

https://doi.org/10.26637/MJM0804/0022

Total dominator chromatic number of $P_m \times C_n$

A. Vijayalekshmi^{1*} and S. Anusha²

Abstract

A total dominator coloring of a graph *G* with δ(*G*) ≥ 1 is a proper coloring of *G* with the extra property that every vertex in *G* properly dominates a color class. The total dominator chromatic number of *G* is the minimum number of colors needed in a total dominator coloring of G, denoted by $\chi_{td}(G)$. In this paper, we obtain total dominator chromatic number of $P_m \times C_n$.

Keywords

Total dominator chromatic number, ladder graph, grid graph and $P_m \times C_n$.

AMS Subject Classification

05C15, 05C69.

¹*Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.*

²*Research Scholar [Reg. No:11506], Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.*

1,2*Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.*

***Corresponding author**:vijimath.a@gmail.com

Article History: Received **21** March **2020**; Accepted **18** June **2020** c 2020 MJM.

Contents

1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definition of graph theory as found in [\[1\]](#page-3-2). Let $G = (V, E)$ be a graph of order *n* with $\delta(G) \ge$ 1. The open neighborhood $N(v) = \{u \in V(G)/uv \in E(G)\}.$ The closed neighborhood of *v* is $N[v] = N(v) \cup \{v\}$. The path and cycle of order *n* are denoted by P_n and C_n respectively. For any two graphs *G* and *H*, we define the cartesian product, denoted by $G \times H$, to be the graph with vertex set $V(G) \times$ $V(H)$ and edges between two vertices (u_1, v_1) and (u_2, v_2) iff either $u_1 = u_2$ and $v_1v_2 \in E(H)$ or $u_1u_2 \in E(G)$ and $v_1 = v_2$. $P_m \times C_n$ is defined as the cartesian product of path and cycle. A grid graphs can be defined as $P_m \times P_n$ where $m, n \geq 2$.

A subset *S* of *V* is called a total dominating set if every vertex in *V* is adjacent to some vertex in *S*. The total dominating set is minimal total dominating set if no proper subset of *S* is a total dominating set of *G*. The total domination number γ_t is the minimum cardinality taken over all minimal total

dominating set of *G*. A γ*t*-set is any minimal total dominating set with cardinality γ*^t* .

A proper coloring of *G* is an assignment of colors to the vertices of G such that adjacent vertices have different colors. The chromatic number, $\chi(G)$, is the minimum number of colors in a proper coloring of *G*. A total dominator coloring of a graph *G* is a proper coloring of *G* with the extra property that every vertex in *G* properly dominates a color class. The total dominator chromatic number of *G* is the minimum number of colors needed in a total dominator coloring of *G* denoted by $\chi_{td}(G)$. This concept was introduced by A. Vijiyalekshmi in [\[2\]](#page-3-3). This notion is also referred as a Smarandachely *k*-dominator coloring of $G(k \geq 1)$ and was introduced by A. Vijiyalekshmi in [\[4\]](#page-3-4). For an integer $k > 1$, a Smarandachely *k*-dominator coloring of *G* is a proper coloring of *G* such that every vertex in *G* properly dominates a *k* color class. The smallest number of colors for which there exist a Smarandachely *k*-dominator coloring of *G* is called the Smarandachely *k*-dominator chromatic number of *G*, and is denoted by $\chi_{td}^s(G)$. For further details on this theory and on its applications, we advice the reader to refer [\[6](#page-3-5)[–9\]](#page-3-6).

In a proper coloring $\mathscr C$ of *G*, a color class of $\mathscr C$ is a set consisting of all those vertices assigned the same color. Let \mathscr{C}^1 be a minimal *td*-coloring of *G*. We say that a color class $c_i \in \mathcal{C}^1$ is called a non-dominated color class (*n*−*d* color class) if it is not dominated by any vertex of *G*. These color classes are also called repeated color classes.

2. Preliminaries

In this segment, we remember the critical [\[3\]](#page-3-8) theorem which is quite helpful in our research. For the subsequent observation the total dominator chromatic number of a ladder graphs has been identified.

Theorem 2.1. [\[3\]](#page-3-8) Let G be p_n or C_n . Then

$$
\chi_{td} (p_n) = \chi_{td} (C_n) = \begin{cases} 2\lfloor \frac{n}{4} \rfloor + 2, & if n \equiv 0 \pmod{4} \\ 2\lfloor \frac{n}{4} \rfloor + 3, & if n \equiv 1 \pmod{4} \\ 2\lfloor \frac{n+2}{4} \rfloor + 2, & otherwise. \end{cases}
$$

Theorem 2.2. [\[3\]](#page-3-8) For every $n > 2$, the total dominator chro*matic number of a ladder graph Lⁿ is*

$$
\chi_{td} (L_n) = \begin{cases} 2 \lfloor \frac{p}{6} \rfloor + 2, & if n \equiv 0 \pmod{6} \\ 2 \lfloor \frac{p-2}{6} \rfloor + 4, & otherwise. \end{cases}
$$

In this paper, we obtain the least value for total dominator chromatic number for $P_m \times C_n$.

3. Main Result

In this section, we present and establish the main results. For our convenience, we denote

$$
\mathscr{G}_{m,n} = P_m \times C_n \text{ and let } D = \{v_{(ij)}/1 \le i \le m \text{ and } 1 \le j \le n\}.
$$

Lemma 3.1. *For every n*, $\chi_d(\mathscr{G}_{2,n}) = 2\lceil \frac{m}{3} \rceil + 2$.

Proof. Since the *td*-colouring of $\mathcal{G}_{2,n}$ is same as *td*-colouring of L_n , $\chi_{td}(\mathscr{G}_{2,n}) = \chi_{td}(L_n)$. From Theorem 2.2, we get

$$
\chi_d(\mathscr{G}_{2,n})=2\lceil\frac{m}{3}\rceil+2.
$$

 \Box

Illustration: Consider $\mathscr{G}_{2,11}$

Therefore

$$
\chi_{td}(\mathscr{G}_{2,11})=10.
$$

Theorem 3.2. *If* $m, n \equiv 0 \pmod{3}$ *, then* $\chi_d(\mathscr{G}_{m,n}) = \frac{mn}{3} + 2$ *.*

Proof. Let $D = \{v_{(i j)}/1 \le i \le m \text{ and } j = 2, 5, 8, ..(n-1)\}\$ be a unique γ_t -set of $\mathcal{G}_{m,n}$. We assign $\frac{mn}{3}$ distinct colors say 3, 4, 5, ..., $\frac{mn}{3}, \frac{mn}{3} + 1, \frac{mn}{3} + 2$ to vertices of *D*. Set *S* = $V(\mathscr{G}_{m,n})$ − *D*, we assign two repeated colors say 1,2 to the vertices v_{ij} and $v_{kl} \in S$ such that $|i - k| + |j - l| = 1$ and adjacent vertices in *S* received different colors, we get a *td*-coloring of G*m*,*n*.

So

$$
\chi_d(\mathscr{G}_{m,n})=\frac{mn}{3}+2.
$$

Illustration: Consider $\mathscr{G}_{6,9}$

Therefore

$$
\chi_{td}(\mathscr{G}_{6,9})=20.
$$

Theorem 3.3. *For* $m \equiv 0 \pmod{3}$ *and* $n \equiv 1, 2 \pmod{3}$,

$$
\chi_{td}(\mathscr{G}_{m,n}) = \begin{cases} \frac{mn}{3} + 2, & \text{if } n \text{ is even} \\ \frac{mn}{3} + 3, & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. Let $D_1 = \{v_{(i j)}/i = 2, 5, 8, ..., (n-1) \text{ and } 1 \le j \le n\}$ be a unique γ_t -set of $\mathcal{G}_{m,n}$. We consider two cases.

Case (i): When *n* is even. The *td*-coloring of $\mathcal{G}_{m,n}$ is same as the *td*-coloring of Theorem 3.1. So $\chi_{td}(\mathcal{G}_{m,n}) = \frac{mn}{3} + 2$.

Case (ii): When *n* is odd. Assign $\frac{mn}{3}$ distinct colors say $4,5,6,...,\frac{mn}{3},\frac{mn}{3}+1,\frac{mn}{3}+2,\frac{mn}{3}+3$ to vertices of D_1 . Set $S_1 = \{V(\mathcal{G}_{m,n}) - D_1\}$, we assign two repeated colors say 1,2 to the vertices v_{ij} and $v_{kl} \in S_1$ such that $|i - k| + |j - l| = 1$ and adjacent vertices in *S*¹ received two different repeated colors. Now there several vertices in *S*1, which are not received repeated colors either 1 or 2, we assign another repeated color say 3 to the those vertices in S_1 , we get a *td*-coloring of $\mathcal{G}_{m,n}$. So $\chi_{td}(\mathscr{G}_{m,n}) = \frac{mn}{3} + 3.$

$$
\qquad \qquad \Box
$$

Illustration: Consider $\mathscr{G}_{6.10}$

Figure 3

Therefore
$$
\chi_{td}(\mathcal{G}_{6.10}) = 22.
$$

 \Box

Illustration: Consider $\mathscr{G}_{6,7}$

Figure 4

Therefore

$$
\chi_{td}(\mathscr{G}_{6,7})=17.
$$

Theorem 3.4. *If* $m \equiv 1 \pmod{3}$ *then*

$$
\chi_{td}(\mathcal{G}_{m,n}) = \begin{cases} \frac{(m-1)n}{3} + 2\lfloor \frac{n}{4} \rfloor + 2 & if n \equiv 0 (mod 4) \\ \frac{(m-1)n}{3} + 2\lfloor \frac{n}{4} \rfloor + 4 & if n \equiv 1 (mod 4) \\ \frac{(m-1)n}{3} + 2\lfloor \frac{n+2}{4} \rfloor + 2 & if n \equiv 2 (mod 4) \\ \frac{(m-1)n}{3} + 2\lfloor \frac{n+2}{4} \rfloor + 3 & otherwise. \end{cases}
$$

Proof. Since $m - 1 \equiv 0 \pmod{3}$, $\mathcal{G}_{m,n}$ is obtained by $\mathcal{G}_{m-1,n}$ is followed by $\mathscr{G}_{1,n}$. In a *td*-coloring of $\mathscr{G}_{m,n}$, $\chi_{td}(\mathscr{G}_{m,n}) =$ $\chi_{td}(\mathscr{G}_{m-1,n}) + \chi_{td}(\mathscr{G}_{1,n})$. Also the used repeated colors are same the *td*-coloring of $\mathcal{G}_{1,n}$. So $\chi_{td}(\mathcal{G}_{m,n}) = \chi_{td}(\mathcal{G}_{m-1,n})$ + $\chi_{td}(\mathscr{G}_{1,n})$ – 2. By Theorem 2.1, we get

$$
\chi_{td}(\mathcal{G}_{m,n}) = \begin{cases}\n\frac{(m-1)n}{3} + 2\left\lfloor \frac{n}{4} \right\rfloor + 2 & if n \equiv 0 \pmod{4} \\
\frac{(m-1)n}{3} + 2\left\lfloor \frac{n}{4} \right\rfloor + 4 & if n \equiv 1 \pmod{4} \\
\frac{(m-1)n}{3} + 2\left\lfloor \frac{n+2}{4} \right\rfloor + 2 & if n \equiv 2 \pmod{4} \\
\frac{(m-1)n}{3} + 2\left\lfloor \frac{n+2}{4} \right\rfloor + 3 & otherwise.\n\end{cases}
$$

Figure 5

$$
\chi_{td}(\mathscr{G}_{4,10})=18.
$$

Illustration: Consider $\mathscr{G}_{4,11}$

Figure 6

Therefore

$$
\chi_{td}(\mathscr{G}_{4,11})=20.
$$

Theorem 3.5. *If* $m \equiv 2 \pmod{3}$ *, then*

$$
\chi_{td}(\mathscr{G}_{m,n}) = \begin{cases} \frac{(m-2)n}{3} + 2\lceil \frac{n}{3} \rceil + 2, & \text{if } n \text{ is even} \\ \frac{(m-2)n}{3} + 2\lceil \frac{n}{3} \rceil + 3, & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. Given $m-2 \equiv 0 \pmod{3}$. We consider two cases.

Case (i): When *n* is even. We have $\mathscr{G}_{m,n}$ is obtained by $\mathscr{G}_{m-2,n}$ followed by $\mathscr{G}_{2,n}$. From Theorem 3.4, $\chi_{td}(\mathscr{G}_{m,n})=$ $\chi_{td}(\mathscr{G}_{m-2,n})+\chi_{td}(\mathscr{G}_{2,n})-2$. By Theorem 3.3 and Lemma 3.1, we get

$$
\chi_{td}(\mathscr{G}_{m,n})=\frac{(m-2)n}{3}+2\lceil \frac{n}{3}\rceil+2.
$$

Case (ii): When *n* is odd. We have $\mathscr{G}_{m,n}$ is obtained by $\mathscr{G}_{m-2,n}$ followed by $\mathscr{G}_{2,n}$. From Theorem 3.4, $\chi_{td}(\mathscr{G}_{m,n})=$ $\chi_{td}(\mathscr{G}_{m-2,n}) + \chi_{td}(\mathscr{G}_{2,n}) - 2.$

By Theorem 3.3 and Lemma 3.1, we get

$$
\chi_{td}(\mathscr{G}_{m,n})=\frac{(m-2)n}{3}+2\lceil\frac{n}{3}\rceil+3.
$$

Thus

 \Box

$$
\chi_{td}(\mathscr{G}_{m,n}) = \begin{cases} \frac{(m-2)n}{3} + 2\lceil \frac{n}{3} \rceil + 2, & \text{if } n \text{ is even} \\ \frac{(m-2)n}{3} + 2\lceil \frac{n}{3} \rceil + 3, & \text{if } n \text{ is odd.} \end{cases}
$$

 \Box

Illustration: Consider $\mathscr{G}_{5,8}$

Figure 7

Therefore

Illustration: Consider $\mathscr{G}_{5,7}$

Therefore

$$
\chi_{td}(\mathscr{G}_{5,7})=16.
$$

4. Conclusion

In this paper, we obtain total dominator chromatic number of $P_m \times C_n$.

References

- [1] F. Harrary, *Graph Theory*, Addition-Wesley, Reading Mass, 1969.
- [2] M.I. Jinnah and A. Vijayalekshmi, *Total Dominator Colorings in Graphs*, Ph.D Thesis, University of Kerala, 2010.
- [3] A. Vijayalekshmi and J.Virgin Alangara Sheeba, Total dominator chromatic number of Paths, Cycles and Ladder graphs, *International Journal of Contemporary Mathematical Sciences*, 13(5)(2018), 199–204.
- [4] A. Vijayalekshmi, Total dominator colorings in Paths, *International Journal of Mathematical Combinatorics*, 2(2012), 89–95.
- [5] S. Gravier and M. Mollard, on domination numbers of Cartesian product of paths, *Discrete Appl. Math.,* 80(1997), 247–250.
- [6] S. Gravier, Total domination number of grid graphs, *Discrete Applied Mathematics*, 2(2002), 119–128.
- [7] S. Klavzar and N. Seifter, Dominating Cartesian products of cycles, *Discrete Appl. Math.,* 59(1995), 129–136.
- [8] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, *Domination in Graphs*, Marcel Dekker, New York, 1998.
- [9] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, New York, 1998.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

