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Abstract
Let p be an odd prime and q = pm, where m is a positive integer. We study the Θt-cyclic and (Θt ,λ )-cyclic
code over a finite commutative non-chain ring R = Fq[u,v,w]/〈u2 = u,v2 = v,w2 = 1,uv = vu = 0,uw = wu,wv = vw〉,
where λ is a unit in R.
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1. Introduction
Constacyclic codes constitute a remarkable generalization

of cyclic codes and form an important class of linear codes in
the coding theory. Constacyclic codes also have some practi-
cal applications as they can be encoded with shift registers.

In 2007, Boucher et al. [6] firstly studied cyclic codes
in a non commutative ring called the skew polynomials ring
F[x;θ ], where θ denotes the automorphism of the finite field
F, and they produced many good linear codes which bet-
ter than existing ones. One advantage of skew polynomi-
als ring is that the polynomial xn − 1 has more factors in
skew polynomials ring than commutative rings. Later, in
[7] Boucher et al. generalised this idea to skew constacyclic
codes in the skew polynomials ring. In 2011, Siap et al.
[21] studied the skew cyclic codes of arbitrary length and
established a strong connection with well known codes. In
2012, Abualrub et al. [1] studied θ -cyclic codes over the
non-chain ring F2 + vF2,v2 = v with respect to Euclidean
and Hermitian inner products. Jitman et al. [17] studied
skew constacyclic codes over finite chain rings and gave the

generators of Euclidean and Hermitian dual codes. Later,
these codes over non-chain rings are extensively studied.
For instance, the rings F3 + vF3 in [2], Fq + vFq,v2 = v in
[12], Fq + uFq + vFq,u2 = u,v2 = v,uv = vu = 0 in [3] are
considered to study skew cyclic codes. Also, Yao et al.
[20] and Dertli & Cengellenmis [9] studied these codes over
Fq +uFq + vFq +uvFq,u2 = u,v2 = v,uv = vu. In 2017, Gao
et al. [11] obtained the structure of skew constacyclic codes
over non-chain ring Fq + vFq,v2 = v and they obtained skew
(−1+2v)-constacyclic codes. Islam and Prakash have deter-
mined the structural properties of skew constacyclic codes
over Fq + uFq + vFq + uvFq,u2 = u,v2 = v,uv = vu in [15]
and Fq + uFq + vFq,u2 = u,v2 = v,uv = vu = 0 in [16]. In
2019, Bhardwaj and Raka [4] studied skew constacyclic codes
over the ring Fq[u,v]〈 f (u),g(v),uv− vu〉 by using two non
trivial automorphisms.

Motivated by above studies, in this paper, we consider a
Commutative ring R = Fq +uFq + vFq +wFq +uvFq where
u2 = u,v2 = v,w2 = w,uv = vu,uw = 0 = wv and study Θt-
cyclic and (Θt ,λ )-cyclic codes over it.

2. Gray Map
Let q = pm, where p is an odd prime and R = Fq +uFq +

vFq+wFq+uvFq where u2 = u,v2 = v,w2 =w,uv= vu,uw=
0 = wv Note that R is a finite commutative non chain exten-
sion of Fq and isomorphic to the ring Fq[u,v,w]

〈u2−u,v2−v,w2−w,uv−vu,uw,wv〉 .

Also, R is local with unique maximal ideal 〈u,v,w〉 and
quotient ring R

〈u,v,w〉 is isomorphic to Fq. A non-empty subset
C of Rn is said to be a linear code of length n if C is an R-
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submodule of Rn. The elements of C are called codewords.
Since R = Fq + uFq + vFq + wFq + uvFq where u2 =

u,v2 = v,w2 =w,uv= vu,uw= 0=wv. Any element in R can
be represented uniquely as r1 +ur2 + vr3 +wr4 +uvr5 where
ri ∈ Fq. Let ζ1 = (u− uv),ζ2 = (1− u− v−w+ uv),ζ3 =
(v−uv),ζ4 = uv and ζ5 = w are elements in R. Then it satis-
fies (ζi)

2 = ζi for 1 ≤ i ≤ 5,ζiζ j = 0 for i 6= j and ζ1 +ζ2 +
ζ3 +ζ4 +ζ5 = 1.

Therefore, the ring R can be decomposed to R = ζ1R⊕
ζ2R⊕ζ3R⊕ζ4R⊕ζ5. As, ζiR ∼= ζiFq, for 1≤ i≤ 5, then
R ∼= ζ1Fq⊕ζ2Fq⊕ζ3Fq⊕ζ4Fq⊕ζ5Fq. Thus we can repre-
sent the element of R as a1ζ1 + a2ζ2 + a3ζ3 + a4ζ4 + a5ζ5
where ai ∈ Fq.

We recall the Frobenius automorphism Θt on Fq defined
by Θt(a) = apt

, where t|m. The extension of the automor-
phism on R is define as

Θt(r) =
5

∑
i=1

ζiΘt(ri) =
5

∑
i=1

ζir
pt

i ,

where r = ⊕5
i=1eiri and ri ∈ Fq for 1 ≤ i ≤ 5. The multi-

plication of skew polynomials is defined as (axi)(bx j) =
aΘt(b)ixi+ j. Therefore, the skew polynomial ring R[x;Θt ] =
{ f (x)∈R[x]} is a non-commutative ring under the above mul-
tiplication and standard addition of polynomials. Whenever
we considered Θt identity automorphism it becomes commuta-
tive ring. It is evident to see that the invariant ring under the au-
tomorphism is Rinv = R/m=t and hence Rinv[x;Θt ] = Rinv[x]
is a commutative ring. Further, the polynomial xn− 1 is a
central element in R[x;Θt ] if nt | m. In that case 〈xn−1〉 is a
two sided ideal and hence, Rn = R[x;Θt ]/〈xn−1〉 is a ring.

However, under the left multiplication define by c(x)(a(x)+
〈xn−1〉) = c(x)a(x)+ 〈xn−1〉, where c(x),b(x) ∈R[x;Θt ],
Rn is a left R[x;Θt ]-module.

A non-empty subset C of Rn is called a linear code of
length n over R if C is an R-submodule of Rn and members
of C are codewords.

Definition 2.1. [6] A non-trivial R-submodule C of Rn is
called a Θt-cyclic code if for any c = (c0,c1, . . . ,cn−1) ∈ C ,
σ(c) = (Θt(cn−1),Θt(c0), . . . ,Θt(cn−2)) ∈ C . The operator
σ is called as Θt -cyclic shift operator on Rn.

Theorem 2.2. Let c(x) = c0 + c1x+ · · ·+ cn−1xn−1 ∈ Rn be
the polynomial represenation of the codeword c = (c0,c1,
. . . ,cn−1) ∈ C . Then the linear code C is a Θt -cyclic code iff
C is a left R[x;Θt ]-submodule of Rn.

Proof. Let c = (c0,c1, . . . ,cn−1) ∈ C then the correspond-
ing polynomial representation of c is c(x) = c0 + c1x+ · · ·+
cn−1xn−1. Since C is a Θt-cyclic code, we have σ(c) =
(Θt(cn−1),Θt(c0),Θt(c1), . . . ,Θt(cn−2)) ∈ C then the poly-
nomial representation can be seen as follows x(c0 + c1x +
· · ·+cn−1xn−1) = Θt(c0)x+Θt(c1)x2 + · · ·+Θt(cn−2)xn−1 +
Θt(cn−1)xn

= Θt(cn−1)+Θt(c0)x+Θt(c1)x2 + · · ·+Θt(cn−2)xn−1 ∈ C .
Implies that xc(x) ∈ C then by induction on i ≥ 1, we have

xic(x) ∈ C . Using linearity in C , we have r(x)c(x) ∈C for
r(x) ∈R[x,Θt ]. Therefore, C is a left R[x;Θt ]-submodule of
Rn.
On the other hand, let c = (c0,c1, . . . ,cn−1) ∈ C whose cor-
responding polynomial representation is c(x) = c0 + c1x+
· · ·+ cn−1xn−1. Let C be a left R[x;Θt ]-submodule of Rn.
Then σ(c) = xc(x) ∈ C , represents the Θt -cyclic shift of c(x).
Therefore, C is a Θt -cyclic code of length n over R.

We define a new gray map from R to Fq,

δ : R 7→ F5
q

δ (a1ζ1 +a2ζ2 +a3ζ3 +a4ζ4 +a5ζ5) = (a1,a2,a3,a4,a5)

and it can be extended to n length by δ ((a1,0,a1,1, · · · ,a1,n−1)ζ1
+(a2,0,a2,1, · · · ,a2,n−1)ζ2+ · · ·+(a5,0,a5,1, · · · ,a5,n−1)ζ5)=
(a1,0,a1,1, · · · ,a1,n−1,a2,0,a2,1, · · · ,a5,n−1)

The Hamming weight of a ∈ Fn
q is defined as number

of non zero entries in a and is denoted as wH(a) For any
element r = (a1ζ1 +a2ζ2 +a3ζ3 +a4ζ4 +a5ζ5) ∈R we de-
fine the Gray weight of a code as wG(r) = wH(δ (r)). Then
Gray distance of code C is dG(C) = min(wG(ci− c j)) where
ci,c j ∈ C .

Theorem 2.3. The gray map δ is a Fq-linear map and dis-
tance preserving from Rn(Gray Distance) to F5n

q (Hamming
distance).

Proof. Let a = a0,a1, · · · ,an−1 and b = b0,b1, · · · ,bn−1 be
an element in Rn where a j = ∑

5
i=1 ai, jζi,b j = ∑

5
i=1 bi, jζi for

0≤ j ≤ n−1 then for any m1,m2 ∈ Fq we have

δ (m1a+m2b) = δ (m1(
5

∑
i=1

ai,0ζi,
5

∑
i=1

ai,1ζi, · · · ,
5

∑
i=1

ai,n−1ζi)

+m2(
5

∑
i=1

bi,0ζi,
5

∑
i=1

bi,1ζi, · · · ,
5

∑
i=1

bi,n−1ζi))

=m1(a1,0,a1,1, · · · ,a1,n−1,a2,0,a2,1, · · · ,a2,n−1,a5,0,a5,1, · · · ,
a5,n−1) + m2(b1,0,b1,1, · · · ,b1,n−1,b2,0,b2,1, · · · ,b2,n−1,b5,0,
b5,1, · · · ,b5,n−1) = m1δ (a) +m2δ (b) Which implies δ is a
Fq-linear map. Now using linear property we have dG(a,b) =
wG(a−b) = wH(δ (a)−δ (b)) = dH(δ (a),δ (b)). Thus δ is a
weight preserving map.

Theorem 2.4. Let C be a linear code of length n over R.
Then δ (C⊥) = (δ (C ))⊥.

Proof. Let c=(c0,c1, . . . ,cn−1)∈C and d =(d0,d1, . . . ,dn−1)
∈ C⊥ where c j = ∑

6
i=1 eisi

j and d j = ∑
6
i=1 eit i

j for si
j, t

i
j ∈ Fq,

0≤ j ≤ n−1. Now, we have c ·d = 0 implies ∑
n−1
j=0 c jd j = 0,

i.e., ∑
n−1
j=0 ∑

6
i=1 si

jt
i
j = 0. Again, we have

δ (c) ·δ (d) =
n−1

∑
j=0

6

∑
i=1

si
jt

i
j = 0.

Therefore, δ (C⊥)⊆ (δ (C ))⊥. As δ is bijective linear map,
| δ (C⊥) |=| (δ (C ))⊥ |. Therefore δ (C⊥) = (δ (C ))⊥.
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Corollary 2.5. Let C be a linear code of length n over R.
Then C is self-dual if and only if δ (C) is self-dual. Further
δ (C ) is a self-orthogonal over Fq if C is self-orthogonal.

Proof. Let C be a self-dual linear code of length n over
R. That is C = C⊥. Since δ is a bijective map we hve
δ (C ) = δ (C⊥), and hence by Theorem 2.4, we have δ (C ) =
(δ (C ))⊥. Thus δ (C ) is a self-dual linear code of length 5n
over Fq. Conversely, let δ (C ) be a self-dual linear code of
length 5n over Fq that is δ (C ) = (δ (C ))⊥. Since δ is onto
the inverse image is unique, thus C = C⊥. Therefore, C is a
self-dual linear code of length n over R.
Moreover, let C ⊆ C⊥ by using Theorem 2.4 and above we
have δ (C )⊆ (δ (C ))⊥. Hence δ (C ) is self-orthogonal linear
code of length 5n over Fq.

Let Ai ⊆ Fq, then we define the following
A1⊕A2 = {a1 + a2 | ai ∈ Ai} and A1⊗A2 = {(a1,a2) |

ai ∈ Ai} where Ai ⊆R
Define Ci ⊆ Fq as follows,

C1 = {a1 ∈ Fn
q |∑5

i=1 aiζi ∈ C , for some a j ∈ Fn
q( j 6= 1)}

C2 = {a2 ∈ Fn
q |∑5

i=1 aiζi ∈ C , for some a j ∈ Fn
q( j 6= 2)}

C3 = {a3 ∈ Fn
q |∑5

i=1 aiζi ∈ C , for some a j ∈ Fn
q( j 6= 3)}

C4 = {a4 ∈ Fn
q |∑5

i=1 aiζi ∈ C , for some a j ∈ Fn
q( j 6= 4)}

C5 = {a5 ∈ Fn
q |∑5

i=1 aiζi ∈ C , for some a j ∈ Fn
q( j 6= 5)}

Then cyclic code C over Rn can be represented as C =
ζ1C1⊕ζ2C2⊕ζ3C3⊕ζ4C4⊕ζ5C5.

Theorem 2.6. Let C be a linear code of length n over R.
Then δ (C ) =⊗5

i=1Ci and | C |= ∏
6
i=1 | Ci |.

Proof. Let z=(a0,1,a1,1, . . . ,an−1,1,a0,2,a1,2, . . . ,an−1,2, · · · ,
a0,5,a1,5, . . . ,an−1,5) ∈ δ (C ) and ri = ∑

5
j=1 ζ ja

j
i , for 0≤ i≤

n−1. The map δ being bijective, so r = (r0,r1, . . . ,rn−1)∈C .
Therefore, by the definition of Ci, we have (ai

0,a
i
1, . . . ,a

i
n−1)∈

Ci for 1 ≤ i ≤ 5. Therefore, z ∈ ⊗5
i=1Ci and hence δ (C ) ⊆

⊗5
i=1Ci.

Conversely, let z = (a0,1,a1,1, . . . ,an−1,1,a0,2,a1,2, . . . ,an−1,2,
· · · ,a0,5,a1,5, . . . ,an−1,5) ∈ ⊗5

i=1Ci. Then ai = (a0,i,a1,i, . . . ,
an−1,i) ∈ Ci for 1 ≤ i ≤ 5. To show z ∈ δ (C ), we have to
find z′ = ∑

5
i=1 eisi ∈ C such that δ (z′) = z. Consider s j =

∑
5
i=1 eiti, j where ti,i = ai for 1 ≤ i ≤ 6. Thus z′ = ∑

5
i=1 eiai

and δ (z′) = z. Consequently,
⊗5

i=1 Ci ⊆ δ (C ). Combining
both sides, we have δ (C ) =

⊗5
i=1 Ci.

Moreover, δ being bijection, | C |=| δ (C ) |. Consequently,
| C |=|

⊗5
i=1 Ci |= ∏

5
i=1 | Ci | .

Corollary 2.7. Let C =⊕5
i=1eiCi be a linear code of length

n over R. Then δ (C ) is a [6n,∑6
i=1 ki,dH(C )], where Ci is a

[n,ki,dH(Ci)] linear code over Fq for 1≤ i≤ 5 and dH(C ) =
min{dH(Ci) | i = 1,2, . . . ,5}.

Theorem 2.8. Let C = ⊕6
i=1eiCi be a linear code of length

n over R. Then C⊥ = ⊕5
i=1eiC⊥i . Moreover, C is self-dual

code if and only if C ′i s (i = 1,2, . . . ,5) are self-dual codes
over Fq.

Proof. Let C i = {ri ∈ Fn
q | there exists r1,r2, . . . ,ri−1,ri+1,

. . . ,r5 ∈ Fn
q such that ∑

6
i=1 eiri ∈ C⊥}. Then C⊥ has the

unique expression C⊥ =⊕5
i=1eiC i. It is easy to see C 1 ⊆ C⊥1 .

If z∈C⊥1 , then z ·x1 = 0 for all x1 ∈C1. Let s =∑
5
i=1 eixi ∈C .

Then e1zs = e1x1z = 0, and which implies e1z ∈ C⊥. From
the construction of C⊥, we have z∈C 1. Therefore, C⊥1 ⊆C 1.
Hence, C 1 = C⊥1 . By similar process we have C⊥i = C i for
i = 2,3,4,5. Consequently, C⊥ =⊕5

i=1eiC⊥i .
Moreover, let C be a self-dual linear code. Then C =C⊥, i.e.,
⊕5

i=1eiCi = ⊕5
i=1eiC⊥i , Hence C⊥i = Ci for 1 ≤ i ≤ 5. Con-

versely, let C ′i s (i = 1,2 . . . ,5) be self-dual linear codes. Then
C⊥i =Ci for 1≤ i≤ 5. Thus, C⊥ =⊕5

i=1eiC⊥i =⊕5
i=1eiCi =

C . Hence C is a self-dual linear code over R.

Definition 2.9. A linear code C of length nm over Fq is said
to be a Θt -quasi-cyclic code of index m if ρm(C ) = C , where
ρm is the Θt -quasi-cyclic shift on (Fn

q)
m define by

ρm(a1 | a2 | · · · | am) = (σ(a1) | σ(a2) | · · · | σ(am)),
(2.1)

and σ is the Θt -cyclic shift operator.

Lemma 2.10. Let σ be the Θt-cyclic shift and ρ5 be the Θt-
quasi-cyclic shift defined in equation (2.1) and δ be the Gray
map from Rn to F5n

q defined in equation. Then δσ = ρ5δ .

Proof. Let r j = ∑
5
i=1 eia j,i ∈ R for 0≤ j ≤ n−1 where ai

j ∈
Fq for 1≤ i≤ 5. Then r = (r0,r1, . . . ,rn−1) ∈ Rn. Now,

δσ(r) = δ (Θt(rn−1),Θt(r0), . . . ,Θt(rn−2))

= (Θt(an−1,1),Θt(a0,1), . . . ,Θt(an−2,1), . . . ,

Θt(an−1,5),Θt(a0,5), . . . ,Θt(an−2,5)).

On the other hand,

ρ5δ (r) = ρ5(an−1,1,a0,1, . . . ,an−2,1, . . . ,an−1,5,

a0,5, . . . ,an−2,5)

= (Θt(an−1,1),Θt(a0,1), . . . ,Θt(an−2,1), . . . ,

Θt(an−1,5),Θt(a0,5), . . . ,Θt(an−2,5)).

Therefore, δσ = ρ5δ .

Theorem 2.11. The code C = ζ1C1⊕ζ2C2⊕ζ3C3⊕ζ4C4⊕
ζ5C5 over R is cyclic code of length n iff C1,C2,C3,C4 and C5
are cyclic codes over Fq of length n.

Proof. Assume that C is a cyclic code over R. Let li =
(l0,i, l1,i, · · · , ln−1,i) ∈ Ci for 1 ≤ i ≤ 5 where li, j ∈ Fq. Then
mi = ζ1li,1 + ζ2li,2 + ζ3li,3 + ζ4li,4 + ζ5li,5 ∈ R and hence
(m1,m2, · · · ,mn)= l1ζ1+l2ζ2+l3ζ3+l4ζ4+l5ζ5 ∈C is cyclic,
ϕ1(m1,m2, · · · ,mn) = ζ1ϕ1(l1) + ζ2ϕ1(l2) + ζ3ϕ1(l3)
+u4ϕ1(l4)+ ζ5ϕ1(l5) ∈ C . Therefore, ϕ1(l1) ∈ C1,ϕ1(l2) ∈
C2,ϕ1(l3)∈C3,ϕ1(l4)∈C4,ϕ1(l5)∈C5. Hence C1,C2,C3,C4,
C5 are cyclic codes.

Conversely, we assume that C1,C2,C3,C4,C5 are cyclic
codes. Let (m1,m2, · · · ,mn) ∈ C where mi = u1li,1 +u2li,2 +
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u3li,3 + u4li,4 + u5li,5. Let li = (l1i , l2i , · · · , ln−1i) ∈ Ci. Since
Ci is cyclic, ϕ1(li) ∈ Ci. Therefore, ζ1ϕ1(l1) + ζ2ϕ1(l2) +
ζ3ϕ1(l3)+ζ4ϕ1(l4)+ζ5ϕ1(l5)∈C . That is, ϕ1(m1,m2, · · · ,mn)∈
C . Hence, C is cyclic.

Theorem 2.12. Let C be a cyclic code over R then it is
generated by a unique polynomial 〈 f (x)〉= 〈ζ1 f1(x),ζ2 f2(x),
ζ3 f3(x),ζ4 f4(x),ζ5 f6(x)〉 and divides xn−1.

Proof. Assume that C is a cyclic code then Theorem 2.11
implies that each Ci is cyclic code over Fq and each Ci is gen-
erated by a polynomial fi(x) then 〈ζi fi(x)〉⊆ 〈 f (x)〉 for each i.
An element in 〈 f (x)〉 is of the form ∑

5
i=1 ζi fi(x)gi(x) then mul-

tiply by ζi we get ζi fi(x)gi(x) which is an element in ζi fi(x)
which implies that 〈 f (x)〉⊆ 〈ζ1 f1(x),ζ2 f2(x),ζ3 f3(x),ζ4 f4(x),
ζ5 f6(x)〉. Hence L.H.S=R.H.S

Let f (x) = ∑
5
i=1 ζi fi(x). There exists a unique polyno-

mial hi(x) in Fq[x] such that fi(x)hi(x) = xn− 1 then mul-
tiply both sides by ζi Further ∑

5
i=1 ζi fi(x)hi(x) = xn− 1 =

(∑5
i=1 ζihi(x)) f (x). Hence f (x)|(xn−1)

3. Structure of Θt-cyclic codes
The Θt -cyclic codes of length n over finite field are deter-

mined by Siap et al. [21]. Using the structure on finite field,
here we obtain their properties on the ring R.

Lemma 3.1. [21] Let C be a Θt -cyclic code of length n over
Fq. Then there exists a polynomial f (x) ∈ Fq[x;Θt ] such that
C = 〈 f (x)〉 and xn−1 = g(x) f (x) in Fq[x;Θt ].

We recall from [6] that for a Θt -cyclic code C = 〈 f (x)〉 of
length n over Fq such that xn−1 = g(x) f (x), its dual C⊥ =
〈g∗(x)〉 is also a Θt-cyclic code where g∗(x)(called it Θt-
reciprocal polynomial) is given by g∗(x)= gn−r+Θt(gn−r−1)x+
· · ·+Θ

n−r−1
t (g1)xn−r−1 +Θ

n−r
t (g0)xn−r, for the polynomial

g(x) = g0 +g1x+ · · ·+gn−rxn−r.

Theorem 3.2. Let C = ⊕5
i=1ζiCi be a linear code of length

n over R. Then C is a Θt-cyclic code if and only if C ′i s (i =
1,2, . . . ,5) are Θt -cyclic codes of length n over Fq.

Proof. Let C =⊕5
i=1ζiCi be a Θt -cyclic code of length n over

R. Let

zi = (z0,i,z1,i, . . . ,zn−1,i) ∈ Ci for 1≤ i≤ 5, and

y j =
5

∑
i=1

ζiz j,i for 0≤ j ≤ n−1.

Then y = (y0,y1, . . . ,yn−1) ∈ C and hence
σ(y) = (Θt(yn−1),Θt(y0), . . . ,Θt(yn−2) ∈ C . Now,

σ(y) =
5

∑
i=1

ζiσ(zi) ∈C =⊕5
i=1ζiCi.

Therefore, σ(zi)∈Ci for 1≤ i≤ 5. Hence C ′i s (i= 1,2, . . . ,5)
are Θt -cyclic code of length n over Fq.

For the converse part, let C ′i s (i = 1,2, . . . ,5) be Θt-cyclic
codes of length n over Fq. Let y = (y0,y1, . . . ,yn−1) ∈ C

where y j = ∑
5
i=1 ζiz j,i for 0≤ j ≤ n−1. Then zi = (z0,i,z1,i,

. . . ,zn−1,i)∈Ci for 1≤ i≤ 5 and hence σ(zi)∈Ci for 1≤ i≤
5. Again σ(y) =∑

5
i=1 ζiσ(zi)∈⊕5

i=1ζiCi =C . Consequently,
C is a Θt -cyclic code of length n over R.

Theorem 3.3. Let C =⊕5
i=1ζiCi be a Θt -cyclic code of length

n over R. Then

C = 〈ζ1 f1(x),ζ2 f2(x), · · · ,ζ5 f5(x)〉

and | C |= q5n−∑
5
i=1 εi , where Ci = 〈 fi(x)〉 and xn − 1 =

gi(x) fi(x) in Fq[x;Θt ] and deg( fi(x)) = εi, for 1≤ i≤ 5.

Proof. Let C = ⊕5
i=1ζiCi be a Θt-cyclic code of length n

over R. By Thereom 3.2, C ′i s (i = 1,2, . . . ,5) are Θt-cyclic
codes of length n over Fq. Now, by Lemma 3.1, we have
Ci = 〈 fi(x)〉 and xn−1 = gi(x) fi(x) in Fq[x;Θt ] for 1≤ i≤ 5.
Then ζi fi(x) ∈ C for 1 ≤ i ≤ 5. Since for any f (x) ∈ C ,
we have f (x) = ∑

5
i=1 ζihi(x) fi(x) where hi(x) ∈ Fq[x;Θt ] for

1≤ i≤ 5. Thus f (x)∈ 〈ζ1 f1(x),ζ2 f2(x), · · · ,ζ5 f5(x)〉. There-
fore, C = 〈ζ1 f1(x),ζ2 f2(x), · · · ,ζ5 f5(x)〉.
Further, we have |Ci |= qn−εi and |C |=∏

5
i=1 |Ci |= q5n−∑

5
i=1 εi ,

where deg( fi(x)) = εi, for 1≤ i≤ 5.

Corollary 3.4. If C =⊕5
i=1ζiCi is a Θt -cyclic code of length

n over R, there exists a polynomial f (x) ∈ R[x;Θt ] such that
C = 〈 f (x)〉 and xn−1 = g(x) f (x) in R[x;Θt ].

Proof. Let C =⊕5
i=1ζiCi be a Θt -cyclic code of length n over

R. Then by Theorem 3.3, we have C = 〈ζ1 f1(x),ζ2 f2(x), · · · ,
ζ5 f5(x)〉where Ci = 〈 fi(x)〉 and xn−1= gi(x) fi(x) in Fq[x;Θt ]

for 1 ≤ i ≤ 5. Let f (x) = ∑
5
i=1 ζi fi(x) ∈ R[x;Θt ]. Then

f (x)∈C . On the other hand ζi fi(x) = ζi f (x)∈ 〈 f (x)〉 for i =
1,2, . . . ,5. Consequently, C = 〈 f (x)〉. Further,
[∑5

i=1 ζigi(x)] f (x)=∑
5
i=1 ζigi(x) fi(x)=∑

5
i=1 ζi(xn−1)= xn−

1. Then xn − 1 = g(x) f (x) in R[x;Θt ], where
g(x) = ∑

5
i=1 ζigi(x).

Theorem 3.5. Let C =⊕5
i=1ζiCi be a Θt -cyclic code of length

n over R. Then C⊥ =⊕5
i=1ζiC⊥i is also a Θt-cyclic code of

length n over R and | C⊥ |= q∑
5
i=1 εi where Ci = 〈 fi(x)〉 and

deg( fi(x)) = εi for 1≤ i≤ 5.

Proof. Let C =⊕5
i=1ζiCi be a Θt -cyclic code of length n over

R. Then by Theorem 3.2, C ′i s (i = 1,2, . . . ,5) are Θt-cyclic
codes of length n over Fq. Then C⊥i ’s (i = 1,2, . . . ,5) are
also Θt-cyclic codes of length n over Fq. Again by Theorem
3.2, C⊥ = ⊕5

i=1ζiC⊥i is also a Θt-cyclic code of length n
over R. Further, as | C⊥i |= qεi for i = 1,2, . . . ,5, therefore
| C⊥ |= ∏

5
i=1 | C⊥i |= q∑

5
i=1 εi . where deg( fi(x)) = εi for 1≤

i≤ 5.

Corollary 3.6. Let C = ⊕5
i=1ζiCi be a Θt-cyclic code of

length n over R where Ci = 〈 fi(x)〉 and xn− 1 = gi(x) fi(x)
for 1≤ i≤ 5. Then there exists a polynomial G(x) such that
C⊥ = 〈G(x)〉, where G(x) = ∑

5
i=1 ζig∗i (x).
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Proof. Let C =⊕5
i=1ζiCi be a Θt -cyclic code of length n over

R and Ci = 〈 fi(x)〉where xn−1= gi(x) fi(x) for i= 1,2 . . . ,5.
Then by Theorem 3.5, we have C⊥=⊕5

i=1ζiC⊥i is a Θt -cyclic
code of length n over R where C⊥i ’s (i = 1,2, . . . ,5) are Θt-
cyclic codes over Fq. Therefore, C⊥i = 〈g∗(x)〉 where g∗i (x)
is the Θt-reciprocal polynomial of gi(x) for 1≤ i≤ 5. Take
G(x) = ∑

5
i=1 ζig∗i (x), then we checked that C⊥ = 〈G(x)〉.

4. Structure of (Θt ,λ )-cyclic codes
In the present section, we extend our study from Θt -cyclic

to (Θt ,λ )-cyclic codes of length n over R. The complete struc-
ture of these codes are obtained by decomposition method.

Definition 4.1. [17] Let C be a linear code of length n over
R and λ ∈ Rinv be a unit in R. Then C is said to be a
(Θt ,λ )-cyclic code if for c = (c0,c1, . . . ,cn−1) ∈ C , we have
σλ (c) = (λΘt(cn−1),Θt(c0), . . . ,Θt(cn−2)) ∈ C . Note that
for λ = 1, C is a Θt -cyclic code and σλ is the (Θt ,λ )-cyclic
shift operator.

Theorem 4.2. Let Rn,λ = R[x;Θt ]/〈xn−λ 〉. A linear code
C of length n over R is (Θt ,λ )-cyclic code if and only if C
is a left R[x;Θt ]-submodule of Rn,λ .

Proof. Same as the proof of Theorem 2.2.

Theorem 4.3. Let n be an integer such that λ n+1 = 1. Then
the map Γ : Rn −→Rn,λ define by Γ(a(x)) = a(λx), is a left
R[x;Θt ]-module isomorphism.

Proof. Let a(x),b(x)∈Rn such that a(x)= b(x). Thus a(x)−
b(x) ≡ 0 (mod xn− 1). Now replacing both side x by λx,
we have a(λx)− b(λx) ≡ 0 (mod xnλ n− 1), i.e., a(λx)−
b(λx) ≡ 0, λ n(mod xn− λ ). Thus a(λx) = b(λx) in Rn,λ .
Therefore Γ(a(x)) = Γ(b(x)). Consequently, Γ is an injec-
tive and well-defined map. Further, Γ is surjection and left
R[x;Θt ]-module homomorphism. Hence the results.

Corollary 4.4. Let n be an integer such that λ n+1 = 1. If
C is a Θt-cyclic code of length n over R, then Γ(C ) is a
(Θt ,λ )-cyclic code of length n over R.

Proof. Let C be a Θt -cyclic code of length n over R. In other
words, C is a left R[x;Θt ]-submodule of Rn. By Theorem
4.3, Γ(C ) is a left R[x;Θt ]-submodule of Rn,λ . Thus Γ(C )
is a (Θt ,λ )-cyclic code of length n over R.

Lemma 4.5. [11] Let C be a (Θt ,α)-cyclic code of length n
over Fq. Then there exists a polynomial f (x) ∈ Fq[x;Θt ] such
that C = 〈 f (x)〉 and xn−α = g(x) f (x) in Fq[x;Θt ].

Lemma 4.6. Let λ ∈ R be a non-zero element such that
λ = ∑

5
i=1 ζiλi, where λi ∈ Fq for 1≤ i≤ 5. Then λ is a unit

in R if and only if λ ′i s (i = 1,2, . . . ,5) are units in Fq.

Proof. Let λ = ∑
5
i=1 ζiλi be a unit in R where λi ∈ Fq for

1 ≤ i ≤ 5. Then there exists a unit λ ′ = ∑
5
i=1 ζiλ

′
i where

λ ′i ∈ F∗q for 1≤ i≤ 5. Now λλ ′ = 1 implies ∑
5
i=1 ζiλλ ′ = 1,

i.e., ζiλλ ′ = ζi, and hence λλ ′ = 1 for 1≤ i≤ 5. Therefore,
λ ′i s (i = 1,2, . . . ,5) are units in Fq.
For converse part, let λ ′i s (i = 1,2, . . . ,5) be units in Fq. Then
λλ ′ = 1 where λ ′ = ∑

5
i=1 ζiλ

−1
i ∈R. Therefore, λ is a unit

in R.

Here, we study the (Θt ,λ )-cyclic codes of length n over
R where λ = a1 + a2u+ a3v+ a4w+ a5uw+ a6vw ∈ R is a
unit and ai ∈ Fq for 1 ≤ i ≤ 6. By calculation the units, λ ′i s
are given by

λ1 = a1 +a2,λ2 = a1,λ3 = a1 +a3,

λ4 =a1 +a2 +a3 +a4,λ5 = a5. (4.1)

Theorem 4.7. Let C = ⊕5
i=1ζiCi be a linear code of length

n over R. Then C is a (Θt ,λ )-cyclic code if and only if C ′i s
are (Θt ,λi)-cyclic codes over Fq, respectively for 1 ≤ i ≤ 5,
where λ ′i s are given by equation (4.1).

Proof. Let C be a (Θt ,λ )-cyclic code of length n over R.
Let zi = (z0,i,z1,i, . . . ,zn−1,i) ∈ Ci for 1 ≤ i ≤ 5 and y j =

∑
5
i=1 ζizi

j for 0 ≤ j ≤ n− 1. Now y = (y0,y1, . . . ,yn−1) ∈
C and hence σλ (y) = (λΘt(yn−1),Θt(y0), . . . ,Θt(yn−2)) ∈
C . Again we have σλ (y) = ∑

5
i=1 ζiσλi(z

i) ∈ C = ⊕5
i=1ζiCi.

Therefore, σλi(z
i) ∈ Ci for 1≤ i≤ 5. Hence C ′i s are (Θt ,λi)-

cyclic codes over Fq, respectively for 1≤ i≤ 5.
On the other side, let C ′i s be (Θt ,λi)-cyclic codes over Fq, re-
spectively for 1≤ i≤ 5. Let y = (y0,y1, . . . ,yn−1) ∈ C where
y j =∑

5
i=1 ζizi

j for 0≤ j≤ n−1. Then zi =(z0,i,z1,i, . . . ,zn−1,i)∈
Ci for 1 ≤ i ≤ 5 and hence σλi(z

i) ∈ Ci for 1 ≤ i ≤ 5. Now
σλ (y) = ∑

5
i=1 ζiσλi(z

i) ∈ ⊕5
i=1ζiCi = C . Therefore, C =

⊕5
i=1ζiCi is (Θt ,λ )-cyclic code of length n over R.

Theorem 4.8. Let C =⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code of

length n over R. Then

C = 〈ζ1 f2(x),ζ2 f2(x), . . . ,ζ6 f6(x)〉

where Ci = 〈 fi(x)〉 and xn−λi = gi(x) fi(x) in Fq[x;Θt ] for
1≤ i≤ 5.

Proof. Let C =⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code of length n

over R. Then by Theorem 4.7, C ′i s are (Θt ,λi)-cyclic codes
of length n over Fq, respectively for 1 ≤ i ≤ 5. Again by
Lemma 4.5, we have Ci = 〈 fi(x)〉 and xn−λi = gi(x) fi(x) in
Fq[x;Θt ] for 1≤ i≤ 5. Therefore, C = 〈ζ1 f2(x),ζ2 f2(x), . . . ,
ζ5 f5(x)〉.

Corollary 4.9. Let C = ⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code

of length n over R. Then there exists a polynomial f (x) ∈
R[x;Θt ] such that C = 〈 f (x)〉 and xn − λ = g(x) f (x) in
R[x;Θt ].

Proof. Let C =⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code of length n

over R. Then by Theorem 4.8, we have C = 〈ζ1 f2(x),ζ2 f2(x),
. . . ,ζ5 f5(x)〉, where Ci = 〈 fi(x)〉 and xn−λi = gi(x) fi(x) in
Fq[x;Θt ] for 1 ≤ i ≤ 5. Take f (x) = ∑

5
i=1 ζi fi(x). Then

〈 f (x)〉 ⊆ C . On the other hand, ζi fi(x) = ζi f (x) ∈ 〈 f (x)〉 for
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1≤ i≤ 5. Thus C ⊆ 〈 f (x)〉. Combining both sides, we con-
clude C = 〈 f (x)〉. Further, [∑5

i=1 ζigi(x)] f (x)=∑
5
i=1 ζigi(x) fi(x)=

∑
5
i=1(x

n−λi) = xn−λ . Thus xn−λ = g(x) f (x) in R[x;Θt ]
where g(x) = ∑

5
i=1 ζigi(x).

Theorem 4.10. Let C = ⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code

of length n over R. If gcd(n, m
t ) = 1 = gcd(n,q), then there

exists an idempotent polynomial i(x) ∈ R[x;Θt ] such that
C = 〈i(x)〉 and i(x) is a right divisor of xn−λ .

Proof. Since gcd(n, m
t ) = 1 = gcd(n,q), there exists idempo-

tent polynomials i j(x)′s such that C = 〈i j(x)〉 and i j(x) is a
right divisor of xn−λ j in Fq[x] for 1≤ j≤ 5. Then by similar
argument as of Corollary 4.9, we have C = 〈i(x)〉 and i(x) is
a right divisor of xn−λ .

Theorem 4.11. Let C =⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code of

length n over R. Then C⊥ =⊕5
i=1ζiC⊥i be a (Θt ,λ

−1)-cyclic
code of length n over R.

Proof. Let C =⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code of length n

over R. Then by Theorem 4.7, C ′i s are (Θt ,λi)-cyclic code of
length n over Fq, respectively for 1≤ i≤ 5. Since Θt(λ ) = λ ,
then Θt(λi) = λi for 1≤ i≤ 5. Therefore, C⊥i is a (Θt ,λ

−1
i )-

cyclic code of length n over Fq, respectively for 1≤ i≤ 5. As
λ−1 = ∑

5
i=1 ζiλ

−1
i , then by Theorem 4.7, C⊥ =⊕5

i=1ζiC⊥i is
a (Θt ,λ

−1)-cyclic code of length n over R.

Corollary 4.12. Let C =⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code of

length n over R. Then C⊥= 〈G(x)〉where G(x)=∑
5
i=1 ζig∗i (x)

and xn−λ
−1
i = gi(x) fi(x) in Fq[x;Θt ] for 1≤ i≤ 5.

Proof. Let C =⊕5
i=1ζiCi be a (Θt ,λ )-cyclic code of length

n over R. The by Theorem 4.11, C⊥ = ⊕5
i=1ζiC⊥i is a

(Θt ,λ
−1)-cyclic code of length n over R where C⊥i is a

(Θt ,λ
−1
i )-cyclic code of length n over Fq, respectively for

1≤ i≤ 5. Let C⊥i = 〈g∗(x)〉 where xn−λ
−1
i = gi(x) fi(x) and

g∗i (x) is the Θt-reciprocal polynomial of gi(x) for 1 ≤ i ≤ 5.
Therefore, by similar argument as of (Θt ,λ )-cyclic code, we
conclude that C⊥ = 〈G(x)〉 where G(x) = ∑

5
i=1 ζig∗i (x).

Corollary 4.13. Let C =⊕6
i=1eiCi be a linear code of length

n over R. Then C is a self-dual (Θt ,λ )-cyclic code if and
only if Ci is a self-dual (Θt ,λi)-cyclic code respectively for
1≤ i≤ 6. Moreover, C is a sef-dual (Θt ,λ )-cyclic code if and
only if λ 2

i = 1, for 1≤ i≤ 6.

Example 4.14. Let q = 25 and R = F25[u,v,w]/〈u2 = u,v2 =
v,w2 = w,uv = vu,uw = vw = 0,〉. Now the automorphism
Θ1(a) = a5 for all a ∈ F25 and hence for r ∈ R, we have
Θ1(r) = ∑

5
i=1 ζiΘ1(ri) = ∑

5
i=1 ζir5

i where ri ∈ F25 and 1 ≤
i≤ 5. Let λ1 = λ2 =−1,λ3 = λ4 = λ5 = 1. Now,

x6−1 = (x2 +w4)(x+1)(x+4)(x2 +w20) ∈ F25[x]

= (x2 +w20)(x+1)(x+4)(x2 +w4) ∈ F25[x]

and,

x6 +1 = (x2 +w8)(x+2)(x+3)(x2 +w16) ∈ F25[x].

Let f1(x) = f2(x) = (x+ 3)(x2 +w16), f3(x) = f4(x) = (x+
4)(x2 + w20) and f5(x) = (x + 4)(x2 + w4). Then
C = 〈∑5

i=1 ζi fi(x)〉 is a (Θ1,λ )-cyclic code of length 6 over
R. Since λ 2

i = 1 for i = 1,2, . . . ,6, then λ 2 = 1. Therefore, by
Corollary 4.13, C is a self-dual (Θ1,λ )-cyclic code over R.
Hence, by Corollary 2.5, φ(C) is a self-dual [30,21,3] linear
code over F25.
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