

https://doi.org/10.26637/MJM0804/0006

The open hub number of a graph

Ragi Puthan Veettil^{1*} and T.V. Ramakrishnan²

Abstract

Let G = (V, E) be a connected graph. A subset H of V is called a hub set of G if for any two distinct vertices $u, v \in V - H$, there exists a u-v path P in G such that all the internal vertices of P are in H. A hub set H of V is called an open hub set if the induced sub graph < H > has no isolated vertices. The minimum cardinality of an open hub set of G is called the open hub number of G and is denoted by $h_O(G)$. In this paper, we present several basic results on the open hub number.

Keywords

Open hub set, Open hub number.

AMS Subject Classification

05C40, 05C99.

¹ Department of Mathematics, PRNSS College, Mattanur-670702, Kerala, India.

² Department of Mathematics, Kannur University, Kannur-670002, Kerala, India.

*Corresponding author: ¹ ragiputhanveettil@gmail.com; ²ramakrishnantvknr@gmail.com

Article History: Received 29 April 2020; Accepted 30 August 2020

	Contents
1	Introduction
2	Main Results 1375
	References

1. Introduction

By a graph G = (V, E) we mean a finite ordered graph with no loops and no multiple edges. For graph theoretic terminology we refer [1]. Let G = (V, E) be a connected graph. The concept of hub set is introduced by M walsh[3]. A subset H of V is called a hub set of G if for any two distinct vertices $u, v \in V - H$, there exists a *u*-*v* path *P* in *G* such that all the internal vertices of P are in H. The minimum cardinality of a hub set of G is called the hub number of G and is denoted by h(G). The size of a smallest connected hub set is denoted by $h_c(G)$. A dominating set of a graph G is a sub set D of V such that every vertex not in D is adjacent to at least one member of D. The domination number $\gamma(G)$ is the number of vertices in a smallest dominating set for G. A dominating set D is said to be a connected dominating set if the subgraph < D > induced by D is connected in G. The minimum of the cardinalities of the connected dominating sets of G is called the connected domination number and is denoted by $\gamma_c(G)$. In this paper we introduce the Open hub number of a graph G. A hub set H of V is called an open hub set if the induced subgraph $\langle H \rangle$ has no isolated vertices. The minimum cardinality of an open hub

set of *G* is called the open hub number of *G* and is denoted by $h_O(G)$. Since an open hub set has at least two elements we have $h_O(G) \ge 2$.

©2020 MJM

We use the following results to prove our main results.

Lemma 1.1. [3] For any graph G, $\gamma(G) \le h(G) + 1$.

Lemma 1.2. [3] Let d(G) denote the diameter of G. Then $h(G) \ge d(G) - 1$, and the inequality is sharp.

Theorem 1.3. [3] If C_n is the cycle with n vertices then, $h(C_n) = n - 3$.

Theorem 1.4. [3] If P_n is the path with n vertices then, $h(P_n) = n - 2$.

Theorem 1.5. [4] If G is a connected graph and $n \ge 3$, then $\gamma_c(G) = n - \varepsilon_T(G) \le n - 2$, where $\varepsilon_T(G)$ is the maximum number of pendent vertices of underlying spanning tree of G.

Theorem 1.6. [5] For any connected graph G, $h(G) \le h_c(G) \le \gamma_c(G) \le h(G) + 1$

2. Main Results

Theorem 2.1. For every connected graph G, $h(G) \le h_O(G) \le 2h(G)$.

Proof. Since every open hub set is a hub set we have $h(G) \le h_O(G)$. Let $H = \{v_1, v_2, ..., v_k\}$ be a minimum hub

set of G. Since G has no isolated vertices ,each open neighborhood $N(v_i) \neq \phi$.Let $u_i \in N(v_i), 1 \leq i \leq k$ and let H' = $\{u_1, u_2, ..., u_k\}$. Therefore the set $H \cup H'$ is an open hub set of G. Hence $h_O(G) \le |H \cup H'| \le 2|H| = 2h(G)$.

Proposition 2.2. For a connected graph G, if $h_c(G) \ge 2$ then, every connected hub set is an open hub set.

Proof. Suppose $h_c(G) \ge 2$ and assume H is a connected hub set of G.Then $\langle H \rangle$ is connected and contains more than one vertex.Hence H is an open hub set.

Proposition 2.3. For any connected graph G, if $\Delta(G) = n-1$, then $h_O(G) = 2$.

Proof. Suppose $\Delta(G) = n - 1$. Let u be a vertex of G having degree n-1.Then $\{u, v\}$ where $v \in N(u)$, the neighborhood of u, forms an open hub set of G. Hence the result.

Corollary 2.4. $h_O(W_n) = 2$

Proof. The result is obvious from above proposition since $\Delta(W_n) = n - 1.$

Now we characterise a class of graphs having open hub number n-3

Theorem 2.5. Suppose G is a connected graph of order n such that $\Delta(G) \neq n-1$, then $h_O(G) = n-3$ if and only if G isomorphic to one of the following graphs

- 1. The cycle C_n
- 2. A subdivision of $K_{1,3}$
- 3. C_k with a path attached for any k.
- 4. C_3 with two paths attached
- 5. C_3 with three paths attached
- 6. A graph with exactly two cycles C_3 and C_k for any $k \ge 4$, with one edge common, if G has no pendent vertices.
- 7. A graph with exactly two cycles C_3 and C_k for any $k \ge 3$, with one edge common and a path attached to a vertex of degree 2 in C_3

Proof. Suppose $h_O(G) = n - 3$. Since $h_O(G) \le n - \Delta(G)$ we have $\Delta(G) \leq 3$.

If $\Delta(G) = 1$, $G \equiv K_2$, a contradiction.

If $\Delta(G) = 2$, G is either a cycle or a path. But open hub number of the path P_n is n - 2. Hence G is a cycle. If $\Delta(G) = 3$

Case 1 Suppose G is a tree having l leaves.

Since the set of all non leaf vertices of a tree(which is not a star) is a minimum open hub set, the open hub number of tree is n - l, we have 1=3. That is G is a tree having 3 leaves and $\Delta = 3.$

Therefore G must be isomorphic to a subdivision of $K_{1,3}$

Case 2 G is not a tree.

Then G contains cycles. If G contains two disjoint cycles $C_l = (u_1, u_2, \dots, u_l, u_1)$ and $C_k = (v_1, v_2, \dots, v_k, v_1)$. Let H_1 and H_2 are minimum open hubsets of C_l and C_k respectively such that $|H_1| = |V(C_l)| - 3$ and $|H_2| = |V(C_k)| - 3$. Then $H = H_1 \cup H_2 \cup T$ where $T = V(G) - (V(C_l) \cup V(C_k))$ is an open hubset of G,a contradiction to $h_O(G) = n - 3$. Also since $\Delta = 3$, no cycles have only single vertex in common. Hence any two cycles have common edge. Thus G is either unicyclic or exactly two cycles with a common edge.

Subcase I: G is unicyclilc.

Suppose G contains a cycle $C_k = (v_1, v_2, ..., v_k, v_1)$. Let $S = \{v \in V(C_k) | d(v) = 3\}$. Then $|S| \le 3$.

If |S| = 0 Then G is isomorphic to $C_k, k = n$.

If |S| = 1, then G is isomorphic to the graph C_k with a path attached to one vertex.

If |S| = 2, then G is isomorphic to C_3 with two paths attached. If |S| = 3, G is isomorphic to C_3 with 3 paths attached.

Subcase II: G is not Unicyclic

Then G contains exactly 2 cycles and atleast one cycle should be C_3 . In this case if G has no pendent vertices, then it is isomorphic to a graph with 2 cycles C_3 and C_k , $k \ge 3$ with one common edge. If G has pendent vertices then it is isomorphic to a graph with 2 cyles C_3 and C_k , $k \ge 4$ with one edge common and a path attached to vertex of degree 2 in C_3

Converse is trivial.

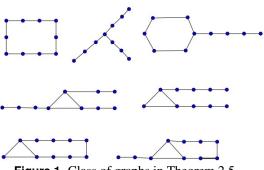


Figure 1. Class of graphs in Theorem 2.5

Theorem 2.6. Given two integers k and n with $2 < k < \left[\frac{n}{2}\right]$, there exist a connected graph G of order n with $h_O(G) = k$.

Proof. Let K_{n-k} be the complete graph with

 $V(K_{n-k}) = \{v_1, v_2, \dots, v_{n-k}\}$. Let G be the graph obtained from K_{n-k} by adding k new vertices $u_1, u_2, \dots u_k$ and k new edges $u_i v_i$, $1 \le i \le k$. Then G is a connected graph of order n. The domination number $\gamma(G) = k$. Hence $h(G) \ge k - 1$. Let H be a hub set of G. Then either $v_i \in H \ \forall j \quad 1 \le j \le k$ or $u_i \in H \ \forall j, 1 \leq j \leq k$. Therefore h(G) = k and $\{v_1, v_2, \dots v_k\}$ is a minimum hub set of G and the induced subgraph $\langle H \rangle$ is the path graph $v_1v_2...v_k$ and hence it is an open hub set. Hence the result.

Theorem 2.7. *Given two integers k and n with* $2 \le k \le n-2$, *there exist a connected graph G of order n with* $h_O(G) = k$.

Proof. Let K_{n-k} be the complete graph with $V(K_{n-k}) = \{v_1, v_2, ..., v_{n-k}\}$. Let P_{k+1} be the path $w_1w_2...w_{k+1}$. Let G be the graph obtaned by identifying the vertices v_1 and w_1 . We claim that h(G) = k. It follows from Theorem1.5 $\gamma_c(G) = k$ and by Theorem 1.6 h(G) = k or k - 1. Now suppose h(G) = k - 1. Let H be a hubset of G with cardinality k - 1. If both v_1 and w_{k+1} are not in H, then $w_i \in H, \forall i, 2 \le i \le k$. Since cardinality of H is k - 1, we have $H = \{w_2, w_3, ..., w_k\}$, a contradiction to H is a hub set of G. Suppose $v_1 \in S$ and $w_{k+1} \notin S$. Then if $w_2 \notin H$ then $w_i \in H, \forall i, 3 \le i \le k$. In this case $H = \{v_1, w_3, ..., w_k\}$, which is not a hub set, again a contradiction. We must have $w_2 \in H$. By similar argument we have $w_i \in H, \forall i, 3 \le i \le k$, a contradiction. We get a similar contradiction if $v_1 \notin H$ and $w_{k+1} \in H$ or if both v_1 and $w_{k+1} \in H$. Thus $h(G) \ne k - 1$. Hence h(G) = k. Hence $h_O(G) \ge k$.

Now $S = \{v_1, w_2, ..., w_k\}$ is a minimum hub set of G and the induced subgraph $\langle S \rangle$ is the path graph $v_1w_2w_3...w_k$. and hence has no isolated vertices. Hence S is an open hub set of G so that $h_O(G) \leq k$. Hence the result.

Corollary 2.8. For each positive integer n,there exist a connected graph G of order n such that $h_O(G) = n - \Delta(G)$.

Proof. The graph G constructed in the above theorem has $\Delta(G) = n - k$ and $h_O(G) = k$.

Definition 2.9. Let $G_1, G_2, ..., G_r$ be connected graphs, then the graph *G* obtained by joining each vertex of G_i with each vertex of G_{i+1} , $1 \le i \le r-1$, is called the successive join of $G_1, G_2, ..., G_r$ and is denoted by $G_1 + G_2 + ... + G_r$.

Theorem 2.10. Let $G_1, G_2, ..., G_r$ be connected graphs and let $G = G_1 + G_2 + ... + G_r$, then

$$h_O(G) = \left\{ \begin{array}{ll} 2 & \mbox{if } r=2, \ 3 \\ r-2 & \mbox{if } r\geq 4 \end{array} \right.$$

Proof. Case I r = 2, 3Here $H = \{u, v\}$ where $u \in V(G_1)$ and $v \in V(G_2)$, is an open hub set of G. Case II $r \ge 4$ In this case $H = \{v_2, v_3, ..., v_{r-1}\}$, where $v_i \in V(G_i)$ for $2 \le i \le r-1$, is an open hub set of G. Hence $h_O(G) \le r-2$.Now the diameter of G, d(G) = r-1and hence by Lemma 1.2, $h_O(G) \ge r-2$. Hence $h_O(G) = r-2$

References

- F. Harary, *Graph Theory*, Addison-Wesley Pub House, 1963.
- [2] C. Gary and Z. Ping, *Introduction to Graph Theory*, Tata McGraw-Hill, 2006.

- [3] W. Matthew, The hub number graphs, *International Journal of Mathematics and Computer Science*, 1(2006), 117–124.
- ^[4] W.H. Teresa, T.H. Stephan and J.S. Peter, *Fundamentals* of *Domination in Graphs*, Marcel Dekker, Inc, 2008.
- [5] G. Tracy, A.H. Stephan and J. Adam, The hub number of a graph, *Information Processing Letters*, 108(2008), 226–228.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

