Hence the theorem.
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