

https://doi.org/10.26637/MJM0804/0029

Completely P-regular ternary semiring

S. Manivasan^{1*} and S. Parvathi²

Abstract

Here, we presented the completely P-regular ternary semiring . A new form of P-regularity is defined which is complete with arbitrary ideal P, Also we defined some new concept on "completely P-regular" and discussed some theorem with suitable examples as well.

Keywords

Ternary semiring, Regular ternary semiring, Completely regular ternary semiring, P-regular ternary semiring, Completely P-regular ternary semiring.

AMS Subject Classification

15A09, 46C20, 47B20.

¹*Department of Mathematics, Faculty of Engineering and Technology, Annamalai University, Annamalainagar-608002,Tamil Nadu, India.*

²*Department of Mathematics, Annamalai University, Annamalainagar-608002, Tamil Nadu, India.*

***Corresponding author**: ¹smanivasan63@gmail.com; ²sparvathi015@gmail.com

Article History: Received **11** April **2020**; Accepted **17** August **2020** c 2020 MJM.

Contents

1. Introduction

The concept of semiring was first introduced by Vandiver in 1934. Actually, semiring is a postulation of ring. In [\[5\]](#page-4-0), Lister introduced ternary ring and regular ternary rings be prepared by Vasile We presently introduced the opinion of ternary semiring which is a generalization of the ternary ring presented by Lister. In fact, ternary semi ring is an algebraic system dwelling of a set T composed by a binary operation, called addition and ternary multiplication, marked by juxtaposition, which forms a commutative semi group apropos to addition, ternary semi group relative to multiplication and left, lateral, right distributive laws hold. Let take Z is a ring of integer. Now Z^+ is subset of all positive integer of Z is an additive semi group which is closed under the ring product such algebraic system is said to be semi ring and Z^- form a ternary semiring. T.K.Dutta and S.Kar [\[3\]](#page-4-1) introduced and studied some properties of ternary semirings which is a generalization of ternary semiring. M.K. Sen, S.K. Maity and K.P. Shum [\[4\]](#page-4-2) have deliberated in completely regular semiring, which developed in the other paper V.R. Daddi and Y.S. Power [\[1\]](#page-3-2)

was discussed. In this paper we are introduce completely P-regular ternary semiring, where P is an arbitrary ideal .

2. Preliminaries

In this section we introduce completely p-regular ternary semiring.

Definition 2.1. An element t_{α} of T is *completely P-regular* , if *there exists* $\alpha \in T$ *and* $p_1 \in P$ *is an arbitrary ideal satisfying the following conditions,*

(i) $t_\alpha + s_\alpha + t_\alpha + p_1 = t_\alpha + p_1$ $(iii)[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})+p_1=t_{\alpha}+s_{\alpha}+p_1.$

Example 2.2. *If* $Z_5 = 0, 1, 2, 3, 4 \in T$ *.It is completely regular as well as it is a completely P-regular.*

3. Completely p-regular ternary semiring

In this section we discussed some of the theorems in completely p-regular ternary semiring.

Theorem 3.1. *If T is a completely P-regular ternary semiring if and only if for any* $t_\alpha \in T$ *there exists* $s_\alpha \in T$ *such that the following conditions are,*

(i) $t_{\alpha} + s_{\alpha} + t_{\alpha} + p_1 = t_{\alpha} + p_1$ $(iii)[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})+p_1=t_{\alpha}+s_{\alpha}+p_1.$

Proof. Presume that T is a completely p-regular ternary semiring. If for any $t_\alpha \in T$ there exists $s_\alpha \in T$ and $p_1 \in P$ such that $t_{\alpha} + s_{\alpha} + t_{\alpha} + p_1 = t_{\alpha} + p_1$. Therefore (i) is hold. We need

only verify that (ii) condition For any $t_\alpha \in T$ there exists $s_\alpha \in T$ and $p_1 \in P$ we have,

$$
[t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 = [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1
$$

$$
+ [t_{\alpha}t_{\alpha}t_{\alpha}]
$$

$$
= [t_{\alpha}t_{\alpha}t_{\alpha}] + p_1.
$$

Then

$$
[t_{\alpha}t_{\alpha}s_{\alpha}] + ([t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_{1})
$$

\n
$$
= [t_{\alpha}t_{\alpha}s_{\alpha}] + [t_{\alpha}t_{\alpha}t_{\alpha}] + p_{1}
$$

\n
$$
([t_{\alpha}t_{\alpha}s_{\alpha}] + [t_{\alpha}t_{\alpha}t_{\alpha}]) + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_{1}
$$

\n
$$
= [t_{\alpha}t_{\alpha}(s_{\alpha} + t_{\alpha})] + p_{1}
$$

\n
$$
([t_{\alpha}t_{\alpha}(s_{\alpha} + t_{\alpha})]) + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_{1}
$$

\n
$$
= [t_{\alpha}t_{\alpha}(s_{\alpha} + t_{\alpha})]
$$

$$
t_{\alpha} + s_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 = s_{\alpha} + t_{\alpha} + p_1.
$$
 (3.1)

Since

 $+p_1$

$$
[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1+[t_{\alpha}t_{\alpha}t_{\alpha}]=[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha}+t_{\alpha})]+p_1
$$

= $[t_{\alpha}t_{\alpha}t_{\alpha}]+p_1,$

we get $(t_\alpha + s_\alpha) + p_1 + [t_\alpha t_\alpha t_\alpha] = t_\alpha + p_1$

 $[t_{\alpha} + s_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})]] + p_1 = t_{\alpha} + s_{\alpha} + [t_{\alpha}t_{\alpha}t_{\alpha}]$ $+[t_{\alpha}t_{\alpha}s_{\alpha}]+p_1$ $=[t_{\alpha}t_{\alpha}t_{\alpha}]+[t_{\alpha}t_{\alpha}s_{\alpha}]+p_{1}$ $= [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1$

$$
[t_{\alpha} + s_{\alpha} + [t_{\alpha}(t_{\alpha} + s_{\alpha})]] + p_1 = [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1
$$
 (3.2)

From (3.1) and (3.2) , we get

$$
[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1=s_{\alpha}+t_{\alpha}+p_1.
$$

Similar Proof of the converse part.

 \Box

Theorem 3.2. *If T is a completely P-regular ternary semiring if and only if for any* $t_\alpha \in T$ *there exists* $s_\alpha \in T$ *and* $p_1 \in P$ *such that the following condition (i)* $t_\alpha + s_\alpha + t_\alpha + p_1 = t_\alpha + p_1$ $(iii)[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})+p_1=t_{\alpha}+s_{\alpha}+p_1]$ (iii) [$t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}$] + $p_1 = t_{\alpha} + s_{\alpha} + p_1$ $(iv)[(t_{\alpha} + s_{\alpha})t_{\alpha}t_{\alpha}] + p_1 = t_{\alpha} + s_{\alpha} + p_1$ $(v)t_{\alpha} + [(t_{\alpha} + s_{\alpha})t_{\alpha}t_{\alpha}] + p_1 = t_{\alpha} + s_{\alpha} + p_1$ $(vi)t_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 = t_{\alpha} + p_1$ $(vii)t_{\alpha} + [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 = t_{\alpha} + p_1$ $(viii)[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1=[t_{\alpha}(t_{\alpha}+s_{\alpha})t_{\alpha}]+p_1$ $= [(t_{\alpha} + s_{\alpha})t_{\alpha}t_{\alpha}] + p_1.$

Proof. To believe that T is a completely P- regular ternary semiring . Then for any $t_\alpha \in T$ there exists $s_\alpha \in T$ and $p_1 \in P$ such that $t_{\alpha} + s_{\alpha} + t_{\alpha} + p_1 = t_{\alpha} + p_1$. Therefore (i) is hold.

We need only verify that (ii) condition For any $t_\alpha \in T$ there exists $s_\alpha \in T$ and $p_1 \in P$ we have,

$$
[t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1
$$

=
$$
[t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 + [t_{\alpha}t_{\alpha}t_{\alpha}]
$$

=
$$
[t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha} + t_{\alpha})] + p_1
$$

=
$$
[t_{\alpha}t_{\alpha}t_{\alpha}] + p_1.
$$

Then

$$
[t_{\alpha}t_{\alpha}s_{\alpha}] + ([t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1)
$$

\n
$$
= [t_{\alpha}t_{\alpha}s_{\alpha}] + [t_{\alpha}t_{\alpha}t_{\alpha}] + p_1
$$

\n
$$
[t_{\alpha}t_{\alpha}s_{\alpha}] + [t_{\alpha}t_{\alpha}t_{\alpha}]) + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1
$$

\n
$$
= [t_{\alpha}t_{\alpha}(s_{\alpha} + t_{\alpha})] + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1
$$

\n
$$
= [t_{\alpha}t_{\alpha}(s_{\alpha} + t_{\alpha})] + p_1.
$$

$$
t_{\alpha} + s_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 = s_{\alpha} + t_{\alpha} + p_1.
$$
 (3.3)

Since $[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1+[t_{\alpha}t_{\alpha}t_{\alpha}]=[t_{\alpha}t_{\alpha}t_{\alpha}]+p_1.$ We get

$$
(t_{\alpha} + s_{\alpha}) + p_1 + [t_{\alpha}t_{\alpha}t_{\alpha}] = t_{\alpha} + s_{\alpha} + p_1 + t_{\alpha}
$$

= $t_{\alpha} + s_{\alpha} + t_{\alpha} + p_1$
= $t_{\alpha} + p_1$

$$
[t_{\alpha} + s_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})]] + p_1 = t_{\alpha} + s_{\alpha} + [t_{\alpha}t_{\alpha}t_{\alpha}]
$$

+
$$
[t_{\alpha}t_{\alpha}s_{\alpha}] + p_1
$$

=
$$
[t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}s_{\alpha}] + p_1
$$

=
$$
[t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1.
$$

$$
t_{\alpha} + s_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 = [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1
$$
 (3.4)

From (3.3) and (3.4),we get

$$
[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1=t_{\alpha}+s_{\alpha}+p_1.
$$

Similar Proof of the converse part.

As well as For any $t_\alpha \in T$ there exists $s_\alpha \in T$ and $p_1 \in P$ we have,

$$
[t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 = [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}]
$$

+ p_1 + [t_{\alpha}t_{\alpha}t_{\alpha}]
= [t_{\alpha}t_{\alpha}t_{\alpha}] + p_1

Then

$$
[t_{\alpha}s_{\alpha}t_{\alpha}] + ([t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1)
$$

= $[t_{\alpha}s_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}t_{\alpha}] + p_1.$

It exhibit,

$$
\begin{aligned} ([t_{\alpha}s_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}t_{\alpha}]) + [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 \\ = [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1. \end{aligned}
$$

Now

$$
s_{\alpha} + t_{\alpha} + [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 = t_{\alpha} + s_{\alpha} + p_1.
$$
 (3.5)

Again ,

$$
s_{\alpha} + t_{\alpha} + [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 = s_{\alpha} + t_{\alpha} + [t_{\alpha}s_{\alpha}t_{\alpha}]
$$

+
$$
[t_{\alpha}t_{\alpha}t_{\alpha}] + p_1
$$

=
$$
[t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1
$$

$$
s_{\alpha} + t_{\alpha} + [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 = [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1
$$
 (3.6)

From (3.3) and (3.4) , we get

$$
[t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 = t_{\alpha} + s_{\alpha} + p_1
$$
\n(3.7)

Similar Proof of the converse part. In similar way , we get

$$
[(t_{\alpha} + s_{\alpha})t_{\alpha}t_{\alpha}] + p_1 = t_{\alpha} + s_{\alpha} + p_1
$$
\n(3.8)

Using (3.5) we have , adding t_α on both sides,

$$
t_{\alpha} + [(t_{\alpha} + s_{\alpha})t_{\alpha}t_{\alpha}] + p_1 = t_{\alpha} + s_{\alpha} + t_{\alpha} + p_1
$$

= $t_{\alpha} + p_1$

Similar way , we get

$$
t_{\alpha} + [t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}] + p_1 = t_{\alpha} + p_1
$$

and

$$
t_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 = t_{\alpha} + p_1.
$$

Hence

*p*¹ *and*

$$
[t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1=[t_{\alpha}(t_{\alpha}+s_{\alpha})t_{\alpha}]+p_1=[(t_{\alpha}+s_{\alpha})t_{\alpha}t_{\alpha}]+p_1.
$$

Theorem 3.3. *The following statements are equivalent for any element* $t_\alpha \in T$. *(i) t*^α *is completely P-regular.* (iii) There exist a unique element $w \in V^+(t)$ such that $[t_{\alpha}t_{\alpha}(t_{\alpha}+w)] + p_1 = t_{\alpha} + w + p_1, t_{\alpha} + [(t_{\alpha}+w)t_{\alpha}t_{\alpha}] + p_1 =$ $t_{\alpha} + p_1$ $[t_{\alpha}t_{\alpha}(t_{\alpha}+w)] + p_1 = t_{\alpha} + p_1$, $[t_{\alpha}(t_{\alpha}+w)t_{\alpha}] + t_{\alpha} + p_1 = t_{\alpha} +$

 $[t_{\alpha}t_{\alpha}(t_{\alpha}+w)] + p_1 = [t_{\alpha}(t_{\alpha}+s_{\alpha})t_{\alpha}] + p_1 = [(t_{\alpha}+w)t_{\alpha}t_{\alpha}] +$ $p_1 = t_\alpha + p_1.$ *(iii)There exists an unique element* $w \in V^+(t_\alpha)$ *such that* $[t_{\alpha}t_{\alpha}(t_{\alpha}+w)] + p_1 = t_{\alpha} + w + p_1.$ $(i\nu)H_{(t_{\alpha})}^+$ is a ternary subring of T , where $H_{(t_{\alpha})}^+$ is the H-class *on* $(T,+)$ *containing* $t_\alpha \in T$.

Proof. Let $t_\alpha \in T$ be completely p-regular .There exists an element $s_\alpha \in T$ satisfying the following conditions: t_{α} + s_{α} + t_{α} + p_1 = t_{α} + p_1 $[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1=t_{\alpha}+s_{\alpha}+p_1$ $[t_{\alpha}(t_{\alpha}+s_{\alpha})t_{\alpha}]+p_1=t_{\alpha}+s_{\alpha}+p_1$ $[(t_{\alpha}+s_{\alpha})t_{\alpha}t_{\alpha}]+p_1=t_{\alpha}+s_{\alpha}+p_1$ t_{α} + [(t_{α} + s_{α}) t_{α} t_{α}] + p_1 = t_{α} + p_1 $t_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + s_{\alpha})] + p_1 = t_{\alpha} + p_1$ t_{α} + $[t_{\alpha}(t_{\alpha} + s_{\alpha})t_{\alpha}]$ + $p_1 = t_{\alpha} + p_1$ $[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1=[t_{\alpha}(t_{\alpha}+s_{\alpha})t_{\alpha}]+p_1=[(t_{\alpha}+s_{\alpha})t_{\alpha}t_{\alpha}]+p_2$ *p*1 Let $w = s_\alpha + t_\alpha + s_\alpha + p_1$

Hence

$$
t_{\alpha} + w + t_{\alpha} = t_{\alpha} + ((s_{\alpha} + t_{\alpha} + s_{\alpha}) + p_1) + t_{\alpha}
$$

= $(t_{\alpha} + s_{\alpha} + t_{\alpha}) + p_1$
= $t_{\alpha} + p_1$.

And

$$
w + t_{\alpha} + w
$$

= ((s_{\alpha} + t_{\alpha} + s_{\alpha}) + p_1 + t_{\alpha} + ((s_{\alpha} + t_{\alpha} + s_{\alpha}) + p_1)
= (s_{\alpha} + t_{\alpha} + s_{\alpha}) + 2p_1
= s_{\alpha} + t_{\alpha} + s_{\alpha} + p_1
= w.

Therefore w is inverse of t_{α} . Hence $w \in V^+(t)$. Therefore $t_{\alpha} + w + t_{\alpha} = t_{\alpha}$ and $[t_{\alpha}t_{\alpha}(t_{\alpha}+s_{\alpha})]+p_1=[t_{\alpha}t_{\alpha}(t_{\alpha}+w+p_1)]=t_{\alpha}+w+p_1.$ And

$$
[t_{\alpha}t_{\alpha}(t_{\alpha}+w+p_1)]+t_{\alpha}=(t_{\alpha}+w+p_1)+t_{\alpha}
$$

= $t_{\alpha}+w+t_{\alpha}+p_1=t_{\alpha}+p_1$.

Further

$$
[(t_{\alpha} + w + p_1)t_{\alpha}t_{\alpha}] = [(t_{\alpha} + (s_{\alpha} + t_{\alpha} + s_{\alpha}) + p_1)t_{\alpha}t_{\alpha}]
$$

= $(t_{\alpha} + s_{\alpha} + t_{\alpha}) + t_{\alpha} + p_1)t_{\alpha}t_{\alpha}$
= $t_{\alpha} + s_{\alpha} + p_1t_{\alpha}t_{\alpha}$

$$
t_{\alpha} + s_{\alpha} + p_1 = (t_{\alpha} + s_{\alpha} + t_{\alpha}) + s_{\alpha} + p_1
$$

= $t_{\alpha} + (s_{\alpha} + t_{\alpha} + s_{\alpha}) + p_1$
= $t_{\alpha} + w$

$$
[t_{\alpha}(t_{\alpha}+w+p_1)t_{\alpha}]
$$

=
$$
[t_{\alpha}(t_{\alpha}+s_{\alpha}+t_{\alpha}+s_{\alpha}+p_1+p_1)t_{\alpha}]
$$

=
$$
[t_{\alpha}(t_{\alpha}+w+p_1)t_{\alpha}]
$$

=
$$
t_{\alpha}+w+p_1
$$

 \Box

$$
[(t_{\alpha} + w + p_1)t_{\alpha}t_{\alpha}] + t_{\alpha} = t_{\alpha} + p_1
$$

and
$$
[t_{\alpha}(t_{\alpha} + w + p_1)t_{\alpha}] + t_{\alpha} = t_{\alpha} + p_1.
$$

Hence

 $[t_{\alpha}t_{\alpha}(t_{\alpha}+w+p_{1})]=[t_{\alpha}(t_{\alpha}+w+t_{\alpha})t_{\alpha}]=[(t_{\alpha}+w+p_{1})t_{\alpha}t_{\alpha}]$ and

$$
t_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + w + p_1)] = t_{\alpha} + [t_{\alpha}t_{\alpha}(t_{\alpha} + w + p_1)]
$$

$$
] = t_{\alpha} + w + t_{\alpha} + p_1
$$

$$
= 2t_{\alpha} + w + p_1.
$$

Uniqueness:

Let $x \in V^+(t)$ be another element satisfying the conditions, Hence

$$
w = w + t_{\alpha} + w
$$

= 2w + t_{\alpha}
= 2w + t_{\alpha} + x + t_{\alpha}
= 2w + 2t_{\alpha} + x
= 2w + 3t_{\alpha} + 2x
= 2t_{\alpha} + w + t_{\alpha} + w + 2x
= 2t_{\alpha} + w + 2x
= t_{\alpha} + 2x
= x.

Therefore $w = x$.

Thus $(i) \Rightarrow (ii)$ and $(ii) \Rightarrow (iii)$ is obviously true. Let us prove that $(iii) \Rightarrow (iv)$, Assume that there exist an unique element $w \in V^+(t_\alpha)$ such that $[t_\alpha(t_\alpha + w + t_\alpha)] = t_\alpha + w + t_\alpha$. To prove $H_{(t_{\alpha})}^{+}$ is a ternary subring of T, where $H_{(t_{\alpha})}^{+}$ is the H-class on $(T,+)$ containing $t_\alpha \in T$. We have $[t_\alpha t_\alpha(t_\alpha + w + p_1)] = t_\alpha + w + p_1$. Adding t_α on bothsides, Weget $[t_{\alpha}t_{\alpha}(t_{\alpha}+w+p_1)]+t_{\alpha}=t_{\alpha}+w+p_1+t_{\alpha}.$ $t_{\alpha} + p_1 - t_{\alpha} + w_1 + n_{\alpha} + t_{\alpha}$

$$
t_{\alpha} + p_1 = t_{\alpha} + w + p_1 + t_{\alpha}
$$

= $t_{\alpha} + (w + t_{\alpha} + p_1)$
= $(t_{\alpha} + w + p_1) + t_{\alpha}$.

Therefore $t_{\alpha}H^+(t_{\alpha}+w+p_1)$. Hence $H^+_{(t_{\alpha})}$ contains an additive idempotent element $t_{\alpha} + w + p_1 (= w + t_{\alpha} + p_1)$. Therefore $H_{(t_{\alpha})}^{+}$ is a group. Now

$$
t_{\alpha} + p_1 = (t_{\alpha} + w + p_1) + t_{\alpha}
$$

= $[t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}(w + p_1)] + t_{\alpha}$
= $[t_{\alpha}t_{\alpha}(t_{\alpha} + w + p_1)] + t_{\alpha}$
= $[t_{\alpha}t_{\alpha}t_{\alpha}] + [t_{\alpha}t_{\alpha}(w + p_1) + t_{\alpha}]$

Also

$$
[t_{\alpha}t_{\alpha}t_{\alpha}] = [t_{\alpha}(t_{\alpha} + w + t_{\alpha})]
$$

= $[t_{\alpha}(t_{\alpha} + w)] + [t_{\alpha}t_{\alpha}t_{\alpha}]$
= $[t_{\alpha} + (w + [t_{\alpha}t_{\alpha}t_{\alpha}])].$

This implies that $t_{\alpha}R^+t_{\alpha}^3$. Similarly $t_{\alpha}L^+t_{\alpha}^3$. Therefore $t_{\alpha}H^+t_{\alpha}^3$. Let $m, n, o \in H_{(t_{\alpha})}^+$. Therefore $m, n, o \in L_{(t_{\alpha})}^+$ and $m, n, o \in R^+_{(t_\alpha)}$. Hence, there exists $a, b, c, d, g, f \in T$ such that $t_{\alpha} = a + m, m = d + t_{\alpha}, t_{\alpha} = b + n, n = g + t_{\alpha}, t_{\alpha} = c + o,$ $o = f + t_{\alpha}$. Now

$$
[mno] = [(d+t_{\alpha})(g+t_{\alpha})(f+t_{\alpha})]
$$

\n
$$
= [(d+t_{\alpha})(g+t_{\alpha})f] + [(d+t_{\alpha})(g+t_{\alpha})t_{\alpha}]
$$

\n
$$
= [dgf] + [dt_{\alpha}f] + [t_{\alpha}gf] + [t_{\alpha}t_{\alpha}f] + [dgt_{\alpha}]
$$

\n
$$
+ [dt_{\alpha}t_{\alpha}] + [t_{\alpha}gt_{\alpha}] + [t_{\alpha}t_{\alpha}t_{\alpha}]
$$

Also

$$
[t_{\alpha}t_{\alpha}t_{\alpha}] = [(a+m)(b+n)(c+o)]
$$

= [(a+m)(b+n)c] + [(a+m)(b+n)a]
= [abc] + [anc] + [mbc] + [mnc] + [abo]
+ [ano] + [mbo] + [mno].

Therefore, $[mno]L^+ \in [t_\alpha t_\alpha t_\alpha] \Rightarrow [mno] \in L^+_{[t_\alpha t_\alpha t_\alpha]} = L^+_{(t_\alpha t_\alpha)}$ $\frac{1}{(t_{\alpha}^3)} =$ $L^+_{(t_\alpha)}$. similarly $[mno] \in R^+_{[t_\alpha t_\alpha t_\alpha]} = R^+_{(t_\alpha t_\alpha)}$ $\frac{1}{t^{3}_{\alpha}} = R^{+}_{(t_{\alpha})}.$ Hence $[mno] \in H^+_{([ta^t \alpha^t \alpha])} = H(t^3_\alpha)^+ = H(t_\alpha)^+$. Therefore $(H_{(t_{\alpha})}^{+}, +, \bullet)$ is a ternary semigroup. Hence $(H^+_{(t_\alpha)}, +, \bullet)$ is a ternary ring.

Let us prove that $(iv) \Rightarrow (i)$. Let $(H_{(t_\alpha)}^+, +, \bullet)$ is a ternary subring of T. Every ternary ring has a ternary subring of T. Every element of a ternary ring is being completely P-regular. Hence $t_{\alpha} \in T$ is a completely P-regular. □

Corollary 3.4. *If T is a completely P-regular ternary semir-* $\{ \int f_{\alpha} f_{\alpha}(t_{\alpha} + s_{\alpha}) \} + p_1 = t_{\alpha} + s_{\alpha} + p_1$ *where* $p_1 \in P$ *is an arbitrary multiplication identity then* $t_{\alpha} = s_{\alpha} = p_1 (= e)$ *.*

Proof. Let $[t_\alpha t_\alpha(t_\alpha + s_\alpha)] + p_1 = t_\alpha + s_\alpha + p_1$. Take $t_{\alpha} = s_{\alpha} = p_1$ Now $[t_{\alpha}t_{\alpha}(t_{\alpha}+t_{\alpha})]+t_{\alpha}=t_{\alpha}+t_{\alpha}+t_{\alpha}$ \Rightarrow $[t_{\alpha}t_{\alpha}t_{\alpha}] + t_{\alpha} = t_{\alpha} \Rightarrow t_{\alpha} \subseteq t_{\alpha}.$ Hence $t_{\alpha} \in T$ is an completely P-regular.

 \Box

4. Conclusion

Here,we defined completely P-regular ternary semiring and discussed some of the theorems.Throughout the paper,we only discussed about the completely P-regular with arbitrary ideal P. In further research we will develop some ideals other than arbitrary ideal P.

References

- [1] V.R. Daddi and Y.S. Pawar, On Completely Regular Ternary Semiring, *Novi Sad J. Math.,* 42(2)(2012), 1-7.
- $[2]$ D.H. Lehmer, A ternary analogue of abelian groups, *American Journal of Mathematics*, 54(2)(1932), 329-338.

- [3] T.K. Dutta and S. Kar, On regular ternary semirings, *In Advances in Algebra, Proceedings of the ICM Satellite Conference in Algebra and Related Topics*, World Scientific(2003), 343-355.
- [4] M.K. Sen, S.K. Maity and K.P. Shum, On completely regular semirings, *Bull. Cal. Math. Soc.,* 98(4)(2006), 319-328.
- [5] W.G. Lister, Ternary rings, *Transactions of the American Mathematical Society*, 154(1971), 37-55.

 $* * * * * * * * * *$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $**********$

