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Abstract
In this paper, we use Krasnoselskii’s fixed point theorem to establish new results on the existence of periodic
solutions for the almost linear Volterra integro-dynamic system on periodic time scales of the form{

x∆ (t) = a(t) p(x(t))+
∫ t
−∞

C (t,s)h(y(s))∆s+ e(t) ,
y∆ (t) = b(t)q(y(t))+

∫ t
−∞

D(t,s)g(x(s))∆s+ f (t) .
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1. Introduction
Delay dynamic equations arise from a variety of appli-

cations including in various fields of science and engineer-
ing such as applied sciences, physics, chemistry, biology,
medicine, etc. In particular, problems concerning qualita-
tive analysis of delay dynamic equations have received the
attention of many authors, see [1]–[20] and the references
therein.

Let T be a periodic time scale such that 0 ∈ T. In this
article, we are interested in the analysis of qualitative the-
ory of periodic solutions of almost linear Volterra integro-
dynamic systems. Inspired and motivated by the references in
this paper, we consider the following almost linear Volterra
integro-dynamic system on time scales{

x∆ (t) = a(t) p(x(t))+
∫ t
−∞

C (t,s)h(y(s))∆s+ e(t) ,
y∆ (t) = b(t)q(y(t))+

∫ t
−∞

D(t,s)g(x(s))∆s+ f (t) ,

(1.1)

where a, b, e and f are rd-continuous functions, p, q, f and g
are continuous functions. We assume that there exist constants
P, Q, H, G and positive constants P∗, Q∗, H∗, G∗ such that

|p(x)−Px| ≤ P∗, |q(x)−Qx| ≤ Q∗, (1.2)

and

|h(x)−Hx| ≤ H∗, |g(x)−Gx| ≤ G∗. (1.3)

To show the existence of periodic solutions of (1.1), we trans-
form (1.1) into an integral system and then use Krasnoselskii’s
fixed point theorem. The obtained integral system is the sum
of two mappings, one is a contraction and the other is compact.
Our results generalize previous results due to Raffoul [20],
from the one dimension to the two dimensions.

2. Preliminaries
A time scale is an arbitrary nonempty closed subset of real

numbers. The study of dynamic equations on time scales is a
fairly new subject, and research in this area is rapidly growing
(see [1]-[12], [16]-[19] and papers therein). The theory of
dynamic equations unifies the theories of differential equa-
tions and difference equations. We suppose that the reader is
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familiar with the basic concepts concerning the calculus on
time scales for dynamic equations. Otherwise one can find
in Bohner and Peterson books [8, 9, 19] most of the material
needed to read this paper. We start by giving some definitions
necessary for our work. The notion of periodic time scales is
introduced in Kaufmann and Raffoul [18]. The following two
definitions are borrowed from [18].

Definition 2.1. We say that a time scale T is periodic if there
exist a ω > 0 such that if t ∈ T then t±ω ∈ T. For T 6= R,
the smallest positive ω is called the period of the time scale.

Example 2.2. The following time scales are periodic.

1. T=
⋃

∞
i=−∞[2(i−1)h,2ih], h > 0 has period ω = 2h.

2. T= hZ has period ω = h.

3. T= R.

4. T= {t = k−qm : k ∈Z, m∈N0} where, 0 < q < 1 has
period ω = 1.

Remark 2.3 ([18]). All periodic time scales are unbounded
above and below.

Definition 2.4. Let T 6=R be a periodic time scale with period
ω . We say that the function f : T→ R is periodic with period
T if there exists a natural number n such that T = nω , f (t±
T ) = f (t) for all t ∈ T and T is the smallest number such that
f (t±T ) = f (t).

If T= R, we say that f is periodic with period T > 0 if T
is the smallest positive number such that f (t±T ) = f (t) for
all t ∈ T.

Remark 2.5 ([18]). If T is a periodic time scale with period
ω , then σ(t ± nω) = σ(t)± nω . Consequently, the graini-
ness function µ satisfies µ(t±nω) = σ(t±nω)−(t±nω) =
σ(t)− t = µ(t) and so, is a periodic function with period ω .

Definition 2.6 ([8]). f : T→ R is called rd-continuous func-
tion provided it is continuous at every right-dense point t ∈ T
and its left-sided limits exist, and is finite at every left-dense
point t ∈ T. The set of rd-continuous functions f : T→R will
be denoted by

Crd =Crd(T) =Crd(T,R).

The set of functions f : T→ R that are differentiable and
whose derivative is rd-continuous is denoted by

C1
rd =C1

rd(T) =C1
rd(T,R).

Definition 2.7 ([8]). For f : T→R, we define f ∆(t) to be the
number (if it exists) with the property that for any given ε > 0,
there exists a neighborhood U of t such that∣∣∣( f (σ(t))− f (s))− f ∆(t)(σ(t)− s)

∣∣∣< ε |σ(t)− s| ,

for all s ∈U. The function f ∆ : Tk→R is called the delta (or
Hilger) derivative of f on Tk.

Definition 2.8 ([8]). A function p : T→ R is called regres-
sive provided 1+ µ(t)p(t) 6= 0 for all t ∈ T. The set of all
regressive and rd-continuous functions p : T→ R will be de-
noted by R = R(T,R). We define the set R+ of all positively
regressive elements of R by

R+ =R+(T,R) = {p ∈R : 1+µ(t)p(t)> 0, ∀t ∈ T}.

Definition 2.9 ([8]). Let p ∈R, then the generalized expo-
nential function ep is defined as the unique solution of the
initial value problem

x∆(t) = p(t)x(t), x(s) = 1, where s ∈ T.

An explicit formula for ep(t,s) is given by

ep(t,s) = exp
(∫ t

s
ξµ(v)(p(v))∆v

)
, for all s, t ∈ T,

with

ξµ(p) =

{
log(1+µ p)

µ
if µ 6= 0,

p if µ = 0,

where log is the principal logarithm function.

Lemma 2.10 ([8]). Let p,q ∈R. Then

(i) e0(t,s)≡ 1 and ep(t, t)≡ 1,

(ii) ep(σ(t),s) = (1+µ(t)p(t))ep(t,s),

(iii) 1
ep(t,s)

= e	p(t,s) where, 	p(t) =− p(t)
1+µ(t)p(t) ,

(iv) ep(t,s) = 1
ep(s,t)

= e	p(s, t),

(v) ep(t,s)ep(s,r) = ep(t,r),

(vi)
(

1
ep(·,s)

)∆

=− p(t)
eσ

p (·,s)
.

Lemma 2.11 ([1]). If p ∈R+, then

0 < ep(t,s)≤ exp
(∫ t

s
p(v)∆v

)
, ∀t ∈ T.

The proof of the main results in the next section is based
upon an application of the following Krasnoselskii fixed point
theorem.

Theorem 2.12 (Krasnoselskii’s fixed point theorem [21]). Let
M be a closed, convex, nonempty subset of a Banach space
(B,‖.‖). Suppose that A and B map M into B such that

i) x,y ∈M, implies Ax+By ∈M,
ii) A is continuous and AM is contained in a compact

subset of B,
iii) B is a contraction mapping.

Then there exists z ∈M with z = Az+Bz.
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3. Periodic Solutions
Let T be a periodic time scale with period ω . Let T > 0

be fixed, and if T 6= R, then T = nω for some n ∈ N. By the
notation [a,b] we mean

[a,b] = {t ∈ T : a≤ t ≤ b} ,

unless otherwise specified. The intervals [a,b), (a,b] and
(a,b) are defined similarly. Let PT be the set of all continuous
scalar functions, periodic of period T . Then (PT ,‖.‖) is a
Banach space with the supremum norm

‖x‖= sup
t∈T
|x(t)|= sup

t∈[0,T ]
|x(t)| .

In this section we investigate the existence of a periodic solu-
tion of (1.1) using Krasnoselskii’s fixed point theorem.

The next lemma is essential to our next results. Its proof
can be found in [18].

Lemma 3.1. Let x ∈ PT . Then ‖xσ‖ exists and ‖xσ‖= ‖x‖.

In this section we assume that for all (t,s) ∈ T×T,

sup
t∈T

∫ t

−∞

|C (t,s)|∆s < ∞, sup
t∈T

∫ t

−∞

|D(t,s)|∆s < ∞. (3.1)

We assume a,b ∈R+ with

e	(Pa)(t, t−T ) 6= 1 and e	(Qb)(t, t−T ) 6= 1.

Suppose that

a(t +T ) = a(t) , b(t +T ) = b(t) ,

e(t +T ) = e(t) , f (t +T ) = f (t) ,

C (t +T,s+T ) =C (t,s) , D(t +T,s+T ) = D(t,s) .
(3.2)

Let PT = PT ×PT , then PT is a Banach space when en-
dowed with the maximum norm

‖(x,y)‖= max

{
sup

t∈[0,T ]
|x(t)| , sup

t∈[0,T ]
|y(t)|

}
.

For any positive constant m the set

M= {(x,y) ∈ PT : ‖(x,y)‖ ≤ m} . (3.3)

is a bounded closed convex subset of PT .

Lemma 3.2. If (x,y) ∈ PT , then (x,y) is a solution of (1.1) if
and only if

x(t) = η1

∫ t

t−T
[Pa(u)xσ (u)+a(u) p(x(u))

+k (u)]e	(Pa)(t,u)∆u, (3.4)

and

y(t) = η2

∫ t

t−T
[Qb(u)yσ (u)+b(u)q(y(u))

+l (u)]e	(Qa)(t,u)∆u, (3.5)

where

η1 =
[
1− e	(Pa)(T,0)

]−1
, η2 =

[
1− e	(Qa)(T,0)

]−1
,

k (t) = e(t)+
∫ t

−∞

C (t,s) [h(y(s))−Hy(s)]∆s

+
∫ t

−∞

C (t,s)Hy(s)∆s,

and

l (t) = f (t)+
∫ t

−∞

D(t,s) [g(x(s))−Gx(s)]∆s

+
∫ t

−∞

D(t,s)Gy(s)∆s.

Proof. For convenience we put the first equation in (1.1) in
the form

x∆ (t)+Pa(t)xσ (t)

= Pa(t)xσ (t)+a(t) p(x(t))+ e(t)

+
∫ t

−∞

C (t,s) [h(y(s))−Hy(s)]∆s

+
∫ t

−∞

C (t,s)Hy(s)∆s. (3.6)

Let

k (t) = e(t)+
∫ t

−∞

C (t,s) [h(y(s))−Hy(s)]∆s

+
∫ t

−∞

C (t,s)Hy(s)∆s.

Then we may write (3.6) as

x∆ (t)+Pa(t)xσ (t) = Pa(t)xσ (t)+a(t) p(x(t))+k (t) .

(3.7)

Let x ∈ PT and assume (3.2). Multiply both sides of (3.7) by
ePa(t,0) and then integrate both sides from t−T to t to obtain

ePa(t,0)x(t)− ePa(t−T,0)x(t−T )

=
∫ t

t−T
[Pa(u)xσ (u)+a(u) p(x(u))

+k (u)]ePa(u,0)∆u.

Divide both sides of the above equation by ePa(t,0) and use
the fact that x(t−T ) = x(t) to obtain

x(t)
[
1− e	(Pa)(t, t−T )

]
=
∫ t

t−T
[Pa(u)xσ (u)+a(u) p(x(u))

+k (u)]e	(Pa)(t,u)∆u,

where we have used Lemma 2.10 to simplify the exponentials.
Since every step is reversible, the converse holds. The proof
of (3.5) is similar and hence we omit it.
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Define mappings A and B from M into PT as follows. For
(ϕ1,ϕ2) ∈M,

A(ϕ1,ϕ2)(t) = (A1 (ϕ1,ϕ2)(t) ,A2 (ϕ1,ϕ2)(t)) ,

such that

A1 (ϕ1,ϕ2)(t)

= η1

{∫ t

t−T
a(u) [p(ϕ1(u))+Pϕ

σ
1 (u)]e	(Pa)(t,u)∆u

+
∫ t

t−T

∫ u

−∞

C (t,s) [h(ϕ2 (s))−Hϕ2 (s)]∆s

×e	(Pa)(t,u)∆u
}
,

A2 (ϕ1,ϕ2)(t)

= η2

{∫ t

t−T
b(u) [q(ϕ2(u))+Qϕ

σ
2 (u)]e	(Qb)(t,u)∆u

+
∫ t

t−T

∫ u

−∞

D(t,s) [g(ϕ1 (s))−Gϕ1 (s)]∆s

×e	(Qb)(t,u)∆u
}
,

and for (ψ1,ψ2) ∈M,

B(ψ1,ψ2)(t) = (B1 (ψ1,ψ2)(t) ,B2 (ψ1,ψ2)(t)) ,

such that

B1 (ψ1,ψ2)(t)

= η1

{∫ t

t−T

∫ u

−∞

C (u,s)Hψ2 (s)∆se	(Pa)(t,u)∆u

+
∫ t

t−T
e(u)e	(Pa)(t,u)∆u

}
.

B2 (ψ1,ψ2)(t)

= η2

{∫ t

t−T

∫ u

−∞

D(u,s)Gψ1 (s)∆se	(Qb)(t,u)∆u

+
∫ t

t−T
f (u)e	(Qb)(t,u)∆u

}
.

It can be easily verified that both A(ϕ1,ϕ2) and B(ψ1,ψ2) are
T -periodic and continuous. Assume

|η1|sup
t∈T

∫ t

t−T

∫ u

−∞

|C (u,s)| |H|∆se	(Pa)(t,u)∆u≤ α1 < 1,

(3.8)

|η2|sup
t∈T

∫ t

t−T

∫ u

−∞

|D(u,s)| |G|∆se	(Qb)(t,u)∆u≤ α2 < 1,

(3.9)

|η1|sup
t∈T

{∫ t

t−T
|a(u)|P∗e	(Pa)(t,u)∆u

+
∫ t

t−T

∫ u

−∞

|C (t,s)|H∗∆se	(Pa)(t,u)∆u
}

≤ β1 < ∞, (3.10)

and

|η2|sup
t∈T

{∫ t

t−T
|b(u)|Q∗e	(Qb)(t,u)∆u

+
∫ t

t−T

∫ u

−∞

|D(t,s)|G∗∆se	(Qb)(t,u)∆u
}

≤ β2 < ∞. (3.11)

Choose the constant m of (3.3) satisfying

|η1|sup
t∈T

∫ t

t−T
|e(u)|e	(Pa)(t,u)∆u+α1m+β1 ≤m, (3.12)

and

|η2|sup
t∈T

∫ t

t−T
| f (u)|e	(Qb)(t,u)∆u+α2m+β2 ≤m. (3.13)

Lemma 3.3. Assume (3.1), (3.2) and (3.8)-(3.13) hold. Then
B is a contraction from M into M.

Proof. For (ψ1,ψ2) ∈M,

|B1 (ψ1,ψ2)(t)|

≤ m |η1|
∫ t

t−T

∫ u

−∞

|C (u,s)| |H|∆se	(Pa)(t,u)∆u

+ |η1|
∫ t

t−T
|e(u)|e	(Pa)(t,u)∆u

≤ |η1|sup
t∈T

∫ t

t−T
|e(u)|e	(Pa)(t,u)∆u+α1m≤ m,

and

|B2 (ψ1,ψ2)(t)|

= m |η2|
∫ t

t−T

∫ u

−∞

|D(u,s)| |G|∆se	(Qb)(t,u)∆u

+ |η2|
∫ t

t−T
| f (u)|e	(Qb)(t,u)∆u

≤ |η2|sup
t∈T

∫ t

t−T
| f (u)|e	(Qb)(t,u)∆u+α2m≤ m,

then

‖B(ψ1,ψ2)‖ ≤ m.

For (φ1,φ2) ,(ψ1,ψ2) ∈M, we obtain

|B1 (φ1,φ2)(t)−B1 (ψ1,ψ2)(t)|

≤ |η1|
∫ t

t−T

∫ u

−∞

|C (u,s)| |H| |φ2 (s)−ψ2 (s)|∆s

× e	(Pa)(t,u)∆u

≤ α1 ‖(φ1,φ2)− (ψ1,ψ2)‖ ,
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and in a similar way one can easily show that

|B2 (φ1,φ2)(t)−B2 (ψ1,ψ2)(t)| ≤α2 ‖(φ1,φ2)− (ψ1,ψ2)‖ .

Therefore

‖B(φ1,φ2)(t)−B(ψ1,ψ2)(t)‖≤ α ‖(φ1,φ2)− (ψ1,ψ2)‖ .

where α = max{α1,α2}< 1. This proves that B is a contrac-
tion mapping from M into M.

Lemma 3.4. Assume (1.2), (1.3), (3.1), (3.2) and (3.10)-
(3.13). Then A from M into M is continuous, and AM is
contained in a compact subset of PT .

Proof. For any (ϕ1,ϕ2) ∈M, it follows from (1.2) and (1.3)
that

|A1 (ϕ1,ϕ2)(t)|

≤ |η1|
{∫ t

t−T
|a(u)| |p(ϕ1(u))+Pϕ

σ
1 (u)|

× e	(Pa)(t,u)∆u

+
∫ t

t−T

∫ u

−∞

|C (t,s)| |h(ϕ2 (s))−Hϕ2 (s)|∆s

×e	(Pa)(t,u)∆u
}

≤ |η1|
{∫ t

t−T
|a(u)|P∗e	(Pa)(t,u)∆u

+
∫ t

t−T

∫ u

−∞

|C (t,s)|H∗∆se	(Pa)(t,u)∆u
}
,

Using (3.10) and (3.12), we get

|A1 (ϕ1,ϕ2)(t)| ≤ β1 ≤ m.

and in a similar way we have

|A2 (ϕ1,ϕ2)(t)| ≤ β2 ≤ m.

Therefore

‖A(ϕ1,ϕ2)‖ ≤ m. (3.14)

So, A maps M into M, and the set {A(φ1,φ2)} for (φ1,φ2) ∈
M is uniformly bounded. To show that A is a continuous
we let {(φ n

1 ,φ
n
2 )} be any sequence of functions in M with

‖(φ n
1 ,φ

n
2 )− (φ1,φ2)‖ → 0 as n→ ∞. Since M is closed, we

have (φ1,φ2) ∈M. Then by the definition of A we have

‖A(φ n
1 ,φ

n
2 )−A(φ1,φ2)‖

= max

{
sup

t∈[0,T ]
|A1 (φ

n
1 ,φ

n
2 )(t)−A1 (φ1,φ2)(t)| ,

sup
t∈[0,T ]

|A2 (φ
n
1 ,φ

n
2 )(t)−A2 (φ1,φ2)(t)|

}
,

in which

|A1 (φ
n
1 ,φ

n
2 )(t)−A1 (φ1,φ2)(t)|

=

∣∣∣∣η1

{∫ t

t−T
a(u) [p(φ n

1 (u))+Pφ
nσ
1 (u)]

× e	(Pa)(t,u)∆u

−
∫ t

t−T
a(u) [p(φ1(u))+Pφ

σ
1 (u)]e	(Pa)(t,u)∆u

+
∫ t

t−T

∫ t

−∞

C (t,s) [h(φ n
2 (s))−Hφ

n
2 (s)]∆s

× e	(Pa)(t,u)∆u

−
∫ t

t−T

∫ t

−∞

C (t,s) [h(φ2 (s))−Hφ2 (s)]∆s

×e	(Pa)(t,u)∆u
}∣∣

≤ |η1|
{∫ t

t−T
|a(u)| [|p(φ n

1 (u))− p(φ1(u))|

+ |Pφ
nσ
1 (u)−Pφ

σ
1 (u)|]e	(Pa)(t,u)∆u

+
∫ t

t−T

∫ t

−∞

|C (t,s)| [|h(φ n
2 (s))−h(φ2 (s))|

+ |Hφ
n
2 (s)−Hφ2 (s)|]∆se	(Pa)(t,u)∆u

}
.

The continuity of p and h along with the Lebesgue dominated
convergence theorem implies that

sup
t∈[0,T ]

|A1 (φ
n
1 ,φ

n
2 )(t)−A1 (φ1,φ2)(t)| → 0 as n→ ∞.

By a similar argument one can easily argue that

sup
t∈[0,T ]

|A2 (φ
n
1 ,φ

n
2 )(t)−A2 (φ1,φ2)(t)| → 0 as n→ ∞.

Thus,

‖A(φ n
1 ,φ

n
2 )−A(φ1,φ2)‖→ 0 as n→ ∞.

This proves that A is a continuous mapping.

It is trivial to show that for all (φ1,φ2) ∈ M, there ex-
ist constants L1,L2 > 0 such that

∣∣∣A1 (φ1,φ2)
∆ (t)

∣∣∣ ≤ L1 and∣∣∣A2 (φ1,φ2)
∆ (t)

∣∣∣≤ L2. This means
∣∣∣A(φ1,φ2)

∆ (t)
∣∣∣≤ L where

L = max{L1,L2}. Therefore that the set {A(φ1,φ2)} for
(φ1,φ2) ∈M is equicontinuous. Hence, by the Arzela-Ascoli
theorem, AM is contained in a compact subset of PT .

Theorem 3.5. Suppose the assumptions of Lemmas 3.3 and
3.4 hold. Then (1.1) has a continuous T -periodic solution.
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Proof. For (ϕ1,ϕ2) ,(ψ1,ψ2) ∈M, we get

|A1 (ϕ1,ϕ2)(t)+B1 (ψ1,ψ2)(t)|

=

∣∣∣∣η1

{∫ t

t−T
a(u) [p(ϕ1(u))+Pϕ

σ
1 (u)]

× e	(Pa)(t,u)∆u

+
∫ t

t−T

∫ u

−∞

C (t,s) [h(ϕ2 (s))−Hϕ2 (s)]∆s

×e	(Pa)(t,u)∆u
}

+η1

{∫ t

t−T

∫ u

−∞

C (u,s)Hψ2 (s)∆se	(Pa)(t,u)∆u

+
∫ t

t−T
e(u)e	(Pa)(t,u)∆u

}∣∣∣∣
≤ |η1|sup

t∈T

∫ t

t−T
|e(u)|e	(Pa)(t,u)∆u+α1m+β1

≤ m.

and

|A2 (ϕ1,ϕ2)(t)+B2 (ψ1,ψ2)(t)|

≤ |η1|sup
t∈T

∫ t

t−T
| f (u)|e	(Qb)(t,u)∆u+α2m+β2

≤ m.

This implies that

‖A(ϕ1,ϕ2)+B(ψ1,ψ2)‖ ≤ m,

which proves that A(ϕ1,ϕ2)+B(ψ1,ψ2) ∈M.
Therefore, by Krasnoselskii’s theorem there exists a func-

tion (x,y) in M such that

(x,y) = A(x,y)+B(x,y) .

This proves that (1.1) has a continuous T -periodic solution
(x,y).
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