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Abstract
In this paper, we introduce two new polynomials viz character edgecut polynomial and associated edgecut
polynomial of a graph, which are closely related to the edgecut polynomial of a simple finite connected graph.
Moreover we analyse the relationship connecting these polynomials and study their stability.
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1. Introduction
In social networking systems, in order to improve the effi-

ciency of content delivery and to minimize the total cost, graph
partitioning is a vital pre-processing step and the majority of
multilevel graph partitioning formulations have primarily fo-
cused on edgecut based models and have tried to optimize
edgecut related objectives. Also, the pandemic COVID-19 has
revealed the necessity of social distancing in public domains
so that there arises a need for an efficient machinery to break
social gatherings for isolating people. Keeping this in mind, in
[3] the authors introduced the edgecut polynomial of a simple
graph as follows:

E[G;x] =
n−1

∑
i=1

E(G, i)xi+1,

where E(G, i) is the number of edges removed at the ith step
in the standard edgecut of G for 1≤ i≤ n−1. A polynomial
p(z) is said to be stable, or a Hurwitz polynomial, if all of
its zeroes lie in the open left half-plane[5]. That is, all the
zeros of p(z) are either negative real numbers or must have
negative real part. Hurwitz polynomials are important in con-
trol systems theory, because they represent the characteristic
equations of stable linear systems [2]. Thus the study of a
graph polynomial is interesting only if it succeeds in predict-
ing the behavior of some stable physical systems. This fact
motivates the authors to study the stability of two polynomi-
als which are closely related to the edgecut polynomial of
a graph. Throughout this paper, G denotes a finite simple
connected graph with vertex set and edgeset denoted by V (G)
and E(G) respectively. All the graph theoretic terminology
and notations used in the paper are as in [1].

2. Main Results
2.1 Character edgecut polynomial of a graph
In this section, we first introduce the notion of character edge-
cut polynomial of a finite simple connected graph and deter-
mine its stability for some well known graphs.

Definition 2.1. Let G = (V,E) be a graph with n vertices and
let

(a1, . . .a1︸ ︷︷ ︸
m1 times

, · · ·ak, . . .ak︸ ︷︷ ︸
mk times

)

be its edgecut sequence, where 1≤mi≤ n−1 for all 1≤ i≤ k.
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The character edgecut polynomial of G, denoted by Ce[G;x],
is defined as

Ce[G;x] : =
k

∑
i=1

ami
i xi−1.

We observe the following simple properties of Ce[G;x] :

(i) Ce[G;x] is a monic polynomial of degree at most n−2
and has degree n−2 iff mi = 1 for all 1≤ i≤ k.

(ii) All the zeros of Ce[G;x] are non-zero.

(iii) The graph G has cutedges if and only if Ce[G;0] = 1.

(iv) If Ce[G;x] is a polynomial of degree m, then the coeffi-
cients of xi is nonzero for all 0≤ i≤ m.

(v) If G is a tree on n vertices, then Ce[G;x] is the constant
polynomial 1.

Theorem 2.2. (Routh-Hurwitz Criteria [5]) Given a polyno-
mial,

P(x) = a0xn +a1xn−1 +a2xn−2 + · · ·+an−1x+an,

where the coefficients ai’s are real constants. Then the n Hur-
witz matrices using the coefficients ai of the above polynomial
are defines as

H1 =
[
a1
]
,H2 =

[
a1 a0
a3 a2

]
,H3 =

a1 a0 0
a3 a2 a1
a5 a4 a3

 , · · · ,

Hn =


a1 a0 0 0 · · · 0
a3 a2 a1 a0 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

0 0 0 0 · · · an

 ,
where a j = 0 if j > n. All the roots of the polynomial P(x)
are negative or have negative real part if and only if the
determinants of all Hurwitz matrices are positive: det(H j)>
0, j = 1,2, · · · ,n.

Theorem 2.3. Let G be a graph with n vertices. If Ce[G;x] is
a linear polynomial, then it is stable. Moreover, the unique
zero of the polynomial is a negative integer and its modulus
exceeds unity if and only if G has no cutedges.

Proof. Since Ce[G;x] is a monic linear polynomial with positve
integral coefficients, its only zero is the negative of the con-
stant term. Observe that the constant term is a negative integer.
Thus Ce[G;x] is stable. Also observe that the constant term of
the polynomial Ce[G;x] is unity iff the graph G has at least one
cutedge. Thus the constant term of the polynomial is greater
than 1 iff G has no cutedges.

This completes the proof.

Corollary 2.4. Let Cn be a cycle on n vertices. Then Ce[Cn;x]
is stable.

Proof. In [3], the authors proved that

E[Cn;x] =
n−2

∑
i=1

xi+2 +2x2.

Consequently, we have Ce[Cn;x] = x+2, a linear polynomial
and hence stable by theorem 2.3.

Corollary 2.5. If Sn is a shell graph on n > 2 vertices, then
Ce[Sn;x] is stable.

Proof. In [3], the authors proved that

E[Sn;x] = xn +
n−2

∑
i=1

2xi+1.

Thus Ce[Sn;x] is the linear polynomial x+2n−2. Therefore by
theorem 2.3, Ce[Sn;x] is stable .

Theorem 2.6. If Ce[G;x] is a quadratic polynomial of a graph
G on n vertices, then it is stable. Moreover, if G has at least
one cutedge, then both the zeros of the polynomial are negative
real numbers.

Proof. Let Ce[G;x] = x2 + ax+ b. Since a,b > 0, it follows
that the following matrices have positive determinants.

H1 =
[
a
]
,H2 =

[
a 1
0 b

]
.

Then by the light of Routh-Hurwitz criteria, Ce[G;x] is stable.
If G has at least one cutedge, then Ce[G;x] = x2+ax+1. Then
by the definition of the character edgecut polynomial a > 1
and thus the discriminant of this polynomial is a2− 4 ≥ 0.
Since Ce[G;x] is a polynomial with positive coefficients, both
the zeros of the polynomial are negative real numbers.

This completes the proof.

Corollary 2.7. Let G be a graph with n vertices. If G has
exactly n−3 cutedges, then Ce[G;x] is stable.

Proof. Since G has exactly n−3 cutedges, it is evident that
Ce[G;x] is a quadratic polynomial and thus its stability follows
from theorem 2.6.

Corollary 2.8. Let Wn be a wheel graph on n vertices. Then
Ce[Wn;x] is stable.

Proof. We have,

E[Wn;x] = xn +
n−3

∑
i=1

2xi+2 +3x2

(see [3]) so that Ce[Wn;x] = x2 +2n−3x+3, a quadratic poly-
nomial and hence stable.
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Corollary 2.9. For a tadpole graph Tn,l with n > 2, Ce[Tn,l ;x]
is stable.

Proof. The edgecut polynomial of tadpole graph is given by

E[Tn,l ;x] =
n+l−1

∑
i=l+1

xi+1 +
l+1

∑
i=1

xi+1

(see [3]). Thus Ce[Tn,l ;x] = x2 + 2x+ 1, a quadratic polyno-
mial, and hence stable.

Corollary 2.10. For an armed crown Cn�Pm with n > 2,
Ce[Cn�Pm;x] is stable.

Proof. We have,

E[Cn�Pm;x] =
nm+n−1

∑
i=nm+1

xi+1 +
nm+1

∑
i=1

xi+1

(see [3]). Thus Ce[Cn�Pm;x] = x2 +2x+1 is stable being a
quadratic polynomial.

Theorem 2.11. If Ce[G;x] is a cubic polynomial with at least
one cutedge, then it is stable.

Proof. Let Ce[G;x] = x3 + ax2 + bx+ 1. Then the Hurwitz
matrices are given by

H1 =
[
a
]
,H2 =

[
a 1
1 b

]
,H3 =

a 1 0
1 b a
0 0 1

 .
It is easy to verify that the determinant of all these three ma-
trices are positive. Then Routh-Hurwitz criteria tells us that
Ce[G;x] is stable.

This completes the proof.

Corollary 2.12. Let G be a graph with n vertices. If G has
exactly n−4 cutedges, then Ce[G;x] is stable.

Proof. Since the graph possesses exactly n−4 cutedges, the
remaining four vertices must be a part of a cycle of length
3 or 4. It is easy to verify that there are only three such
graphs viz C4, K4 and K4−{e}, where e is an edge of K4. The
edgecut sequence of C4 and K4−{e} are (2,1,1) and (2,2,1)
respectively and thus Ce[G;x] is a quadratic polynomial and
hence stable. Now K4 is a graph on four vertices, it follows
that Ce[G;x] is a cubic polynomial and since G has at least
one cutedge, its stability follows from theorem 2.11.

Corollary 2.13. If Hn is a helm with n ≥ 4 vertices, then
Ce[Hn;x] is stable.

Proof. We have,

E[Hn;x] = x2n−1 +
n−1

∑
i=2

2x2n−i +
n

∑
i=1

xi+1

(see [3]). Thus Ce[Hn;x] = x3 +2n−3x2 +3x+1, a cubic poly-
nomial. Since the constant term in Ce[Hn;x] is one, it can
be inferred that Hn has at least one cutedge. Therefore by
theorem 2.11, Ce[Hn;x] is stable.

Theorem 2.14. If BN is a bow graph with N > 4 vertices,
then Ce[BN ;x] is unstable.

Proof. We have,

E[BN ;x] =
N−1

∑
i=N−2

xi+1 +
N−2

∑
i=N−3

xi+1 +
N−4

∑
i=1

2xi+1

(see [3]). Therefore Ce[BN ;x] = x3+2x2+x+2N−4 is a cubic
polynomial. The Hurwitz matrices are given by

H1 =
[
2
]
,H2 =

[
2 1

2N−4 1

]
,H3 =

 2 1 0
2N−4 1 2

0 0 2N−4

 .
The determinant of H2 is less than or equal to zero since N > 4.
Therfore by Routh-Hurwitz criteria, Ce[BN ;x] is unstable.

This completes the proof.

Theorem 2.15. If BFn is a butterfly graph with n > 6 vertices,
then Ce[BFn;x] is unstable.

Proof. From [3], we have

E[BFn;x] =
n−1

∑
i=n−2

xi+1 +
n−2

∑
i=n−3

xi+1 +
n−4

∑
i=3

2xi+1 +
2

∑
i=1

xi+1.

Consequently, Ce[BFn;x] = x4 + 2x3 + x2 + 2n−6x + 1. The
first two Hurwitz matrices of this polynomial are as follows:

H1 =
[
2
]
,H2 =

[
2 1

2n−6 1

]
.

Since n > 6, det(H2)≤ 0. Hence by Routh-Hurwitz criteria,
Ce[BFn;x] is unstable.

This completes the proof.

Theorem 2.16. If WBn is a webgraph on n > 4 vertices, then
Ce[WBn;x] is unstable.

Proof. The edgecut polynomial of the webgraph WBn is given
by

E[WBn;x] = x3n−2 +
n−3

∑
i=1

2x2n+i +3x2n + x2n−1 +
n−2

∑
i=1

2xn+i +
n

∑
i=1

xi+1

(see [3]). From this we obtain

Ce[WBn;x] = x6 +3x5 +2n−3x4 + x3 +3x2 +2n−3x+1.

The first four Hurwitz matrices corresponding Ce[WBn;x] are

H1 =
[
3
]
,H2 =

[
3 1
1 2n−3

]
,H3 =

 3 1 0
1 2n−3 3

2n−3 3 1

 ,

H4 =


3 1 0 0
1 2n−3 3 1

2n−3 3 1 2n−3

0 1 2n−3 3.

 .
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Note that

det(H4) =−((22n−6−3)(3.2n−3−1)+3.2n−3+22n−6+75)

is less than zero. Hence by Routh-Hurwitz criteria, Ce[WBn;x]
is unstable.

This completes the proof.

2.2 Associated edgecut polynomial of a graph
In this section, we first introduce the notion of associated
edgecut polynomial of a finite simple connected graph and
determine its stability for some well known graphs.

Definition 2.17. Let G = (V,E) be a graph with n vertices
and let

(a1, . . .a1︸ ︷︷ ︸
m1 times

, · · ·ak, . . .ak︸ ︷︷ ︸
mk times

)

be its edgecut sequence, where 1 ≤ mi ≤ n− 1 for all 1 ≤
i ≤ k. The associated edgecut polynomial of G, denoted by
Ae[G;x], is defined as

Ae[G;x] =
k

∑
i=1

miaixi−1.

We observe the following simple properties of Ae[G;x] :

(i) Ae[G;x] is a polynomial of degree at most n−2 and has
degree n−2 iff mi = 1 for all 1≤ i≤ k.

(ii) All the zeros of Ae[G;x] are non-zero.

(iii) Ae[G;1] = |E| and Ae[G;0] = 1 if and only if G has a
unique cutedge.

(iv) If Ae[G;x] is a polynomial of degree m, then the coeffi-
cients of xi is nonzero for all 0≤ i≤ m.

(v) If G is a tree on n vertices, then Ae[G;x] is the constant
polynomial n−1.

(vi) If G has cutedges, then the constant term of Ae[G;x]
gives the total number of cutedges of G.

Theorem 2.18. Let G be a graph with n vertices. If Ae[G;x]
is a linear polynomial, then it is stable. More precisely, G will
be free of cutedges.

Proof. Since Ae[G;x] is a linear polynomial ax+b, its only
zero is x = −b/a, where a and b are positve integers. Thus
Ae[G;x] is stable.
If possible G has cutedges, then the constant term of Ae[G;x]
is the sum total of cutedges of G and since E[G;x] is monic,
the associated edgecut polynomial of G must be n−1. This
contradicts the fact that Ae[G;x] is linear polynomial. There-
fore G has no cutedges. This completes the proof.

Corollary 2.19. Let Cn be a cycle on n vertices. Then Ae[Cn;x]
is stable.

Proof. We have,

E[Cn;x] =
n−2

∑
i=1

xi+2 +2x2

(see [3]). Thus Ae[Cn;x] = (n−2)x+2, a linear polynomial
and hence its stability follows from theorem 2.18.

Corollary 2.20. If Sn is a shell graph on n > 2 vertices, then
Ce[Sn;x] is stable.

Proof. We have,

E[Sn;x] = xn +
n−2

∑
i=1

2xi+1

(see [3]). Hence it follows that Ce[Sn;x] is the linear polyno-
mial x+2n−2 and hence stable.

Theorem 2.21. Let G be a graph with n vertices. If Ae[G;x] is
a quadratic polynomial, then it is stable. Moreover, if Ae[G;x]
is monic and G has exactly one cutedge, then both the zeros
of the polynomial are negative real numbers.

Proof. Let Ae[G;x] = ax2 +bx+ c. The Hurwitz matrices of
this polynomial are given by,

H1 =
[
b
]
,H2 =

[
b a
0 c

]
.

Since the determinants of both these matrices are positive, by
Routh-Hurwitz criteria, Ae[G;x] is stable.
Now suppose that Ae[G;x] is monic and G has exactly one
cutedge. Then Ae[G;x] = x2 +bx+1. Its discriminant b2−4
is non-negative since b ≥ 2 and thus both the zeros of the
polynomial are negative real numbers.

This completes the proof.

Corollary 2.22. Let Wn be a wheel graph on n vertices. Then
Ae[Wn;x] is stable.

Proof. We have,

E[Wn;x] = xn +
n−3

∑
i=1

2xi+2 +3x2

(see [3]). Thus Ae[Wn;x] = x2 +2n−3x+3, a quadratic poly-
nomial and hence stable.

Corollary 2.23. For a tadpole graph Tn,l with n> 2, Ae[Tn,l ;x]
is stable.

Proof. The edgecut polynomial of tadpole graph is given by

E[Tn,l ;x] =
n+l−1

∑
i=l+1

xi+1 +
l+1

∑
i=1

xi+1

(see [3]). That is Ae[Tn,l ;x] = (n−2)x2 +2x+ l is a quadratic
polynomial, which is always stable.
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Corollary 2.24. For an armed crown Cn�Pm with n > 2,
Ae[Cn�Pm;x] is stable.

Proof. We have,

E[Cn�Pm;x] =
nm+n−1

∑
i=nm+1

xi+1 +
nm+1

∑
i=1

xi+1

(see [3]). Thus Ae[Cn�Pm;x] = (n−2)x2 +2x+nm is stable
being a quadratic polynomial.

Theorem 2.25. If Hn is a helm with n ≥ 4 vertices, then
Ae[Hn;x] is stable.

Proof. We have,

E[Hn;x] = x2n−1 +
n−1

∑
i=2

2x2n−i +
n

∑
i=1

xi+1

(see [3]). Thus Ae[Hn;x] = x3 + 2(n− 3)x2 + 3x+ n− 1, a
cubic polynomial. The Hurwitz matrices of Ae[Hn;x] are
given by,

H1 =
[
2(n−3)

]
,H2 =

[
2(n−3) 1

n−1 3

]
,

H3 =

2(n−3) 1 0
n−1 3 2(n−3)

0 0 n−1

 .
Since n ≥ 4, det(H1) = 2(n− 3), det(H2) = 5n− 17 and
det(H3) = 5n2−8n+17 are all positive. Therefore by Routh-
Hurwitz criteria, Ae[Hn;x] is stable.

This completes the proof.

Theorem 2.26. If BN is a bow graph with N > 4 vertices,
then Ae[BN ;x] is unstable.

Proof. We have,

E[BN ;x] =
N−1

∑
i=N−2

xi+1 +
N−2

∑
i=N−3

xi+1 +
N−4

∑
i=1

2xi+1

(see [3]). Therefore Ae[BN ;x] = x3 + 2x2 + x+ 2(N− 4), a
cubic polynomial. The Hurwitz matrices are given by:

H1 =
[
2
]
,H2 =

[
2 1

2(N−4) 1

]
,

H3 =

 2 1 0
2(N−4) 1 2

0 0 2(N−4)


Here det(H2) = 10− 2N ≤ 0 since N ≥ 5. Thus by Routh
Hurwitz criteria, Ae[BN ;x] is unstable.

This completes the proof.

Theorem 2.27. If BFn is a butterfly graph with n > 6 vertices,
then Ae[BFn;x] is unstable.

Proof. In [3] the authors proved that

E[BFn;x] =
n−1

∑
i=n−2

xi+1 +
n−2

∑
i=n−3

xi+1 +
n−4

∑
i=3

2xi+1 +
2

∑
i=1

xi+1.

Consequently,

Ae[BFn;x] = x4 +2x3 + x2 +2(n−6)x+2.

The first two Hurwitz matrices of this polynomial are as fol-
lows:

H1 =
[
2
]
,H2 =

[
2 1

2(n−6) 1

]
.

Since n > 6, det(H2) = 2− 2(n− 6) ≤ 0. Hence by Routh-
Hurwitz criteria, Ae[BFn;x] is unstable.

This completes the proof.

Theorem 2.28. If WBn is a webgraph on n > 4 vertices, then
Ae[WBn;x] is unstable.

Proof. The edgecut polynomial of WBn is given by(see [3])

E[WBn;x] = x3n−2 +
n−3

∑
i=1

2x2n+i +3x2n + x2n−1 +
n−2

∑
i=1

2xn+i +
n

∑
i=1

xi+1.

Therefore,

Ae[WBn;x] = x6 +3x5 +2(n−3)x4 + x3 +3x2 +2(n−3)x+n−1.

The first four Hurwitz matrices are as follows:

H1 =
[
3
]
,H2 =

[
3 1
1 2(n−3)

]
,

H3 =

 3 1 0
1 2(n−3) 3

2(n−3) 3 1

 ,

H4 =


3 1 0 0
1 2(n−3) 3 1

2(n−3) 3 1 2(n−3)
0 (n−1) 2(n−3) 3.


It can be calculated that,

det(H4) =−24n3 +234n2−669n+459

and the maximum value of the function occurs at n = 13
4 +√

183
12 , which is less than 5. Also the value det(H4) for n = 5

is negative. From these inferences, we can conclude that
det(H4)< 0 for n > 4 and hence by Routh-Hurwitz criteria,
Ae[WBn;x] is unstable.

This completes the proof.
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2.3 Relation between Edgecut polynomial, Charac-
teristic edgecut polynomial and Associated edge-
cut polynomial of a graph

In this section, we establish the relationship connecting the
edgecut polynomial, character edgecut polynomial and asso-
ciated edgecut polynomial of a graph.
Let G be a graph on n vertices. The following are some of
the relevant facts that are obtained by comparing both Ce[G;x]
and Ae[G;x] together.

(i) For any graph G, both the polynomials Ce[G;x] and
Ae[G;x] have the same degree.

(ii) The polynomials Ce[G;x] and Ae[G;x] are equal iff their
degree is n−2.

(iii) If Ce[G;x] = Ae[G;x], then their coefficient of xi is same
as the coefficient of xi+2 in E[G;x] for 0≤ i≤ n−2.

(iv) One added to the ratio of the coefficient of xi in Ae[G;x]
to the base of the corresponding coefficient in Ce[G;x]
gives the number of newly formed components of G by
removing same number of edges consecutively.

For example, consider the complete graph Kn. In this case,

E[Kn;x] =
n−1

∑
i=1

(n− i)xi+1.

Observe that

Ce[Kn;x] =
n−1

∑
i=1

(n− i)xi−1 = Ae[Kn;x].

Moreover, degree of each polynomial is n−2.

Theorem 2.29. Let G be a graph on n vertices. Then the poly-
nomials Ce[G;x] and Ae[G;x] together determines the edgecut
polynomial E[G;x] completely.

Proof. Without loss of generality, let

Ce[G;x] =
k

∑
i=1

ami
i xi−1,Ae[G;x] =

k

∑
i=1

miaixi−1

be the character edgecut polynomial and associated edgecut
polynomial of G respectively. Let pi be the ratio of the co-
efficient of xi in Ae[G;x] to the base of the corresponding
coefficient in Ce[G;x] and let qi be obtained by dividing the
coefficients of Ae[G;x] by pi, where 1≤ i≤ k. It can be easily
verified that pi = mi and qi = ai for each i and thus

(q1, . . .q1︸ ︷︷ ︸
p1 times

, · · ·qk, . . .qk︸ ︷︷ ︸
pk times

)

represents the edgecut sequence of the graph G. Thus we
have established that the polynomials Ce[G;x] and Ae[G;x]
explicitly defines the edgecut polynomial E[G;x] of the graph
G. In other words these two polynomials together determines
E[G;x] completely.

This completes the proof.

3. Conclusion
In this paper, we have characterized the edgecut poly-

nomial of a graph in terms of two polynomials, which are
comparatively simple in the sense that they are having degree
less than that of the former polynomial. Thus even without
analyzing the edgecut polynomial explicitly, we could deduce
all the information provided by it from the corresponding char-
acter edgecut polynomial and associated edgecut polynomial.
In fact, we have decomposed the original polynomial into
simpler ones without losing any information.
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