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Planarity of a unit graph part -III |Max(R)| ≥ 3 case
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Abstract
The rings considered in this article are commutative with identity 1 6= 0. Recall that the unit graph of a ring R is a
simple undirected graph whose vertex set is the set of all elements of the ring R and two distinct vertices x,y are
adjacent in this graph if and only if x+ y ∈U(R) where U(R) is the set of all unit elements of ring R. We denote
this graph by UG(R). In this article we classified rings R with |Max(R)| ≥ 3 such that UG(R) is planar.
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1. Introduction
We first recall the following definitions and results from

graph theory. A graph G=(V,E) is said to be complete if every
pair of distinct vertices of G are adjacent in G. A complete
graph on n vertices is denoted by Kn [4, Definition 1.1.11]. A
graph G=(V,E) is said to be bipartite if the vertex set can be
partitioned into two nonempty subsets X and Y such that each
edge of G has one end in X and other in Y. The pair (X,Y)
is called a bipartition of G. A bipartite graph G with biparti-
tion (X,Y) is denoted by G(X,Y). A bipartite graph G(X,Y)
is said to be complete if each vertex of X is adjacent to all
the vertices of Y. If G(X,Y) is a complete bipartite graph with
|X |= m and |Y |= n, then it is denoted by Km,n [4, Definition
1.1.12]. Let G=(V,E) be a graph.By a clique of G, we mean
a complete subgraph of G [4, Definition 1.2.2]. We say that
the clique number of G equals n if n is the largest positive
integer such that Kn is a subgraph of G [4, p.185]. The clique
number of a graph G is denoted by the notation ω(G). If G
contains Kn as a subgraph for all n≥ 1, then we set ω(G) = ∞.

A graph G is said to be planar if it can be drawn in a plane
in such a way that no two edges of G intersect in a point other
than a vertex of G [4, Definition 8.1.1]. Two adjacent edges of
a graph G are said to be in series if their common vertex is of
degree two [5, p.9]. Two graphs are said to be homeomorphic
if one graph can be obtained from the other graph by the
creation of edges in series (i.e by insertion of vertices of
degree two) or by the merger of edges in series[5, p.100].
Recall from [5, p.93] that K5 is referred to as Kuratowski’s first
graph and K3,3 is referred to as Kuratowski’s second graph. A
celebrated theorem of Kuratowski says that a necessary and
sufficient condition for a graph G to be planar is that G does
not contain either of Kuratowski’s two graphs or any graph
homeomorphic to either of them [5, Theorem 5.9].

In view of Kuratowski’s Theorem, [5, Theorem 5.9] we in-
troduce the following definitions. We say that a graph G=(V,E)
satisfies Ku1 if G does not contain K5 as a subgraph and we
say that graph G=(V,E) satisfies Ku2 if G does not contain K3,3
as a subgraph. We say that a graph G = (V,E) satisfies Ku∗1 if G
satisfies Ku1 and moreover, G does not contain any subgraph
homeomorphic to K5. We say that a graph G = (V,E) satisfies
Ku∗2 if G satisfies Ku2 and moreover, G does not contain any
subgraph homeomorphic to K3,3.

If a graph G is planar, then it follows from Kuratowski’s
theorem [5, Theorem 5.9] that G satisfies both Ku∗1 and Ku∗2
. Hence G satisfies both Ku1 and Ku2. It is interesting to
note that a graph G may be nonplanar even if it satisfies both
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Ku1 and Ku2. For example of this type refer [5, Figure 5.9(a),
p.101] and the graph G in this example does not satisfies Ku∗2.
We do not know an example of a graph G such that G satisfies
Ku1 but G does not satisfy Ku∗1.

The rings considered in this article are commutative
with identity and are nonzero. A ring R which has a unique
maximal ideal is referred to as a quasilocal ring. A ring R
which has only a finite number of maximal ideals is referred to
as a semiquasilocal ring. A Noetherian quasilocal (respctively,
semiquasilocal) ring is referred to as a local (respectively,
semilocal) ring. We denote the set of all maximal ideals of a
ring R by Max(R). We used J(R) to denote Jacobson radical
of ring R.

2. On the classification of rings R with
|Max(R)| ≥ 3 in order that UG(R) is planar

Let R be a semiquasilocal ring with |Max(R)| = n ≥ 3.
We next try to classify such rings R in order that UG(R) is
planar. If UG(R) is planar, then we know from Kuratowski’s
theorem [5,Theorem 5.9] that UG(R) satisfies (Ku2). Hence,
we obtain from [10, Proposition 2.3] and [10, Remark 2.4] that
there exist finite local rings (Ri,mi) for each i ∈ {1,2, . . . ,n}
such that R∼= R1×R2×R3×·· ·×Rn as rings.

Lemma 2.1. Let n ≥ 3 and let R = R1×R2×R3×·· ·×Rn,
where (Ri,mi) is a quasilocal ring for each i ∈ {1,2, . . . ,n}.
If there exist at least two values of i ∈ {1,2, . . . ,n} such that
Ri is not a field, then UG(R) does not satisfy (Ku2).

Proof. We are assuming that there are at least two values
of i ∈ {1,2, . . . ,n} such that Ri is not a field. Without loss
of generality, we can assume that R1 and R2 are not fields.
As |mi| ≥ 2 for each i ∈ {1,2}, we obtain from Lemma
[10, Lemma 3.22] that UG(R1×R2) does not satisfy (Ku2).
Hence, it follows from [10, Lemma 2.2] that UG(R) does not
satisfy (Ku2).

Remark 2.2. Let n ≥ 3 and let Fi be a field for each i ∈
{1,2,3, . . . ,n}. Let R = F1×F2×F3× ·· · ×Fn. If UG(R)
satisfies (Ku2), then the following hold.

(i) Fi ∈ {Z2,Z3,F4,Z5} for each i ∈ {1,2,3, . . . ,n}.
(ii) There exists at most one i ∈ {1,2,3, . . . ,n} such that

|Fi| ≥ 4.

Proof. (i) Let i∈{1,2,3, . . . ,n}. We are assuming that UG(R)
satisfies (Ku2). Then we obtain from [10, Lemma 2.2] that
UG(Fi) satisfies (Ku2). Hence, it follows from [9, Lemmas
2.2 and 2.3] that Fi ∈ {Z2,Z3,F4,Z5}.
(ii) Suppose that |Fi| ≥ 4 for at least two values of
i ∈ {1,2,3, . . . ,n}. Without loss of generality, we can as-
sume that |F1| ≥ 4 and |F2| ≥ 4. Note that |U(F1)| ≥ 3 and
|U(F2×F3×·· ·×Fn)| ≥ 3. In such a case, we obtain from
[10, Lemma 3.2] that UG(R) does not satisfy (Ku2). This is
in contradiction to the assumption that UG(R) satisfies (Ku2).

Therefore, there exists at most one i ∈ {1,2,3, . . . ,n} such
that |Fi| ≥ 4.

Lemma 2.3. Let n ≥ 3 and let R = F1×F2×F3× ·· ·×Fn,
where Fi is a field for each i ∈ {1,2,3, . . . ,n}. If UG(R) satis-
fies (Ku∗2), then Fi ∈ {Z2,Z3,F4} for each i ∈ {1,2,3, . . . ,n}.

Proof. Assume that UG(R) satisfies (Ku∗2). Then UG(R) sat-
isfies (Ku2). Hence, we obtain from Remark 2.2 (i) that
Fi ∈ {Z2,Z3,F4,Z5} for each i ∈ {1,2,3, . . . ,n}. We want to
show that Fi 6= Z5 for each i ∈ {1,2,3, . . . ,n}. Suppose that
Fi = Z5 for some i ∈ {1,2,3, . . . ,n}. Without loss of gener-
ality, we can assume that F1 = Z5. In such a case, we know
from Remark 2.2 (ii) that Fi ∈ {Z2,Z3} for each i∈ {2, . . . ,n}.
Since |U(Z5)| = 4, it follows from [10, Lemma 3.2] that
|U(F2×F3×·· ·×Fn)| ≤ 2. Hence, there exists at most one
i ∈ {2,3, . . . ,n} such that Fi = Z3. We consider the following
cases.
Case(1) Fi = Z2 for each i ∈ {2,3, . . . ,n}

In this case, R ∼= Z5×T as rings, where T = F2×
F3× ·· ·×Fn is such that char(T ) = 2. We know from [10,
Proposition 3.12] that UG(R) does not satisfy (Ku∗2). This is
in contradiction to the assumption that UG(R) satisfies (Ku∗2).
Case(2) Fi = Z3 for a unique i ∈ {2,3, . . . ,n}

Without loss of generality, we can assume that F2 =
Z3. Note that Fi = Z2 for each i ∈ {3, . . . ,n}. Let us de-
note the ring F3×·· ·×Fn by T1. Then R ∼= Z5×Z3×T1 as
rings. Observe that char(T1) = 2. Consider the mapping f :
V (UG(Z5×T1)) =Z5×T1→V (UG(Z5×Z3×T1)) =Z5×
Z3×T1 by f (x,y)= (x,1,y) for any (x,y)∈Z5×T1. It is clear
that f is one-one and for any (x1,y1),(x2,y2) ∈ Z5×T1 are
adjacent in UG(Z5×T1) if and only if f (x1,y1) and f (x2,y2)
are adjacent in UG(Z5×Z3×T1). Therefore, UG(Z5×T1)
is isomorphic to a subgraph of UG(Z5×Z3×T1). We know
from [10, Proposition 3.12] that UG(Z5×T1) does not sat-
isfy (Ku∗2). Hence, UG(Z5×Z3×T1) does not satisfy (Ku∗2).
This is in contradiction to the assumption that UG(R) satisfies
(Ku∗2).

Thus if UG(R) satisfies (Ku∗2), then Fi ∈{Z2,Z3,F4}
for each i ∈ {1,2,3, . . . ,n}.

Lemma 2.4. Let n ≥ 3 and let R = F1×F2×F3× ·· ·×Fn,
where Fi is a field for each i ∈ {1,2,3, . . . ,n}. Suppose that
Fi = F4 for some i ∈ {1,2,3, . . . ,n}. If UG(R) satisfies (Ku∗2),
then Fj = Z2 for all j ∈ {1,2,3, . . . ,n}\{i}.

Proof. We are assuming that Fi =F4 for some i∈{1,2,3, . . . ,n}
and UG(R) satisfies (Ku∗2). Without loss of generality, we can
assume that F1 = F4. Since |U(F4)| = 3 and UG(R) satis-
fies (Ku2), it follows from [10, Lemma 3.2] that |U(F2×F3×
·· ·×Fn)| ≤ 2. We claim that Fj =Z2 for each j∈{2,3, . . . ,n}.
Suppose that Fj = Z3 for some j ∈ {2,3, . . . ,n}. Without loss
of generality, we can assume that F2 = Z3. Since |U(Z3×
Z3)|= 4, it follows that Fj =Z2 for each j∈{3, . . . ,n}. Let us
denote the ring F3×·· ·×Fn by T1. Observe that char(T1) = 2
and R∼=F4×Z3×T1 as rings. We know from [10, Proposition
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3.18] that UG(F4×Z3×T1) does not satisfy (Ku∗2). This is
in contradiction to the assumption that UG(R) satisfies (Ku∗2).

Thus if UG(R) satisfies (Ku∗2), then Fj =Z2 for each
j ∈ {1,2,3, . . . ,
n}\{i}.

Proposition 2.5. Let R = Z3×Z3×S, where S is a nonzero
ring. Then UG(R) does not satisfy (Ku∗2).

Proof. We consider the following cases.
Case (1) 2 /∈U(S)

Let V1 = {(0,1,0),(0,2,1),(1,2,1)} and let V2 =
{(1,2,0),(2,2,0),
(1,1,1)}. Note that V1 and V2 are independent sets of UG(R),
(0,2,1) is adjacent to both (1,2,0) and (2,2,0) in UG(R), and
(1,2,1) is adjacent to (1,2,0) in UG(R). Let H be the sub-
graph of UG(R) induced on V1∪V2∪{(1,0,1),(2,0,1),(1,0,0),
(0,2,0),(2,2,1),(0,0,0)}. It is not hard to verify that (0,1,0)−
(1,0,1)− ((1,2,0) , (0,1,0)− (2,0,1)− (2,2,0), (0,2,1)−
(1,0,0)−(1,1,1), (1,2,1)−(0,2,0)−(2,2,1)−(2,2,0), and
(1,2,1)−(0,0,0)−(1,1,1) are paths in UG(R). Consider the
subgraph H1 of H shown in Figure 1. Observe that H1 is home-
omorphic to K3,3. Therefore, we obtain that UG(R) does not
satisfy (Ku∗2).

Figure 1. H1

Case(2) 2 ∈U(S)
Let V1 = {(0,1,2),(0,2,0),(0,2,2)} and let V2 =

{(1,2,2),(2,0,2),(1,0,2)}. Let H be the subgraph of UG(R)
induced on V1∪V2∪{(1,0,0)}. Note that (0, 2, 0) and (0,2,2)
are adjacent to each element of V2 in H, (0,1,2) is adjacent to
both (2,0,2) and (1,0,2) in H, (0,1,2)− (1,0,0)− (1,2,2)
is a path in H. Let us denote the edges of H, (1,0,0)−(0,2,2)
and (1,2,2)− (1,0,2) by e1 and e2. Let H2 = H−{e1,e2}.
The subgraph H2 of UG(R) is shown in Figure 2.

Figure 2. H2

Observe that H2 is homeomorphic to K3,3. Hence, we
obtain that UG(R) does not satisfy (Ku∗2).

Proposition 2.6. Let R1 = Z2× ·· ·×Z2 (n factors, n ≥ 1)
and let R = R1×Z6. Then UG(R) is planar.

Proof. Observe that |R|= 2n×6, |U(R)|= |U(R1)||U(Z6|=
2, and 2 /∈ U(R). Therefore, we obtain from [2, Proposi-
tion 3.4 (i)] that degUG(R)r = 2 for any r ∈ R. Note that
any element of R1 is of the form (x1, . . . ,xn), where xi ∈
{0,1} for each i ∈ {1, . . . ,n}. Let (x1, . . . ,xn) be any ele-
ment of R1. Let H be the component of UG(R) containing
(x1, . . . ,xn,0). It is not hard to verify that H is the cycle Γ of
length 6 given by Γ : (x1, . . . ,xn,0)− (1+ x1, . . . ,1+ xn,1)−
(x1, . . . ,xn,4)− (1+ x1, . . . ,1+ xn,3)− (x1, . . . ,xn,2)− (1+
x1, . . . ,1+ xn,5)− (x1, . . . ,xn,0). Similarly, it can be shown
that for any i ∈ Z6, the component of UG(R) containing
(x1, . . . ,xn, i) is a cycle of length 6. It is clear that the num-
ber of components of UG(R) equals |R|6 = 2n×6

6 = 2n. Since
any component of UG(R) is planar, we obtain that UG(R) is
planar.

Theorem 2.7. Let n ≥ 3 and let R = F1 × F2 × F3 × ·· · ×
Fn, where Fi is a field for each i ∈ {1,2,3, . . . ,n}. Then the
following statements are equivalent:

(i) UG(R) is planar.
(ii) UG(R) satisfies both (Ku∗1) and (Ku∗2).
(iii) UG(R) satisfies (Ku∗2).
(iv) There exists at most one i ∈ {1,2,3, . . . ,n} such that

Fi 6= Z2. If i ∈ {1,2,3, . . . ,n} is such that Fi 6= Z2, then Fi ∈
{Z3,F4}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [5,
Theorem 5.9].
(ii)⇒ (iii) This is clear.
(iii) ⇒ (iv) We are assuming that UG(R) satisfies (Ku∗2).
We know from Lemma 2.3 that Fi ∈ {Z2,Z3,F4} for each
i ∈ {1,2,3, . . . ,n}. If Fi = F4 for some i ∈ {1,2,3, . . . ,n},
then we know from Lemma 2.4 that Fj = Z2 for all j ∈
{1,2,3, . . . ,n}\{i}. If Fi = Z3 for some i ∈ {1,2,3, . . . ,n},
then it follows from Lemma 2.5 that Fj = Z2 for all j ∈
{1,2,3, . . . ,n}\{i}.
(iv)⇒ (i) If Fi = Z2 for all i ∈ {1,2,3, . . . ,n}, then we know
from [10, Proposition 3.5] that UG(R) is planar. If Fi = F4 for
some i ∈ {1,2,3, . . . ,n}, then by hypothesis, Fj = Z2 for each
j ∈ {1,2,3, . . . ,n}\{i}. In such a case, it follows from [10,
Proposition 3.9] that UG(R) is planar. If Fi = Z3 for some
i ∈ {1,2,3, . . . ,n}, then by hypothesis, Fj = Z2 for each j ∈
{1,2,3, . . . ,n}\{i}. In this case, it follows from Proposition
2.6 that UG(R) is planar.

Let R be a semiquasilocal ring with |Max(R)|= n≥
3. If UG(R) satisfies (Ku2), then we know from [10, Propo-
sition 2.3 and Remark 2.4] that there exist finite local rings
(Ri,mi) for each i ∈ {1,2,3, . . . ,n} such that R ∼= R1×R2×
R3×·· ·×Rn as rings. Let us denote R1×R2×R3×·· ·×Rn
by T . If UG(T ) satisfies (Ku2), then we know from Lemma
2.1 that Ri is not a field for at most one i ∈ {1,2,3, . . . ,n}.
We assume that Ri is not a field for some i ∈ {1,2,3, . . . ,n}
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and try to classify such rings T = R1×R2×R3×·· ·××Rn
in order that UG(T ) is planar.

Remark 2.8. Let t ≥ 2 and let R = R1×F2×·· ·×Ft , where
R1 is a quasilocal ring which is not a field and Fi is a field
for each i ∈ {2, . . . , t}. If |Fi| ≥ 3 for some i ∈ {2, . . . , t}, then
UG(R) does not satisfy (Ku∗2).

Proof. Without loss of generality, we can assume that |F2| ≥ 3.
Then either t = 2 or t ≥ 3. If t = 2, then it follows from [10,
Proposition 3.14] that UG(R) does not satisfy (Ku∗2). Suppose
that t ≥ 3. Let T = F3×·· ·×Fn. Note that R∼= R1×F2×T
as rings. In this case, we obtain from [10, Proposition 3.15]
that UG(R) does not satisfy (Ku∗2).

Theorem 2.9. Let n≥ 3 and let R = R1×F2×F3×·· ·×Fn,
where R1 is a quasilocal ring which is not a field and Fi is a
field for each i ∈ {2,3, . . . ,n}. The following statements are
equivalent:

(i) UG(R) is planar.
(ii) UG(R) satisfies both (Ku∗1) and (Ku∗2).
(iii) UG(R) satisfies (Ku∗2).
(iv) R1 is isomorphic to one of the rings from the collection

{Z4,
Z2[X ]

X2Z2[X ]
} and Fi = Z2 for each i ∈ {2,3, . . . ,n}.

Proof. (i)⇒ (ii) This follows from Kuratowski’s theorem [5,
Theorem 5.9].
(ii)⇒ (iii) This is clear.
(iii)⇒ (iv) We are assuming that UG(R) satisfies (Ku∗2).and
so, UG(R) satisfies (Ku2). It follows from [10, Lemma
2.2] that UG(R1) satisfies (Ku2). Therefore, we obtain from
(iii)⇒ (iv) of [9, Lemma 2.4] that R1 is isomorphic to one
of the rings from the collection {Z4,

Z2[X ]
X2Z2[X ]

}. Moreover, we
know from Remark 2.8 that Fi = Z2 for each i ∈ {2,3, . . . ,n}.
(iv)⇒ (i) We are assuming that R1 is isomorphic to one of
the rings from the collection {Z4,

Z2[X ]
X2Z2[X ]

} and Fi = Z2 for
each i ∈ {2,3, . . . ,n}. Now, it follows from [10, Proposition
3.7] that UG(R) is planar.
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