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1. Introduction

Constacyclic codes constitute a remarkable generalization
of cyclic codes and form an important class of linear codes in
the coding theory. Constacyclic codes also have some practi-
cal applications as they can be encoded with shift registers.

In 2007, Boucher et al. [6] firstly studied cyclic codes
in a non commutative ring called the skew polynomials ring
[F[x; 8], where 6 denotes the automorphism of the finite field
FF, and they produced many good linear codes which bet-
ter than existing ones. One advantage of skew polynomi-
als ring is that the polynomial x* — 1 has more factors in
skew polynomials ring than commutative rings. Later, in
[7]1 Boucher et al. generalised this idea to skew constacyclic
codes in the skew polynomials ring. In 2011, Siap et al.
[21] studied the skew cyclic codes of arbitrary length and
established a strong connection with well known codes. In
2012, Abualrub et al. [1] studied 8-cyclic codes over the
non-chain ring I, + vIFy,v> = v with respect to Euclidean
and Hermitian inner products. Jitman et al. [17] studied
skew constacyclic codes over finite chain rings and gave the

generators of Euclidean and Hermitian dual codes. Later,
these codes over non-chain rings are extensively studied.
For instance, the rings F3 +vF;3 in [2], F, + vIFq,v2 =vin
[12], Fy +ulF, + qu,uz =u,v? = v,uv = vu = 0 in [3] are
considered to study skew cyclic codes. Also, Yao et al.
[20] and Dertli & Cengellenmis [9] studied these codes over
Fy+uF,+vF,+ uvIE*‘q,u2 =u,v> = v,uv = vu. In 2017, Gao
et al. [11] obtained the structure of skew constacyclic codes
over non-chain ring IF, +vF, v> = v and they obtained skew
(=14 2v)-constacyclic codes. Islam and Prakash have deter-
mined the structural properties of skew constacyclic codes
over F, +ulF, +vF, + uvIE‘q,u2 = u,v? = v,uv = vu in [15]
and F, + uF, +vF,,u? = u,v* = vuv = vu = 0 in [16]. In
2019, Bhardwaj and Raka [4] studied skew constacyclic codes
over the ring IF,[u,v](f(u),g(v),uv — vu) by using two non
trivial automorphisms.

Motivated by above studies, in this paper, we consider a
Commutative ring # = I, + ulF, + VI, 4+ wF, + uvlF, where
w? = u,v? = v,w?* = w,uv = vu,uw = 0 = wv and study ©;-
cyclic and (0, 4)-cyclic codes over it.

2. Gray Map

Let g = p™, where p is an odd prime and Z = I, + ulF, +
VF, +wF,+uvF, where WP =u,v? = v, w? = w,uv = vu,uw =
0 = wv Note that Z is a finite commutative non chain exten-

. . . . Fylu,y,w
sion of IF, and isomorphic to the ring

(12 —uv2—v,w2 —wuv—vu,uw,wv) ’
Also, Z is local with unique maximal ideal (u,v,w) and

quotient ring <u'gfw> is isomorphic to IF,. A non-empty subset

€ of %" is said to be a linear code of length n if € is an Z-




submodule of %Z". The elements of ¢ are called codewords.

Since # = F, + uF, + vF, + wF, + uvF, where u? =
u,v? =v,w? = w,uv = vu,uw = 0 = wv. Any element in % can
be represented uniquely as r| + ury +vr3 +wrq + uvrs where
ri€FgLeti=w—w),b=01-u—v—w+u), 3=
(v—uv), s = uv and {s = w are elements in Z. Then it satis-
fies (§)>=Cifor 1 <i<5,5¢;=0fori# jand { + &+
G+o+C=1

Therefore, the ring Z can be decomposed to Z = {|Z &
ORDGERDURDCs. As, X = §F,, for 1 <i <5, then
R =(F, @ OHF, @ GF, ® GF, @ {5F,. Thus we can repre-
sent the element of Z as a; & +ax o + a3z +asly +as8s
where a; € .

We recall the Frobenius automorphism ©; on F, defined
by ©;(a) = a”, where t|m. The extension of the automor-
phism on Z is define as

5 s
r)= ; G0 (r) = ; Grl’,

where r = @lee,-r,- and r; € F, for 1 <i <5. The multi-
plication of skew polynomials is defined as (ax')(bx’/) =
a®, (b)ix'*J. Therefore, the skew polynomial ring Z[x; ®,] =
{f(x) € Z[x]} is a non-commutative ring under the above mul-
tiplication and standard addition of polynomials. Whenever
we considered ©; identity automorphism it becomes commuta-
tive ring. It is evident to see that the invariant ring under the au-
tomorphism is Zipy = %/ m—r and hence Riny|x; O] = Riny[x]
is a commutative ring. Further, the polynomial x* — 1 is a
central element in Z[x; ;] if nt | m. In that case (x" — 1) is a
two sided ideal and hence, %,, = Z|x;0,]/(x" — 1) is a ring.

However, under the left multiplication define by ¢(x)(a(x) +
(x"—1)) = c(x)a(x) + (x" — 1), where c(x),b(x) € Z|x; 0],
Ry is a left Z[x; ©;]-module.

A non-empty subset € of %" is called a linear code of
length n over Z if € is an Z-submodule of %" and members
of € are codewords.

Definition 2.1. [6] A non-trivial Z-submodule € of %" is
called a ©,-cyclic code if for any ¢ = (co,ci,...,cn—1) €C,
o(c) =(0;(cn-1),0(co),--.,0:(ch—2)) € €. The operator
o is called as ©-cyclic shift operator on XZ".

Theorem 2.2. Let ¢(x) = co+cix+---+c,_1x" "' €R, be
the polynomial represenation of the codeword ¢ = (co,ci,

.yCn—1) € €. Then the linear code € is a ©;-cyclic code iff
E is a left Z|x; O,)-submodule of %,.

Proof. Let ¢ = (co,c1,...,¢cn—1) € C then the correspond-
ing polynomial representation of ¢ is ¢(x) = co+c1x+--- +
cp_1x"~ 1. Since ¥ is a ©,-cyclic code, we have o(c) =
(®t(cn71)a (G2 (CO)a ®t(c1)7 LR ©; (Cn—z)) € ¢ then the pOIy'
nomial representation can be seen as follows x(co + c1x +
e X = 04 (c0)x + O, ()X + - 4O (o)X
@; (Cnfl)xn
=0 (cn1)+0(co)x+0,(c)x>+---+0,(c,2)x" 1 €F.
Implies that xc(x) € € then by induction on i > 1, we have
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xic(x) € €. Using linearity in ¢, we have r(x)c(x) € C for
r(x) € Z[x,0;]. Therefore, € is a left Z[x; ©;]-submodule of
R,.
On the other hand, let ¢ = (co,c1,...,cn—1) € € whose cor-
responding polynomial representation is c(x) = co+ c1x +
-+ XL Let € be a left Z[x; ®,]-submodule of R,,.
Then o(c) = xc(x) € €, represents the @;-cyclic shift of ¢(x).
Therefore, € is a ®;-cyclic code of length n over Z. O

We define a new gray map from Z to I,

0% IFS
S(aili+axlo+asls+asla+asls) = (ar,ar,a3,a4,as)

and it can be extended to n length by 8 ((a; 0,a1.1,- - ,a1,,—1)C1
+(a20,a2,1, a0 1) 02+ -+ (asp,as5,1,- - a5 ,-1)85) =
(arp,a1,1,+,a1,9-1,42,0,G2,1," " ;A5 1—1)

The Hamming weight of a € [y is defined as number
of non zero entries in a and is denoted as wy(a) For any
element r = (a1C1 +a2C2 +a3C3 +a4C4 +a5C5) € % we de-
fine the Gray weight of a code as wg(r) = wy(8(r)). Then
Gray distance of code ¢ is dg(C) = min(wg(c; — c;)) where
Ci,C;ET.

Theorem 2.3. The gray map § is a Fy-linear map and dis-

tance preserving from Z"(Gray Distance) to Fg"(Hamming
distance).

Proof. Let a = ay,ay,--- ,ap—1 and b = by,by,--- ,b,—1 be
an element in %" where a; = Z?:] a; jGi,bj = Z?:l b; ;¢ for
0 < j <n—1 then for any my,my € F, we have

5 5 5
S(ma+mb) = 8(mi(Y a6,y aiiG,. Y ain18)
i=1 i=1 i=1
5 5 5
+m2(z bi,OCi,Zbi,ICia e >Zbi,nflci))
i=1 i=1 i=1
:ml(alﬂval,h o, dlp—1,020,421, 7a2,n71aa5,03a5,17 )

asp—1) + ma(b10,b1,1,-+ b1y—1,020,b2.1,+ ,b2n—1,b50,
bs1, -+ ,bs,u—1) = mi6(a) +my6(b) Which implies 6 is a
F,-linear map. Now using linear property we have dg(a,b) =
wg(a—b) =wg(8(a)—8(b)) =dy(6(a),0(b)). Thus S isa
weight preserving map. O

Theorem 2.4. Let € be a linear code of length n over X.

Then §(€¢*) = (8(%))* .

Proof. Letc = (co,c1,-.. 7Cn_l) €% andd = (d(),d]7 e 7d,,_l)

€ ¢+ where c; = Y7 eish and dj = Y2, eit’ for s%,10 € F,,

0 < j<n-—1. Now, we have c-d = 0 implies ):’};(l)cjdj =0,
Z Zl | sjt} = 0. Again, we have

0-L 1

Therefore, §(¢*) C (5( ))+. As § is bijective linear map,
| 8(€+) |=| (8(€))* |. Therefore §(6+) = (6(¢))*+. O
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Corollary 2.5. Let € be a linear code of length n over X.
Then € is self-dual if and only if 6(C) is self-dual. Further
0(%) is a self-orthogonal over I if € is self-orthogonal.

Proof. Let € be a self-dual linear code of length n over
R. Thatis ¥ = ¢*. Since § is a bijective map we hve
3(%) = 8(¢*), and hence by Theorem 2.4, we have §(%’) =
(6(%))*. Thus 8(%) is a self-dual linear code of length 5n
over IF,. Conversely, let 6(¢) be a self-dual linear code of
length 5n over F, that is §(¢) = (6(¢))*. Since & is onto
the inverse image is unique, thus € = &L Therefore, % is a
self-dual linear code of length n over R.

Moreover, let € C € by using Theorem 2.4 and above we
have 8(%) C (8(%))*. Hence (%) is self-orthogonal linear
code of length 5n over IF,. O

Let A; C Fy, then we define the following
A@Ay={a1+ay|a; €A} and A; ® Ay = {(a1,a2) |
a; € Ai} where A; C %
Deﬁne ¢; C Iy as follows,
={a1 €Ty | Y2 a;i( €€, for some a; € Fo(i# 1)}
%2—{@ EIF"|Z 1a;6i € €, for some a; € Fy(j #2)}
={a3 GIF”|Z 1aiGi € €, for some a; € Fy(j #3)}
‘54 ={as €Ty | Y2  ait €€, for somea; € Fe(i#4)}
={as € IB‘Z | lel a;§; € ¢, forsome a; € FZ(J #5)}
Then cyclic code € over %" can be represented as ¢ =
8161 © 806D 56 Lby® L5Cs.

Theorem 2.6. Let € be a linear code of length n over X.
Then §(¢) = @3, and | € |=TI, | € |-

Proof Letz= (ao71,a1,1, sy Ap—1,1,402,012,- - : yAn—12,"""
(1015,(1175,...,61”,115) €06(¢)and r; = Zi:l Cja! for0<i<
n— 1. The map 0 being bijective, so r = (ro,r1,...,/m—1) €E.
Therefore, by the definition of %;, we have (ao,al, Lal )€
%; for 1 <i < 5. Therefore, z € ®;_,%; and hence §(¢) C
®L, ;.
Conversely, let z = (a0,1,@1.1,---,0n—1,1,802,01,2,- - ,An—12,
. ,a0757a1,5,...,an,175) € ®?:1(fi. Then a' = (ag.,-,al’,-,...,
an—1i) € 6; for 1 <i<5. To show z € §(%), we have to
find 7/ = Zle eisi € € such that (z') = z. Consider s; =
Y2 |eiti; where t;; = a' for 1 <i<6. Thus 7 =Y | e;d
and §(z') = z. Consequently, ®;_; 6; C 8(%). Combining
both sides, we have §(%) = ®f:] €.
\ % |=| 8(%) |. Consequently,
1€ |=| @1 |=TT-1 | 6 |- O

Corollary 2.7. Let € = @?:1 ei6; be a linear code of length
n over %. Then §(€) is a [6n,Y.5_, ki,dy ()], where € is a
[n,ki,dr (%7)] linear code over F f0r 1<i<5anddy(¥) =
min{dy(¢;) |i=1,2,...,5}

Theorem 2.8. Let € = @?:leffi be a linear code of length
n over Z. Then €+ = @leei‘ﬁf-. Moreover, € is self-dual
code if and only if €!s (i =1,2,...,5) are self-dual codes
over IF,.

1504

Skew-constacyclic codes over % — 1504/1508

Proof. Let €; = {r; € F} | there exists r1,r,...,ri_1, i1,
.,rs € F such that YO  eir; € €1}, Then € has the
unique expression C = @?_, ;% ;. Itis easy to see €| C €.
Ifze %IL, then z-x; =0 forall x; € €}. Lets = Z?:l eixi€YC.
Then ejzs = ejx1z = 0, and which implies ez € %+. From
the construction of 6"+, we have z € €. Therefore, ;- C%;.
Hence, €| = ¢;-. By similar process we have ¢/~ = ¢; for
i=2,3,4,5. Consequently, €+ = 691-5:16,‘5,4.
Moreover let & be a self-dual linear code. Then 4 = €+, i.e.,
@ lel‘é @l lel‘fJ- Hence %J- % for1 <i<5. Con-
versely, let ¢7s (i =1,2...,5) be self-dual linear codes. Then
Cr=%for1 <i< 5. Thus, Ct =@ 166+ =D} e/ =
% . Hence € is a self-dual linear code over Z. O

Definition 2.9. A linear code € of length nm over ¥ is said

to be a ©;-quasi-cyclic code of index m if p,(€) = €, where
P is the ©;-quasi-cyclic shift on (IFy)™ define by
pu(a' [@®[---|d") = (c(a') | o(@®) |- | 6(a™)),
2.1

and o is the O;-cyclic shift operator.

Lemma 2.10. Let ¢ be the ©;-cyclic shift and ps be the ©;-
quasi-cyclic shift defined in equation (2.1) and 8 be the Gray
map from Z" to Fg” defined in equation. Then G = ps0.

Proof. Letrj=Y¥;_ ea;; € Rfor0<j<n—1wherea)e
F, for 1 <i<5.Thenr= (ro,r1,...,7a—1) € R". Now,

60-(}’) = 5(®t(rn—l)7®t(r0)7~”7®t(rn—2))
- (®t(an71,l)a®t(a0,l)a' .. 7®t(an72,l)a~“a
O (an-15),0:(aos),--.,0(a,—25)).
On the other hand,
ps6(r) = ps(an—1,1,a0,1;,---,Gn-21,.,an_15,
aps,. .- 7an72,5)
= (®t(an71,l)7®t(a0.l)7~~-a®l(an72,l)7~ ()
O (an-15),9:(aos);---,0(an—25))-
Therefore, 00 = ps6. O

Theorem 2.11. The code € = {161 D 56 D 6D L6 P
8565 over Z is cyclic code of length n iff €1,%>, 63,64 and €5
are cyclic codes over F of length n.

Proof. Assume that 4 is a cyclic code over Z. Let [; =
(loi, 11y, ln—1,) € G for 1 <i <5 where [; ; € F,. Then
m; = Cili1 + Glio 4 G3liz + Glia + Cslis € Z and hence
(ml,mz, e ,m,,) =1 Cl +12C2 +13C3 +l4§4+l5€5 € ¥ is cyclic,
Q1(mi,my, - my) = Goi(l) + Sei(lk) + Gei(ls)
+us@(ly) + G501 (l5) € €. Therefore, @ (1)) € 61,¢1(h) €
€2, 01(13) € 63,01(Is) € €4, 91(I5) € €5. Hence 61,65, 63, €.,
%5 are cyclic codes.

Conversely, we assume that 61, %>, %3, %4, 65 are cyclic
codes. Let (ml,l’l’lz, s ,mn) € ¢ where m; = Mlli,l +u21, 2+

009 nn,,
5:
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uzli3 +uali4 +usl;s. Letl,—(lll,lzl, R . )E(g Since
; is cyclic, ¢;(l;) € €. Therefore, () (p1(l1) + &0 (lz)

Go1(l)+Capi(la) + G5 @1 (Is) € €. Thatis, @1 (my,my, -
% . Hence, % is cyclic. D

Theorem 2.12. Let € be a cyclic code over X then it is

generated by a unique polynomial (f(x)) = ({1 f1(x), & fo(x),
G f3(x), Cafa(x), Csf6(x)) and divides X" — 1.

Proof. Assume that ¢ is a cyclic code then Theorem 2.11
implies that each %; is cyclic code over F, and each %; is gen-
erated by a polynomial f;(x) then (; f;(x)) C (f(x)) for each i.
An element in {f(x)) is of the form Y'3_, & fi(x)g:(x) then mul-
tiply by §; we get §; fi(x)g:(x) which is an element in §; f;(x)
which implies that ( (x)) € (C1./1(x), G2./2(x), §3./3(x), Cafa(x)
s f6(x)). Hence L.H.S=R.H.S

Let f(x) = Y3, {ifi(x). There exists a unique polyno-
mial 4;(x) in F,[x] such that f;(x)h;(x) = x" — 1 then mul-
tiply both sides by ¢ Further Y3, & fi(x)hi(x) = x" — 1 =
(X5, Ghi(x)) (x). Hence £(x)|(¥"— 1) O

3. Structure of ©,-cyclic codes

The ©;-cyclic codes of length n over finite field are deter-
mined by Siap et al. [21]. Using the structure on finite field,
here we obtain their properties on the ring Z.

Lemma 3.1. [21] Let € be a ©;-cyclic code of length n over
4. Then there exists a polynomial f(x) € Fy[x;®,] such that
€ = (f(x)) and x" — 1 = g(x) f(x) in Fy[x; O;].

We recall from [6] that for a ®,-cyclic code € = (f(x)) of
length n over F, such that x" — 1 = g(x) f(x), its dual €+ =
(g*(x)) is also a ©;-cyclic code where g*(x)(called it ©,-
reciprocal polynomial) is given by g*(x)

O (g @ (go)x" ", for the polynomial
gx) =go+tgix+ - +gnx"".

Theorem 3.2. Let € = @?:1 §i€; be a linear code of length
nover #. Then € is a ©,-cyclic code if and only if €!s (i =
1,2,...,5) are ®,-cyclic codes of length n over IF,,.

Proof. Let% = 69?:1 £;6; be a ©,-cyclic code of length n over
Z. Let
=(20s21,0s---,2n-1,i) € € for 1 <i<5, and

5
YJ:ZCiZj,ifOTOSan_I-

i=1

Then y = (yo,¥1,.--,yn—1) € ¥ and hence
o(y) = (©:(yu-1),0:(y0),---,0;(yp—2) € €. Now,
ZC! EC @, lCt i
Therefore, 6(z') € 6; for 1 <i<5. Hence €'s (i=1,2,...,5)

are ©,-cyclic code of length n over .
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For the converse part, let €/s (i = 1,2,...,5) be ©,-cyclic
codes of length n over F,. Let y = (yo,y1,.--,Yn—1) € €
Yo Gizjifor0<j<n—1. Then 2= (20,i21,is

-yZn-1,1) € Gi for 1 <i < 5and hence 6(z') € € for 1 <i <
5. Againo(y) =Y7 , (o (7)) € ®3_, (% = €. Consequently,
% is a ©,-cyclic code of length n over Z. O

Theorem 3.3. Let 4 = EBS 16i6: be a ©;-cyclic code of length
n over %. Then

= (Gfi(x),&afa(x), -+, Esfs(x))

and | € |= @ L6 where €6 = (fi(x)) and x" — 1 =
gi(x) fi(x) in Fy[x; 0] and deg(fi(x)) = &, for 1 <i <5,

Proof. Let € = ®;_,(;%; be a ©,-cyclic code of length n
over Z. By Thereom 3.2, ¢/s (i=1,2,...,5) are ®,-cyclic
codes of length n over F,. Now by Lemma 3.1, we have
6 = (fi(x)) and X" — 1 :gi(x)f,-(x) inFy[x;0;] for 1 <i<5.
Then §;fi(x) € ‘5 for 1 <i<5. Since for any f(x) € G,
we have f(x) = Y2 Gihi(x) fi(x) where h;(x) € F,[x; ®,] for

1 <i<5. Thus £(x) € (¢ /i (x), Cofa(x).- -, s f5(x)). There-
fore, € = (G f1(x), &af2(x), -+, &5 f5(x)).

Further, we have | 6} |= ¢" & and | € |=3_, | € |= ey ELY
where deg(fi(x)) = &, for 1 <i<35. O

Corollary 3.4. If ¢ = &;_,(6; is a ©,-cyclic code of length
n over %, there exists a polynomzal f(x) € Rlx;®] such that
€ = (f(x)) and x" — 1 = g(x) f(x) in Z|x; O]

Proof. Let€ = @?z 1 §i6; be a ©;-cyclic code of length n over
2. Then by Theorem 3.3, we have € = ({| fi (x), Lo fa(x), -,
s fs(x)) where 6; = (f;(x)) and x" — 1 = g;(x) fi(x) in Fy [x; O]
for 1 <i<5. Let f(x) =Y, fi(x) € Z[x;0,]. Then
f(x) € €. On the other hand {; fi(x) = &;f(x) € (f(x)) fori=
1,2,...,5. Consequently, % = (f(x)). Further,
(X2 Ggi(@)]f(x) = X Gigi(x) filx) = X0, G —1) =x"—
1. Then x" — 1 = g(x)f(x) in Z[x;0;], where
g(x) = Xi Gigi(x). O

Theorem 3.5. Let 4 = EBS 1 §i€i be a ©;-cyclic code of length
nover Z. Then €+ = :1 Gi6 is also a ©,-cyclic code of
length n over % and | €+ |= quzl & where 6; = (f;(x)) and
deg(fi(x)) =g for1 <i<5.

Proof. Let% = EBl 1 6i; be a ©;-cyclic code of length n over
Z. Then by Theorem 3.2, ¢}s (i=1,2,...,5) are ©;-cyclic
codes of length n over F,. Then %}’ (i =1,2,...,5) are
also ®,-cyclic codes of length n over F,. Again by Theorem
3.2, ¢t = @) §i%;* is also a ©-cyclic code of length n
over Z%. Further, as | € |=gfi fori=1,2,...,5, therefore
(%L [=TELy | % = g5 . where deg(fi(+)) =& for 1 <
i<5. O

Corollary 3.6. Let € = &7 (6 be a ©-cyclic code of
length n over % where 6; = (fi(x)) and x" — 1 = g;(x) fi(x)
for 1 <i<5. Then there exlsts a polynomial G(x) such that

¢+ = (G(x)), where G(x) = Y3_ 1§;gl( )-



Proof. Let% = @?:1 £;6; be a ©,-cyclic code of length n over
% and €; = (fi(x)) where x" — 1 = g;(x) f;(x) fori=1,2...,5.
Then by Theorem 3.5, we have €+ = @7_, {67+ is a ©-cyclic
code of length n over Z where 6.-’s (i=1,2,...,5) are ©;-
cyclic codes over F,. Therefore, 67- = (g*(x)) where g} (x)
is the @,-reciprocal polynomial of g;(x) for 1 <i < 5. Take
G(x) =Y, Ligt (x), then we checked that €+ = (G(x)). O

4. Structure of (0;,1)-cyclic codes

In the present section, we extend our study from ®,-cyclic
to (@, A)-cyclic codes of length n over R. The complete struc-
ture of these codes are obtained by decomposition method.

Definition 4.1. [17] Let € be a linear code of length n over
X and A € Ry be a unit in Z. Then € is said to be a
(®y,4)-cyclic code if for ¢ = (co,c1,-..,cn—1) € €, we have
o, (c) = (A0,(cy-1),0(co),...,0;(cn—2)) € €. Note that
for A =1, € is a O,-cyclic code and o), is the (0, 1)-cyclic
shift operator.

Theorem 4.2. Let %, ) = Z[x;0,]/(x" — ). A linear code
€ of length n over Z is (O, A)-cyclic code if and only if €
is a left Z|x; ©]-submodule of %, .

Proof. Same as the proof of Theorem 2.2. U

Theorem 4.3. Let n be an integer such that A"*' = 1. Then
the map U : %, — X, 5, define by I'(a(x)) = a(Ax), is a left
R x; ©;)-module isomorphism.

Proof. Leta(x),b(x) € %, such thata(x) = b(x). Thus a(x) —
b(x) =0 (mod x" —1). Now replacing both side x by Ax,
we have a(Ax) — b(Ax) =0 (mod xX"A" — 1), i.e., a(Ax) —
b(Ax) =0, A*(mod x" — A). Thus a(Ax) = b(Ax) in %, ;.
Therefore I'(a(x)) = I'(b(x)). Consequently, I is an injec-
tive and well-defined map. Further, I' is surjection and left
2 x; ©;)-module homomorphism. Hence the results. O

Corollary 4.4. Let n be an integer such that A"*' = 1. If
% is a ©;-cyclic code of length n over R, then T'(¥) is a
(®y,4)-cyclic code of length n over %.

Proof. Let € be a ®;-cyclic code of length n over Z. In other
words, € is a left Z|x; ®;]-submodule of %,. By Theorem
4.3,I(%) is a left Z[x; ®;]-submodule of %, ;. Thus I'(¥)
is a (®;,A)-cyclic code of length n over Z. O

Lemma 4.5. [11] Let € be a (O, a)-cyclic code of length n
over Fy. Then there exists a polynomial f(x) € Fy[x;©,] such
that € = (f(x)) and x" — a = g(x) f(x) in Fy[x; ©;].

Lemma 4.6. Let A € # be a non-zero element such that
A= ):f-:l Cidi, where A; € Fy for 1 <i<5. Then A is a unit
in Z if and only if A]s (i=1,2,...,5) are units in F.

Proof. Let A = Y3 {iA; be a unit in Z where A; € F, for
1 <i<5. Then there exists a unit A’ = Y3 | §;A/ where
Al €F; for 1 <i<5.Now AA' = limplies Y7 {AA =1,
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i.e., GAA = {;, and hence AL’ = 1 for 1 <i < 5. Therefore,
Als (i=1,2,...,5) are units in F,.

For converse part, let A/s (i=1,2,...,5) be units in [F,. Then
AL =1 where A’ = ZiS:l Cilfl € %. Therefore, A is a unit
inZ%. O

Here, we study the (0, 4)-cyclic codes of length n over
Z where A = a| + ayu + azv+ asw + asuw +agvw € R is a
unit and a; € IF, for 1 <i < 6. By calculation the units, li' K
are given by

M =a1+a2, A =ai, Az = a1 +as,
A =ai +ar+asz+as, A5 = as. “.1)
Theorem 4.7. Let C = ®;_, §i¢; be a linear code of length
n over %. Then € is a (©;,A)-cyclic code if and only if €s
are (0, A;)-cyclic codes over Fy, respectively for 1 <i <5,
where Al's are given by equation (4.1).

Proof. Let € be a (0;,4)-cyclic code of length n over Z.
Let 7 = (ZOA,th,i,...,Zn_L,') c€G for1 <i<5andy; =
Yoo Gz for 0 < j<n—1. Nowy= (yo,y1,---,¥n-1) €
% and hence (7} (y) = (A'@t())n—l),@t(yo); s 7®t(yn—2)) €
%. Again we have 0, (y) = Yl Gion(d) €€ =l G
Therefore, 0;.(z') € €; for 1 <i <5. Hence ¢]s are (©;,1;)-
cyclic codes over I, respectively for 1 <i <5.

On the other side, let €7s be (0, A;)-cyclic codes over F,, re-
spectively for 1 <i<5. Lety= (yo,Y1,--.,Yu—1) € € where
yj=Xi Gzl for0< j<n—1.Thenz = (20,210, 14) €
¢; for 1 <i <5 and hence 0, (z') € ¢; for 1 <i < 5. Now
() =X, (o), (') € ®]_(6; = €. Therefore, ¢ =
®3_, 6 is (O, A)-cyclic code of length n over Z. O

Theorem 4.8. Let € = &>_, (6 be a (0, A)-cyclic code of
length n over %. Then

€ = <C1f2(x), szz(x),~ . -7C6f6(x)>

where 6; = (fi(x)) and x" — A; = gi(x) fi(x) in Fy[x; 0] for
1<i<s.

Proof. Let ¢ = ®;_, (% be a (0, A)-cyclic code of length n
over %. Then by Theorem 4.7, €/s are (©;, A;)-cyclic codes
of length n over Iy, respectively for 1 <i < 5. Again by
Lemma 4.5, we have 6; = (f;(x)) and x" — A; = g;(x) f;(x) in
Fy[x;0;] for 1 <i<5. Therefore, € = (1 fo(x), & f2(x), ...,
G f5(x)). O

Corollary 4.9. Let ¢ = &;_,(%; be a (©,,1)-cyclic code
of length n over %. Then there exists a polynomial f(x) €
R|x;0;] such that € = (f(x)) and x" — A = g(x)f(x) in
Z|x; 0]

Proof. Let € = ®;_, (% be a (©,A)-cyclic code of length n
over Z. Then by Theorem 4.8, we have ¢ = ({1 f2(x), §2f2(x),
o G5 f5(x)), where ; = (£i(x)) and ¥ — % = gi(x)fi(x) in
F,[x;®,] for 1 <i<5. Take f(x) =Y ,&fi(x). Then
(f(x)) € €. On the other hand, {;f;(x) = §;f(x) € (f(x)) for
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1 <i<5.Thus € C (f(x)). Combining both sides, we con-

clude & = (f(x)). Further, [Y7; §igi(0)]f (x) = L, Gigi(x) fi(x) B + w™) and f5(x) = (x + 4)(&* + w?).

):?-:1 (x"—=A;) =x"—A. Thus X" — A = g(x) f(x) in Z|x; O]
where g(x) = Y7 Gigi(x). O

Theorem 4.10. Let € = ®;_,§;%; be a (0;,A)-cyclic code
of length n over Z. If gcd(n,t) = 1 = gcd(n, q), then there
exists an idempotent polynomial i(x) € %|x;0,] such that
C = (i(x)) and i(x) is a right divisor of " — A.

Proof. Since ged(n, ) = 1 = gcd(n,q), there exists idempo-
tent polynomials i;(x)'s such that ¢’ = (ij(x)) and i;(x) is a
right divisor of X" — A; in Fy[x] for 1 < j < 5. Then by similar
argument as of Corollary 4.9, we have ¢ = (i(x)) and i(x) is
a right divisor of x* — A. O
Theorem 4.11. Let € = &>_, (i be a (©,,A)-cyclic code of
length n over Z. Then €+ = @?:1 &6t bea (©,A")-cyclic
code of length n over X.

Proof. Let¢ = &2_,{i%; be a (®, 4)-cyclic code of length n
over #Z. Then by Theorem 4.7, ¢!s are (@;, A;)-cyclic code of
length n over F,, respectively for 1 <i <5. Since ©,(1) = A4,
then @, (4;) = A; for 1 <i < 5. Therefore, €/~ is a (@, A, !)-
cyclic code of length n over I, respectively for 1 <i <5. As
A7 =Y2 | §A!, then by Theorem 4.7, €+ = @3_, §€7 is
a (©,,A~")-cyclic code of length n over Z. O

Corollary 4.12. Let ¢’ = &;_, §i%; be a (©,,A)-cyclic code of
length n over . Then €+ = (G(x)) where G(x) = Y3, &igF (x)
and X" — A7 = gi(x) fi(x) in Fylx; 0] for 1 <i <5.

Proof. Let € = &>_,(6; be a (0, A)-cyclic code of length
n over #. The by Theorem 4.11, €+ = @), §%" is a
(©;,2 " )-cyclic code of length n over # where € is a
(©;,4,")-cyclic code of length n over F,, respectively for
1<i<5. Let%' = (g*(x)) where x" — A, = g;(x) fi(x) and
g!(x) is the ®;-reciprocal polynomial of g;(x) for 1 <i <S5.
Therefore, by similar argument as of (®;,A)-cyclic code, we
conclude that 6+ = (G(x)) where G(x) = Y3, Gigi(x). O

Corollary 4.13. Let C = @f’:leiC,- be a linear code of length
n over R. Then C is a self-dual (®;,A)-cyclic code if and
only if C; is a self-dual (O, A;)-cyclic code respectively for
1 <i< 6. Moreover, C is a sef-dual (0,,1)-cyclic code if and
only if)yi2 =1, for1 <i<e6.

Example 4.14. Let g =25 and R = Fas[u,v,w]/ (u* = u,v* =
v w? = w,uv = vu,uw = vw = 0, ). Now the automorphism
0(a) = @ for all a € Fa5 and hence for r € R, we have
0(r) = Z?:I O (r;) = Z?:I Ciris where r; € Fas and 1 <
i<5. LetA =X = —1,A3 = A4 = A5 = 1. Now,

O —1= P +wh e+ 1) (x+4) (% +w?) € Fos[x]
= (w0 (x+ 1) (x+4) (% + w*) € Fas[]
and,

1=+ w®) (x+2) (x+3) (0 +w'®) € Fas[x].
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Let fi(x) = fo(x) = (x+3) (& +w'®), 5(x) = fa(x) = (x+
Then
€ = (Y3, Gifi(x)) is a (©1,A)-cyclic code of length 6 over
R. Since A? = 1fori=1,2,...,6, then A> = 1. Therefore, by
Corollary 4.13, € is a self-dual (01, )-cyclic code over X.
Hence, by Corollary 2.5, ¢(C) is a self-dual [30,21,3] linear
code over Fys.
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