

https://doi.org/10.26637/MJM0804/0024

C++ Programme for total dominator chromatic number of ladder graphs through simple transformations

J. Virgin Alangara Sheeba¹ and A. Vijayalekshmi²*

Abstract

A total dominator coloring of a graph $\mathbb{G} = (\mathbb{V}, \mathbb{E})$ without isolated vertices, along with each vertex in \mathbb{G} , is a proper coloring that dominates a color class. The total chromatic dominator number of \mathbb{G} is the minimum number of color classes with further assumption that each vertex in \mathbb{G} dominates a color class properly and is represented as $\chi_{td}(\mathbb{G})$. In this manuscript, we consider the chromatic total dominator number of ladder graphs through fundamental transformations via the program C++.

Keywords

Coloring, Total dominator coloring, Total dominator chromatic number.

AMS Subject Classification 05C69, 68W25.

¹Research Scholar [Reg. No:11813], Department of Mathematics, S.T. Hindu College, Nagercoil-629002, Tamil Nadu, India.
²Department of Mathematics, S.T. Hindu College, Nagercoil-629002, Tamil Nadu, India.

^{1,2} Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.

*Corresponding author: vijimath.a@gmail.com

Article History: Received 14 March 2020; Accepted 02 June 2020

©2020 MJM.

Contents

1	Introduction1480
2	Preliminaries1481
3	Main Result 1481
4	Conclusion1486
	References

1. Introduction

We mainly find ladder graphs in this manuscript. For additional information in graph theory and its applications, we suggest the reader to refer F. Harrary [4]. Allow $\mathbb{G} = (\mathbb{V}, \mathbb{E})$ be a graph without isolated vertices. For any two graphs \mathbb{G} and \mathbb{H} , we characterize the cartesian product, signified by $\mathbb{G} \times \mathbb{H}$, to be the graph with vertex set $\mathbb{V}(\mathbb{G}) \times \mathbb{V}(\mathbb{H})$ and edges between two vertices (u_1, v_1) and (u_2, v_2) iff either $u_1 = u_2$ and $v_1v_2 \in E(H)$ or $u_1u_2 \in E(G)$ and $v_1 = v_2$.

In general, for $n \ge 2$, we characterize a ladder graph as $P_2 \times P_n$ and is signified by L_n and $|\mathbb{V}(L_n)| = p = 2n, n \ge 2$.

A proper coloring of $\mathbb G$ is an assignment of colors to the vertices of $\mathbb G,$ in a way that adjacent vertices have different

colors. The smallest number of colors for which \mathbb{G} is properly colored is considered a chromatic number of \mathbb{G} , and $\chi(\mathbb{G})$ is denoted. A total dominator coloring (*td*-coloring) of \mathbb{G} is a proper coloring of \mathbb{G} with additional axioms that is properly dominated color class by every vertex in \mathbb{G} . Let $\chi_{td}(\mathbb{G})$ be the total dominator chromatic number and is defined by the minimum number of colors needed in a total dominator coloring of \mathbb{G} . This principle was developed in [1] by Vijayalekshmi. This thought is often pointed to as a \mathbb{G} , $(k \ge 1)$ Smarandachely k-dominator color and was presented in [2] by Vijayalekshmi. A Smarandachely *k*-dominator coloring of \mathbb{G} for an integer $k \ge 1$ is a proper coloring of G, so that each vertex in a \mathbb{G} graph properly dominates a color class of k. The smallest number of colors for which there exists a Smarandachely k-dominator coloring of \mathbb{G} is called the Smarandachely k-dominator chromatic number of \mathbb{G} and is denoted by $\chi_{td}^s(\mathbb{G})$.

Let \mathscr{C} be a minimum *td*-coloring of \mathbb{G} . We say a color class is considered a non-dominated color class (n - d color class) if no vertex of \mathbb{G} dominates it and these color classes are often considered repeated color classes.

We recommend the author to pertain to [3, 5, 6] for further information on this theory and its applications.

2. Preliminaries

In this segment, we remember the critical [3] theorem which is quite helpful in our research. For the subsequent observation the minimum dominator chromatic number of ladder graphs has been identified.

For every $n \ge 2$, the total dominator chromatic number of a ladder graph is

$$\chi_{td} (\mathscr{C}_n) = \begin{cases} 2\lfloor \frac{p}{6} \rfloor + 2, & ifn \equiv 0 (mod6) \\ 2\lfloor \frac{p-2}{6} \rfloor + 4, & \\ 2\lfloor \frac{p-4}{6} \rfloor + 4, & otherwise. \end{cases}$$

In this manuscript we obtain a C++ program which uses fundamental transformations to find the *td*-chromatic number of ladder graphs.

3. Main Result

In this section, We have to find the total dominator chromatic number of ladder graphs using C++ programme. The C++ programme is successfully compiled and run on C++ platform. The runtime test is included.

Programme as follows

```
#include "stdafx.h"
#include <Windows.h>
#include <conio.h>
#include <iostream>
using namespace std;
int main() {
int inpt;
cout << "Enter the Value of Ln" << endl;</pre>
cin >> inpt;
int N = inpt + inpt; int M = inpt + inpt;
int** ary = new int*[N];
int** mat = new int*[N];
int** mat1 = new int*[N];
int** mat2 = new int*[N];
int** mat3 = new int*[N];
int** matsum = new int*[N];
for (int i = 0; i < N; ++i)
{
  ary[i] = new int[M]; mat[i] = new int[M]; mat1[i] = new int[M];
mat2[i] = new int[M]; mat3[i] = new int[M]; matsum[i] = new int[M];
}
int k, l, sum;
HANDLE p = GetStdHandle(STD_OUTPUT_HANDLE);
SetConsoleTextAttribute(p, FOREGROUND INTENSITY | FOREGROUND INTENSITY);
for (int i = 0; i < N; ++i)
for (int j = 0; j < M; ++j)
ary[i][j] = i;
cout << "\n" << "The Adjacency Matrix for L" << inpt << "\n";
for (int i = 0; i < N; i++)
{
if (i % 2 == 0)
{
for (int j = 0; j < N; j++)
{
if (ary[j][i] == i + 1 | ary[j][i] == i - 1 | ary[j][i] == i + 3)
{
mat[i][j] = 1;
cout << mat[i][j] << " ";</pre>
}
```



```
else
{
mat[i][j] = 0;
cout << mat[i][j] << " ";</pre>
}
}
}
else
{
for (int j = 0; j < N; j++)</pre>
{
if (ary[j][i] == i + 1 | ary[j][i] == i - 1 | ary[j][i] == i - 3)
{
mat[i][j] = 1;
cout << mat[i][j] << " ";</pre>
}
else
{
mat[i][j] = 0;
cout << mat[i][j] << " ";</pre>
}
}
}
cout << "\n";</pre>
}
cout << "\n" << "ADJACENCY MATRIX BY SUBSTRATING THE ROW ASSENDING VALUES" << "\n";
for (int i = 0; i < N; i++)
{
int sum = 0;
for (int j = 0; j < N; j++)
{
if (i >= 2 && i <= 5 && mat[i][j] == 1 && mat1[i - 2][j] == 1)
{
mat1[i][j] = mat[i][j] - mat[i - 2][j];
}
else if (i >= 6 && mat[i][j] == 1 && mat1[i - 2][j] == 1 && matsum[i - 4][0] != 1)
{
mat1[i][j] = mat[i][j] - mat[i][j];
}
else if (i >= 4 && mat[i][j] == 1 && mat1[i - 2][j] == 0 && matsum[i - 4][0] == 1)
{
mat1[i][j] = mat[i][j] - mat1[i - 4][j];
}
else
{
mat1[i][j] = mat[i][j];
}
sum = sum + mat1[i][j];
}
matsum[i][0] = sum;
}
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (mat1[i][j] == 1)
```



```
{
SetConsoleTextAttribute(p, FOREGROUND RED | FOREGROUND INTENSITY);
cout << mat1[i][j] << " ";</pre>
}
else
{
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
}
}
cout << "\n";</pre>
}
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << "\n"<< "ADJACENCY MATRIX BY SUBSTRATING THE COLUMN VALUES";
if (N%3 == 0)
{
N = N - 1;
for (int i = N; i \ge 0; i--)
{
for (int j = N; j \ge 0; j--)
{
if (i >= 4 && mat1[i][j] == 1 && mat1[i - 4][j] == 1)
{
mat1[i - 4][j] = mat1[i][j] - mat1[i - 4][j];
}
else if (i >= 2 && mat1[i][j] == 1 && mat1[i - 2][j] == 1)
{
mat1[i - 2][j] = mat1[i][j] - mat1[i - 2][j];
}
}
}
N = N + 1;
cout << "\n";</pre>
}
else
{
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (mat1[i][j] == 1 && mat1[i][j+2] == 1)
{
mat1[i][j+2] = mat1[i][j+2] - mat1[i][j];
}
else if (mat1[i][j] == 1 && mat1[i][j + 4] == 1)
{
mat1[i][j + 4] = mat1[i][j + 4] - mat1[i][j];
}
else
{
mat1[i][j] = mat1[i][j];
}
}
}
cout << "\n";
}
```



```
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (mat1[i][j] == 1)
{
SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";</pre>
}
else
{
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
}
}
cout << "\n";</pre>
}
SetConsoleTextAttribute(p, FOREGROUND INTENSITY | FOREGROUND INTENSITY);
cout << "\n";</pre>
int ary2[] = \{ 0, 1, 4, 5, 2, 3 \}, aaa = 0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (ary2[aaa] > N-1)
{
ary2[aaa] = ary2[aaa]-2;
mat3[i][j] = mat1[ary2[aaa]][j];
}
mat3[i][j] = mat1[ary2[aaa]][j];
}
if (aaa < 5)
{
ary2[aaa] = ary2[aaa] + 6;
aaa = aaa + 1;
}
else if (aaa = 5)
{
ary2[aaa] = ary2[aaa] + 6;
aaa = 0;
}
}
cout << "FINAL SUB MATRIXES AFTER SUBSTRACTING THE COLUMN FROM BOTTOM TO TOP
" << "\n";
k = 0;
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if (j % 2 == 0 && i % 2 == 0 && mat1[i][j] == 0 && mat1[i][j + 1] == 1 ||
  mat1[i][j] == 1)
{
SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
cout << mat1[i][j] << " ";
}
else if (j % 2 != 0 && i % 2 != 0 && mat1[i][j] == 0 && mat1[i][j - 1] == 1)
```

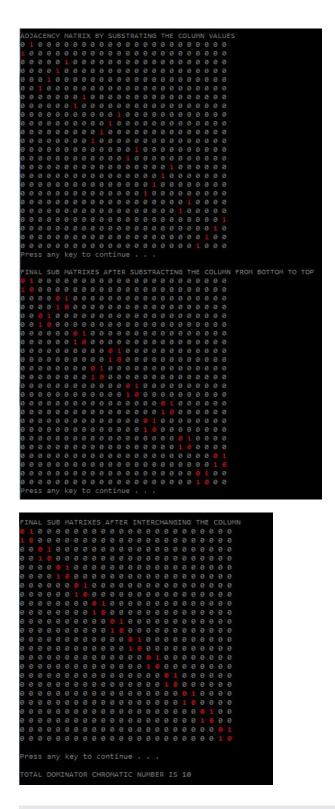


```
{
SetConsoleTextAttribute(p, FOREGROUND RED | FOREGROUND INTENSITY);
k = k + 1;
cout << mat1[i][j] << " ";</pre>
}
else
{
SetConsoleTextAttribute(p, FOREGROUND INTENSITY | FOREGROUND INTENSITY);
cout << mat1[i][j] << " ";</pre>
}
}
cout << "\n";</pre>
}
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << "\n" << "FINAL SUB MATRIXES AFTER INTERCHANGING THE COLUMN" << "\n";
for (int i = 0; i < N; i++)
{
for (int j = 0; j < N; j++)
{
if ( i% 2==0 && mat3[i][j] == 0 && mat3[i][j + 1] == 1 || mat3[i][j] == 1)
{
SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
cout << mat3[i][j] << " ";</pre>
}
else if (i % 2 != 0 && mat3[i][j] == 0 && mat3[i][j - 1] == 1)
{
SetConsoleTextAttribute(p, FOREGROUND_RED | FOREGROUND_INTENSITY);
cout << mat3[i][j] << " ";</pre>
}
else
{
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
cout << mat3[i][j] << " ";</pre>
}
}
cout << "\n";
SetConsoleTextAttribute(p, FOREGROUND_INTENSITY | FOREGROUND_INTENSITY);
}
cout << "\n";</pre>
if (inpt % 3 == 0)
{
cout <<"\n" << "TOTAL DOMINATOR CHROMATIC NUMBER IS " << (2 * (k / 3)) + 2
<< "\n";
}
else
{
cout << "\n" << "TOTAL DOMINATOR CHROMATIC NUMBER IS " << (2 * (k-1)/3) + 4
<< "\n";
}
system("Pause");
return 0;
for (int i = 0; i < N; ++i)
delete[] ary[i], ary, mat1[i], mat1, mat[i], mat, matsum[i], matsum, mat2[i], mat2,
mat3[i], mat3;
}
```


C++ Programme for total dominator chromatic number of ladder graphs through simple transformations — 1486/1487

return 0; }

Enter the Va 12	alue of Ln
	cy Matrix for L12
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
101010	
	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0 1	1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0 0 0 0 1 0	10100000000000000000
000000	
	0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
	0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
	0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0
	0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0
	0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1
	0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0
Press any ke	
ADJACENCY MAT	
0 1 0 1 0 0 0 1 0 1 0 0 0 0	
0000010	
0 0 0 0 1 0 0	
0001000	
0 0 1 0 0 0 1 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0000001	1010000000000000000
0000000	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0	3 8 8 8 8 8 8 1 8 1 8 8 8 8 8 8 8 8 8
0 0 0 0 0 0 0 0 0 0 0 0 0 0	
000000000	
	3 8 8 8 8 8 8 8 9 1 8 8 8 1 8 8 8 8 8
0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0	
0 0 0 0 0 0 0	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
0000000	
	3



4. Conclusion

Within this manuscript, we treat the total dominator chro-

matic number of ladder graphs in a simplified and enhanced fashion utilizing elementary transformations by C++ programme.

References

- [1] A. Vijayalekshmi, Total dominator colorings in paths, International Journal of Mathematical Combinatorics, 2(2012), 89–95.
- [2] A. Vijayalekshmi, Total dominator colorings in cycles, International Journal of Mathematical Combinatorics, 4(2012), 92–96.
- [3] A. Vijayalekshmi and J.Virgin Alangara Sheeba, Total dominator chromatic number of Paths, Cycles and Ladder graphs, *International Journal of Contemporary Mathematical Sciences*, 13(5)(2018), 199–204.
- [4] F. Harrary, *Graph Theory*, Addition-Wesley, Reading Mass, 1969.
- [5] M.I. Jinnah and A. Vijayalekshmi, *Total Dominator Colorings in Graphs*, Ph.D Thesis, University of Kerala, 2010.
- [6] Terasa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater, Domination in Graphs, Marcel Dekker, New York, 1998.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

