

https://doi.org/10.26637/MJM0804/0026

©2020 MJM.

# Dominator chromatic number of grid graph

S. Anusha<sup>1</sup> and A. Vijayalekshmi<sup>2\*</sup>

### Abstract

Let *G* be a graph. A dominator coloring of *G* is a proper coloring in which every vertex of G dominates at least one color class. The dominator chromatic number of *G* is denoted by  $\chi_d(G)$  and is defined by the minimum number of colors needed in a dominator coloring of *G*. In this paper, we obtain dominator chromatic number of grid graphs.

#### **Keywords**

Dominator chromatic number, grid graph.

AMS Subject Classification

05C15, 05C69

<sup>1</sup>Research Scholar [Reg. No:11506], Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.
<sup>2</sup>Department of Mathematics, S.T.Hindu College, Nagercoil-629002, Tamil Nadu, India.

<sup>1,2</sup> Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamil Nadu, India.

\*Corresponding author: <sup>2</sup> vijimath.a@gmail.com;

Article History: Received 04 April 2020; Accepted 11 August 2020

## Contents

| 1 | Introduction1493  |
|---|-------------------|
| 2 | Main Results 1494 |
| 3 | Illustration1494  |
|   | References1496    |

# 1. Introduction

All graphs considered in this paper are finite, undirected graphs and we follow standard definition of graph theory as found in [1]. Let G = (V, E) be a graph of order n. The open neighborhood N(v) of a vertex  $v \in V(G)$  consists of the set of all vertices adjacent to v. The closed neighborhood of v is  $N[v] = N(v) \cup \{v\}$ . The path and cycle of order n are denoted by  $P_n$  and  $C_n$  respectively. For any two graphs G and H, we define the cartesian product, denoted by  $G \times H$ , to be the graph with vertex set  $V(G) \times V(H)$  and edges between two vertices  $(u_1, v_1)$  and  $(u_2, v_2)$  iff either  $u_1 = u_2$  and  $v_1v_2 \in E(H)$  or  $u_1u_2 \in E(G)$  and  $v_1 = v_2$ . A grid graphs can be defined as  $P_m \times P_n$  where  $m, n \ge 2$  and denoted by  $P_{m \times n}$ .

A subset *S* of *V* is called a dominating set if every vertex in V - S is adjacent to atleast one vertex in *S*. The dominating set is minimal dominating set if no proper subset of *S* is a dominating set of *G*. The domination number  $\gamma$  is the minimum cardinality taken over all minimal dominating set of *G*. A  $\gamma$ -set is any minimal dominating set with cardinality  $\gamma$ .

A proper coloring of G is an assignment of colors to the ver-

tices of *G* such that adjacent vertices have different colors. The minimum number of colors for which there exists a proper coloring of *G* is called chromatic number of *G* and is denoted by  $\chi(G)$ . A dominator coloring of *G* is a proper coloring of *G* in which every vertex of *G* dominates atleast one color class. The dominator chromatic number is denoted by  $\chi_d(G)$  and is defined by the minimum number of colors needed in a dominator coloring of *G*. This concept was introduced by Ralucca Michelle Gera in 2006 [2].

In a proper coloring *C* of *G*, a color class of *C* is a set consisting of all those vertices assigned the same color. Let  $C^1$  be a minimal dominator coloring of *G*. We say that a color class  $c_i \in C^1$  is called a non-dominated color class (n - d color class) if it is not dominated by any vertex of *G*. These color classes are also called repeated color classes. The dominator chromatic number of paths found in [2]. We have the following observation from [2].

**Theorem 1.1.** [2] The path  $P_n$  of order  $n \ge 2$  has

$$\chi_d(p_n) = \begin{cases} \left\lceil \frac{n}{3} \right\rceil + 1 & \text{if } n = 2, 3, 4, 5, 7 \\ \left\lceil \frac{n}{3} \right\rceil + 2 & \text{otherwise} \end{cases}$$

In this paper, we obtain the least value for dominator chromatic number for grid graphs.

# 2. Main Results

Theorem 2.1. If m and n both even then

$$\chi_d(p_{m \times n}) = \begin{cases} rac{mn}{4} + 2 & ext{if } m, n \equiv 0 (mod4) \\ rac{mn}{4} + 3 & ext{otherwise} \end{cases}$$

Proof. Let the vertex set of

$$P_{m \times n} = V(P_{m \times n}) = \left\{ u_{ij} \middle| \begin{array}{c} 1 \le i \le m \\ 1 \le j \le n \end{array} \right\}.$$

We consider two cases.

**Case** (1): Let  $m, n \equiv 0 \pmod{4}$ . Let

$$D^{(1)} = \left\{ \left\{ u_{ij} \middle| \begin{array}{l} i = 1, 5, 9, \dots, (m-1) \\ j = 2, 6, 10, \dots, (n-2) \end{array} \right\} \bigcup$$
$$\left\{ u_{ij} \middle| \begin{array}{l} i = 2, 6, 10, \dots, (m-2) \\ j = 4, 8, 12, \dots, n \end{array} \right\} \bigcup$$
$$\left\{ u_{ij} \middle| \begin{array}{l} i = 3, 7, 11, \dots, (m-1) \\ j = 1, 5, 9, \dots, (n-3) \end{array} \right\} \bigcup$$
$$\left\{ u_{ij} \middle| \begin{array}{l} i = 4, 8, 12, \dots, m \\ j = 3, 7, 11, \dots, (m-1) \end{array} \right\} \right\}$$

be any arbitrary  $\gamma$ -set of  $P_{m \times n}$ . We assign one new color say 3,4,5,...,  $\left(\frac{mn}{4}+2\right)$  to every vertex in  $D^{(1)}$ . Also we assign two repeated colors say 1,2 to the vertices  $u_{ij}$  and  $u_{kl} \in V(P_{m \times n}) - D^{(1)}$  such that |i-k| + |j-l| = 1. So  $\chi_d(P_{m \times n}) = \frac{nm}{4} + 2$ .

**Case (2):** Let except  $m, n \equiv 0 \pmod{4}$ . we have three sub cases.

Subcase (2.1): Let  $m \equiv 0 \pmod{4} \& n \equiv 2 \pmod{4}$ . Let

$$S^{(1)} = \left\{ \left\{ u_{ij} \middle| \begin{array}{l} i = 1, 5, 9, \dots, (m-1) \\ j = 2, 6, 10, \dots, n \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 2, 6, 10, \dots, (m-2) \\ j = 4, 8, 12, \dots, (n-2) \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 3, 7, 11, \dots, (m-1) \\ j = 1, 5, 9, \dots, (n-1) \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 4, 8, 12, \dots, m \\ j = 3, 7, 11, \dots, (m-3) \end{array} \right\} \bigcup \{ u_{mn} \} \right\}$$

be any arbitrary  $\gamma$ -set of  $P_{m \times n}$ . We assign one new color say 3,4,5,...,  $\left(\frac{mn}{4}+3\right)$  to every vertex in  $S^{(1)}$ . Also we assign two repeated colors say 1,2 to the vertices  $u_{ij}$  and  $u_{kl} \in V(P_{m \times n}) - S^{(1)}$  such that |i-k| + |j-l| = 1. So  $\chi_d(P_{m \times n}) = \frac{mn}{4} + 3$ .

Subcase (2.2): Let  $m \equiv 2 \pmod{4} \& n \equiv 0 \pmod{4}$ . Let

$$S^{(2)} = \left\{ \left\{ u_{ij} \middle| \begin{array}{l} i = 1, 5, 9, \dots, (m-1) \\ j = 2, 6, 10, \dots, (n-2) \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 2, 6, 10, \dots, m \\ j = 4, 8, 12, \dots, n \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 3, 7, 11, \dots, (m-3) \\ j = 1, 5, 9, \dots, (n-3) \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 4, 8, 12, \dots, (m-2) \\ j = 3, 7, 11, \dots, (m-1) \end{array} \right\} \bigcup \{ u_{m1} \} \right\}$$

be any arbitrary  $\gamma$ -set of  $P_{m \times n}$ . We assign one new color say 3,4,5,...,  $\left(\frac{mn}{4}+3\right)$  to every vertex in  $S^{(2)}$ . Also we assign two repeated colors say 1,2 to the vertices  $u_{ij}$  and  $u_{kl} \in V(P_{m \times n}) - S^{(2)}$  such that |i-k| + |j-l| = 1. So  $\chi_d(P_{m \times n}) = \frac{mn}{4} + 3$ .

Subcase (2.3): Let  $m \equiv 2 \pmod{4} \& n \equiv 2 \pmod{4}$ . Let

$$S^{(3)} = \left\{ \left\{ u_{ij} \middle| \begin{array}{l} i = 1, 5, 9, \dots, (m-1) \\ j = 2, 6, 10, \dots, n \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 2, 6, 10, \dots, m \\ j = 4, 8, 12, \dots, (n-2) \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 3, 7, 11, \dots, (m-3) \\ j = 1, 5, 9, \dots, (n-1) \end{array} \right\} \bigcup \\ \left\{ u_{ij} \middle| \begin{array}{l} i = 4, 8, 12, \dots, (m-2) \\ j = 3, 7, 11, \dots, (m-3) \end{array} \right\} \bigcup \{ u_{mn} \} \right\}$$

be any arbitrary  $\gamma$ -set of  $P_{m \times n}$ . We assign one new color say 3,4,5,...,  $\left(\frac{mn}{4}+3\right)$  to every vertex in  $S^{(3)}$ . Also we assign two repeated colors say 1,2 to the vertices  $u_{ij}$  and  $u_{kl} \in V(P_{m \times n}) - S^{(3)}$  such that |i-k| + |j-l| = 1. So  $\chi_d(P_{m \times n}) = \frac{mn}{4} + 3$ . Thus

$$\chi_d(P_{m \times n}) = \begin{cases} \frac{mn}{4} + 2 & \text{if } m, n \equiv 0 \pmod{4} \\ \frac{mn}{4} + 3 & \text{otherwise} \end{cases}$$

## 3. Illustration

Consider  $P_{8\times 12}$  and  $P_{8\times 10}$ 



1494



#### Theorem 3.1. If m is odd and n is even then

$$\chi_d(P_{m \times n}) = \begin{cases} \frac{(m-1)n}{4} + \left\lceil \frac{n}{3} \right\rceil + 2 & \text{if } m - 1, n \equiv 0 \pmod{4} \\ \frac{(m-1)n}{4} + \left\lceil \frac{n}{3} \right\rceil + 3 & \text{otherwise} \end{cases}$$

*Proof.* We have  $P_{m \times n}$  is obtained by  $P_{(m-1) \times n}$  followed by  $P_n$ . Since in a dominator coloring of  $P_{m \times n}$  we cannot use the non-repeated colors of vertices in  $P_n$  and we can use the same repeated colors of vertices in the graphs  $P_{(m-1) \times n}$  and  $P_n$ . Since m - 1 is even, we get by Theorem 1.1

$$\chi_d(P_{(m-1)\times n}) = \begin{cases} \frac{(m-1)n}{4} + 2 & \text{if } m-1, n \equiv 0 \pmod{4} \\ \frac{(m-1)n}{4} + 3 & \text{otherwise} \end{cases}$$

So

$$\chi_d(P_{m \times n}) = \begin{cases} \frac{(m-1)n}{4} + \lceil \frac{n}{3} \rceil + 2 & \text{if } m-1, n \equiv 0 \pmod{4} \\ \frac{(m-1)n}{4} + \lceil \frac{n}{3} \rceil + 3 & \text{otherwise} \end{cases}$$

Let us consider  $P_{7\times 8}$ 

**Theorem 3.2.** If m is even and n is odd then

$$\chi_d(P_{m \times n}) = \begin{cases} \frac{m(n-1)}{4} + \left\lceil \frac{m}{3} \right\rceil + 2 & \text{if } m, n-1 \equiv 0 \pmod{4} \\ \frac{m(n-1)}{4} + \left\lceil \frac{m}{3} \right\rceil + 3 & \text{otherwise} \end{cases}$$

*Proof.* Since *m* and  $n-1 \equiv 0 \pmod{4}$  and  $P_{m \times n}$  is obtained by  $P_{m \times (n-1)}$  followed by  $P_m$ . By Theorem 3.1,

$$\chi_d(P_{m\times n}) = \chi_d(P_{m\times (n-1)}) + \chi_d(P_m) - 2.$$





$$\chi_d(P_{m \times n}) = \begin{cases} \frac{(m-1)(n-1)}{4} + \lceil \frac{m+n-1}{3} \rceil + 2 & \text{if } m-1, n-1 \equiv 0 \pmod{4} \\ \frac{(m-1)(n-1)}{4} + \lceil \frac{m+n-1}{3} \rceil + 13 & \text{otherwise} \end{cases}$$

*Proof.* Since (m-1) and  $(n-1) \equiv 0 \pmod{4}$  and  $P_{m \times n}$  is obtained by  $P_{(m-1) \times (n-1)}$  followed by P + m + n - 1. By theorem 3.1,

$$\chi_d(P_{m\times n}) = \chi_d(P_{(m-1)\times(n-1)}) + \chi_d(P_{m+n-1}) - 2$$

By Theorem 1.1,

$$\chi_d(P_{(m-1)\times(n-1)}) = \begin{cases} \frac{(m-1)(n-1)}{4} + 2 & \text{if } m-1, n-1 \equiv 0 \pmod{4} \\ \frac{(m-1)(n-1)}{4} + 3 & \text{otherwise} \end{cases}$$



So

$$\chi_d(P_{m \times n}) = \begin{cases} \frac{(m-1)(n-1)}{4} + \lceil \frac{m+n-1}{3} \rceil + 2 & \text{if } m-1, n-1 \equiv 0 \pmod{4} \\ \frac{(m-1)(n-1)}{4} + \lceil \frac{m+n-1}{3} \rceil + 3 & \text{otherwise} \end{cases}$$

Let us consider  $P_{11\times7}$ 



# References

- F.Harrary, *Graph Theory*, Addition- wesley Reading, Mass, 1969.
- [2] Gera-R, Rasmussen-c and Horton-S, Dominator coloring and safe clique parti tions, *Congr. Numer.*, 181(2006), 19–32.
- <sup>[3]</sup> S.M. Dedetniemi, S.T. Hedetniemi, A.A. Mcrae, J.R.S. Blair, *Dominator coloring of graphs*, 2006, (pre print).
- [4] Terasa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Domination in Graphs, Marcel Dekker, New York, 1998.
- [5] Terasa W.Haynes, Stephen T.Hedetniemi, Peter J.Slater, Domination in Graphs – Advanced Topics, Marcel Dekker, New York, 1998.
- [6] S.Gravier, M. Mollard, on domination numbers of Cartesian product of paths, *Discrete Appl. Math.*, 80 (1997), 247–250.
- <sup>[7]</sup> T.Y. Chang , W.E. Clark, The domination number of the  $5 \times n$  and  $6 \times n$  grid graphs, *J. Graph Theory*, 17(1)(1993), 81–107.
- [8] M.S.Jacobson, L.F.Kinch, on the domination number of products of a graph I, Ars Combin., 10(1983), 33–44.

\*\*\*\*\*\*\*\* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 \*\*\*\*\*\*\*

