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Abstract. In this paper, we handle set-theoretical solutions of Yang-Baxter equation and Lyubashenko set theoretical
solutions in Lie algebras. We present a new commutative binary operation on these structures, and we obtain new set
theoretical solutions including this operation by using property of commutativity of it. Also, we show that some set
theoretical solutions of Yang-Baxter equation corresponds to the Lyubashenko set theoretical solutions on these structures.
Additionally, we give some relations to verify set theoretical solution of Yang-Baxter equation. Moreover, we put an
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manifolds by using Lie algebras.
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1. Introduction

Yang-Baxter equation introduced by the Nobel laureate C.N. Yang in theoretical physics [18] and by R.J. Baxter
in statistical mechanics [1, 2]. Yang-Baxter equation has been recently attracted more attention among researchers
in a wide range of disciplines such as knot theory, link invariants, quantum computing, braided categories,
geometrical structures, quantum groups, the analysis of integrable systems, quantum mechanics, physics and etc.
For example, Boucetta and Medina worked on solutions of the Yang-Baxter equations on quadratic Lie group by
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https://www.malayajournal.org/index.php/mjm/index c©2022 by the authors.



Ibrahim SENTURK and Şerife Nur BOZDAĞ

using the case of oscillator groups [25]. Berceanu et al. [4] examined algebraic structures arising from Yang-
Baxter Systems. Oner, Senturk et. al constructed new set theoretical solutions of Yang-Baxter equation in MV-
algebras [14]. Massuyeau and Nichita considered the problem of constructing knot invariants from Yang-Baxter
operators associated to (unitary associative) algebra structures [15]. Abedin and Maximov classified the classical
twists of standard Lie bialgebra structure on a loop algebra. Besides all these works, Gateva-Ivanova examined set
theoretical solutions of the Yang-Baxter equation on braces and symmetric groups [7]. Wang and Ma provided
a new framework of obtaining singular solutions of the quantum Yang-Baxter equation by constructing weak
quasi-triangular structures [8]. Belavin and Drinfeld worked on solutions of the classical Yang-Baxter equation
for simple Lie algebras [5]. Burban and Henrich handled semi-stable vector bundles on elliptic curves and their
relation with associative Yang-Baxter equation [26]. Nichita and Parashar studied Spectral-parameter dependent
Yang-Baxter operators and Yang-Baxter systems from algebraic structures [12], and etc. Moreover, Lyubashenko
set theoretical solution of Yang-Baxter equation was given in [20]. This solution method have been used in many
works such as [21–24].

In accordance with these works, we consider a geometrical approach of set theoretical solutions of Yang-
Baxter equation in Lie algebras by defining a new operator. On the other hand, Lie algebra were introduced
for the first time by Marius Sophus Lie in the 1870s to study the concept of infinitesimal transformations [13].
Moreover, this algebraic structure has widely served for many areas in science especially physics and geometry,
such as [6, 9, 16].

In this study, we handle set theoretical solutions of Yang-Baxter equation in Lie algebras. For this aim, we
define a new operator to find new set theoretical solutions of Yang-Baxter equation in this structure. Moreover, we
reach that some set-theoretical solutions of Yang-Baxter equation corresponds to the Lyubashenko set theoretical
solutions on these structures. We verify that some solutions are preserved under Lie homomorphism, additional
homomorphism and ~-homomorphism. Besides, we deal with geometrical interpretation of set theoretical
solution in Lie algebras which are defined in Euclidean space, Minkowski Space and differentiable manifolds.
This paper is organized as follows: In Section 2, we recall basic notions which are going to be needed. In Section
3, we give set theoretical solutions of Yang-Baxter equation in Lie algebras. Moreover, we define a new operator
to get new solutions which verifies Yang-Baxter condition. Moreover, we examine geometrical interpretation
of some solutions in 3-dimensional Euclidean space. In Section 4, we interpret of geometrical meaning of set
theoretical solutions of Yang-Baxter equation in Minkowski Space. Finally in Section 5, we construct a bridge
between differentiable manifolds and set theoretical solutions of Yang-Baxter equation.

2. Preliminaries

In this section, we recall some definitions which are used during this work.

Definition 2.1. [17] A Lie algebra over R is a real vector space U with a bilinear map

[, ] : U × U → U

such that:
• [X,Y ] = −[Y,X] and
• [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (Jacoby identity) for all X,Y, Z ∈ U .

Definition 2.2. [10] A Lie homomorphism is a linear map from a Lie algebra %1 to a Lie algebra %2 such that it
is compatible with the Lie bracket

Ψ : %1 → %2, Ψ([l,m]) = [Ψ(l),Ψ(m)]

where l,m ∈ %1.
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Definition 2.3. [19] Let M be a Hausdorff space. A differentiable structure on M of dimension n is a collection
of open charts (Ui, φi)iεΛ on M where φi(Ui) is an open subset of Rn such that the following conditions are
satisfied:

(a) M = ∪iεΛUi,

(b) For each pair i, jεΛ the mapping φi · φ−1
j is a differentiable mapping of φi(Ui ∩ Uj) onto φj(Ui ∩ Uj),

(c) The collection (Ui, φi)iεΛ is a maximal family of open charts for which (a) and (b) hold.

Definition 2.4. [19] A differentiable manifold of dimension n is a Hausdorff space with differentiable structure
of dimension n.

Definition 2.5. [17] Let M be a real n−dimensional differentiable manifold and χ(M) the module of
differentiable vector fields of M and f ∈ C∞(M,R). If X and Y are in χ(M), then the Lie bracket [X,Y ] is
defined as a mapping from the ring of functions on M into itself by

[X,Y ]f = X(Y (f))− Y (X(f))

where X(f) is the directional derivative of f function in direction X .

Definition 2.6. [11] The Minkowski Space is the metric space E3
1 = (R3, 〈, 〉), where the metric is given by

〈u, v〉 = u1v1 + u2v2 − u3v3

which is called the Minkowski metric for u = (u1, u2, u3), v = (v1, v2, v3) ∈ R3.

Definition 2.7. [11] A vector v ∈ E3
1 is called

(1) spacelike if 〈v, v〉 > 0 or v = 0,

(2) timelike if 〈v, v〉 < 0,

(3) null (lightlike) if 〈v, v〉 = 0 and v 6= 0.

3. Set Theoretical Solutions of Yang-Baxter Equation in Lie Algebras and Geometrical
View in Euclidean Space

In this part of the paper, we give some set theoretical solutions of Yang-Baxter equation in Lie algebras. And
also, we determine which of them are corresponding to Lyubashenko set theoretical solutions of Yang-Baxter
equation on these structures. Along with these, we discuss the geometrical interpretations of some set theoretical
solutions of Yang-Baxter equation in Euclidean space.

Let F be a field where tensor products are defined andW be a F -space. The mapping overW ⊗W is denoted
by µ. The twist map on this structure is given by µ(w1 ⊗ w2) = w2 ⊗ w1 and the identity map on F is defined
by I : W → W ; for a F−linear map S : W ⊗W → W ⊗W , let S12 = S ⊗ I , S13 = (I ⊗ µ)(S ⊗ I)(µ⊗ I)

and S23 = I ⊗ S.

Definition 3.1. [3] A Yang-Baxter operator is an invertible F−linear map S : W ⊗W →W ⊗W that verifies
the braid condition (called the Yang-Baxter equation):

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23. (3.1)

If S verifies Equation (3.1), then both S ◦ µ and µ ◦ S verify the quantum Yang–Baxter equation (QYBE):

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12. (3.2)
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Lemma 3.2. [3] Equations (3.1) and (3.2) are equivalent to each other.

To construct set theoretical solutions of Yang-Baxter equation in Lie algebras, we need the following
definition.

Definition 3.3. [3] Let L be a set and S : L× L→ L× L, S(l,m) = (f(l), g(m)) be a map. The map S is set
theoretical solution of Yang-Baxter equation if it verifies the following equality for l,m, n ∈ L:

S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23, (3.3)

which is also equivalent to

S12 ◦ S13 ◦ S23 = S23 ◦ S13 ◦ S12, (3.4)

where

S12 : L3 → L3, S12(l,m, n) = (f(l), g(m), n),

S23 : L3 → L3, S23(l,m, n) = (l, f(m), g(n)),

S13 : L3 → L3, S13(l,m, n) = (f(l),m, g(n)).

First of all, we handle some fundamental set theoretical solutions of Yang-Baxter equation in Lie algebras.

Lemma 3.4. Let (L, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = ([c,m], 0)

is a set theoretical solution of Yang-Baxter equation for any constant element c ∈ L and l,m ∈ L on this
structure.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = ([c,m], 0, n),

S23(l,m, n) = (l, [c, n], 0).

We need to satisfy the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all (l,m, n) ∈ L3 as below:

(S12 ◦ S23 ◦ S12)(l,m, n) = S12(S23(S12(l,m, n)))

= S12(S23([c,m], 0, n))

= S12([c,m], [c, n], 0)

= ([c, [c, n]], 0, 0)

= S23([c, [c, n]], 0, 0)

= S23(S12(l, [c, n], 0))

= S23(S12(S23(l,m, n))) = (S23 ◦ S12 ◦ S23)(l,m, n).

Therefore, the mapping S(l,m) = ([c,m], 0) is a set theoretical solution of Yang-Baxter equation in Lie algebras.
�

Lemma 3.5. Let (L, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = (0, [l, c])

is a set theoretical solution of Yang-Baxter equation for any constant element c ∈ L and l,m ∈ L on this
structure.
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Proof. It follows from similar procedure in the proof of Lemma 3.4. �

Lemma 3.6. Let (L, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = ([c,m], [l, c])

is a set theoretical solution of Yang-Baxter equation for any constant element c ∈ L and l,m ∈ L on this
structure.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = ([c,m], [l, c], n),

S23(l,m, n) = (l, [c, n], [m, c]).

We need to satisfy the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all (l,m, n) ∈ L3.

(S12 ◦ S23 ◦ S12)(l,m, n) = S12(S23(S12(l,m, n)))

= S12(S23([c,m], [l, c], n))

= S12([c,m], [c, n], [[l, c], c])

= ([c, [c, n]], [[c,m], c], [[l, c], c])

= ([c, [c, n]], [c, [m, c]], [[l, c], c]).

By the using the property [c, [m, c]] = [[c,m], c] of Lie brackets, then we obtain

= S23([c, [c, n]], [l, c], [m, c])

= S23(S12(l, [c, n], [m, c]))

= S23(S12(S23(l,m, n))) = (S23 ◦ S12 ◦ S23)(l,m, n).

Therefore, the mapping S(l,m) = ([c,m], [l, c]) is a set theoretical solution of Yang-Baxter equation in Lie
algebras. �

Lemma 3.7. Let (L, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = ([c,m] + c, c)

is a set theoretical solution of Yang-Baxter equation for any constant element c ∈ L and l,m ∈ L on this
structure.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = ([c,m] + c, c, n),

S23(l,m, n) = (l, [c, n] + c, c).
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We have to verify the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all (l,m, n) ∈ L3.

(S12 ◦ S23 ◦ S12)(l,m, n) = S12(S23(S12(l,m, n)))

= S12(S23([c,m] + c, c, n))

= S12([c,m] + c, [c, n] + c, c)

= ([c, [c, n] + c], c, c)

= ([c, [c, n]], c, c)

= ([c, [c, n]], [c, c] + c, c)

= S23([c, [c, n]], c, c)

= S23([c, [c, n] + c], c, c)

= S23(S12(l, [c, n] + c, c))

= S23(S12(S23(l,m, n))) = (S23 ◦ S12 ◦ S23)(l,m, n).

Then, the mapping S(l,m) = ([c,m] + c, c) is a set theoretical solution of Yang–Baxter equation for any c ∈ L
in Lie algebras. �

Lemma 3.8. Let (L, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = (c, [l, c] + c)

is a set theoretical solution of Yang-Baxter equation for any constant element c ∈ L and l,m ∈ L on this
structure.

Proof. It is clearly obtained by using similar method in the proof of Lemma 3.7. �

Definition 3.9. [20] The mappings

S : L× L → L× L
(l,m) → S(l,m) = (f(l), g(m))

or

S : L× L → L× L
(l,m) → S(l,m) = (f(m), g(l))

are called Lyubashenko set theoretical solutions for l,m ∈ L where f : L → L and g : L → L are functions
such that f(g(x)) = g(f(x)) for each x ∈ L.

Corollary 3.10. Using Definition 3.9, we obtain the following results:

• In Lemma 3.4, we show that the mapping S(l,m) = ([c,m], 0) is a set theoretical solution of Yang-Baxter
equation for Lie algebras. Besides, if we take f(m) = [c,m] and g(l) = 0, then we obtain

f(g(x)) = f(0) = [c, 0] = 0 = g([c, x]) = g(f(x))

for each x ∈ L. So, we conclude that the mapping S(l,m) = ([c,m], 0) is also a Lyubashenko set
theoretical solution.

• In Lemma 3.5, we show that the mapping S(l,m) = (0, [l, c]) is a set theoretical solution of Yang-Baxter
equation for Lie algebras. Besides, if we take f(m) = 0 and g(l) = [l, c], then we obtain

f(g(x)) = f([x, c]) = 0 = [0, c] = g(0) = g(f(x))

for each x ∈ L. So, we conclude that the mapping S(l,m) = (0, [l, c]) is also a Lyubashenko set theoretical
solution.
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• In Lemma 3.6, we show that the mapping S(l,m) = ([c,m], [l, c]) is a set theoretical solution of Yang-
Baxter equation for Lie algebras. Besides, if we take f(m) = [c,m] and g(l) = [l, c], then we have
f(x) = [c, x] = −[x, c] = −g(x) for each x ∈ L. By using this relation and since f(x) is an odd function,
we obtain

f(g(x)) = f(−f(x)) = −f(f(x)) = g(f(x))

for each x ∈ L. So, we conclude that the mapping S(l,m) = ([c,m], [l, c]) is also a Lyubashenko set
theoretic solution.

• In Lemma 3.7, we show that the mapping S(l,m) = ([c,m] + c, c) is a set theoretical solution of Yang-
Baxter equation for Lie algebras. Besides, if we take f(m) = [c,m] + c and g(l) = c where c is any
constant element in L, then we obtain

f(g(x)) = f(c) = [c, c] + c = c = g(f(x))

for each x ∈ L. So, we conclude that the mapping S(l,m) = ([c,m] + c, c) is also a Lyubashenko set
theoretical solution.

• In Lemma 3.8, we obtain that the mapping S(l,m) = (c, [l, c] + c) is also a Lyubashenko set theoretical
solution on L by using similar procedure as above.

Now, we give a theorem which gives us a general set theoretical solution of Yang-Baxter equation for Lie Algebras
in 3-dimensional Euclidean space (E3).

Theorem 3.11. Let E be a Euclidean space and let (E3, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = ([l,m], 0)

is a set theoretical solution of Yang-Baxter equation for l,m ∈ E3.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = ([l,m], 0, n),

S23(l,m, n) = (l, [m,n], 0)

where l,m and n are linearly dependent with Euclidean bases e1, e2 and e3, respectively.
We satisfy the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all l,m, n ∈ E3.

(S12 ◦ S23 ◦ S12)(l,m, n)

= S12(S23(S12(l,m, n)))

= S12(S23([l,m], 0, n))

= S12([l,m], 0, 0)

= (0, 0, 0) (3.5)

and

(S23 ◦ S12 ◦ S23)(l,m, n)

= S23(S12(S23(l,m, n)))

= S23(S12(l, [m,n], 0))

= S23([l, [m,n]], 0, 0)

= ([l, [m,n]], 0, 0). (3.6)
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From the Equations (3.5) and (3.6), we have ([l, [m,n]], 0, 0) = (0, 0, 0). As it seen, the condition is satisfied
when [l, [m,n]] = 0. In 3-dimensional Euclidean space, Lie bracket corresponds to cross product. Therefore,
the vector l is parallel to [m,n]. So, the equality [l, [m,n]] = 0 is verified in 3-dimensional Euclidean space.
Hence, the mapping S(l,m) = ([l,m], 0) is a set theoretical solution of Yang-Baxter equation in 3-dimensional
Euclidean space. �

By Theorem 3.11, we attain a more general case as follows.

Corollary 3.12. The mapping
S(l,m) = (f(l,m), 0)

is a set theoretical solution of Yang-Baxter equation in 3-dimensional Euclidean space where
f(l, 0) = f(0,m) = 0 for each l,m ∈ E3 since the condition f(l, f(m,n)) = 0 is verified for each
l,m, n ∈ E3 in 3-dimensional Euclidean space.

Using similar method in Theorem 3.11, we obtain the following theorem.

Theorem 3.13. Let (E3, [, ]) be a Lie algebra. The mapping

S(l,m) = (0, [m, l])

is a set theoretical solution of Yang-Baxter equation for l,m ∈ E3 in 3-dimensional Euclidean space.

By the help of Theorem 3.13, we also get a more general case as follows.

Corollary 3.14. The mapping
S(l,m) = (0, g(l,m))

is a set theoretical solution of Yang-Baxter equation in 3-dimensional Euclidean space where g(l, 0) = g(0,m) =

0 for each l,m ∈ E3 since the condition g(g(l,m), n)) = 0 is verified for each l,m, n ∈ E3 in 3-dimensional
Euclidean space.

Now, we introduce a new binary operation in Lie algebras. This operation has advantages to find set
theoretical solutions of Yang-Baxter equation on these structures.

Definition 3.15. Let (L, [, ]) be a Lie algebra. The binary operation ~-operation defined as

l ~m := [l,m] + l +m

for each l,m ∈ L.

Lemma 3.16. Let (L, [, ]) be a Lie algebra. Then, the identities

(i) l ~ l = 2l,

(ii) l ~ 0L = l,

(iii) l ~ (−l) = 0L,

(iv) (l ~m)~ (m~ l) = 2([[l,m], l] + [[l,m],m] + l +m),

(v) l ~ (m− l) = (l ~m)− l,

(vi) (l ~m) + (m~ l) = 2(l +m)

are verified for each l,m ∈ L.
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Theorem 3.17. Let (E3, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = (l ~m, 0)

is a set theoretical solution of Yang-Baxter equation for l,m ∈ E3 in 3-dimensional Euclidean space.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = (l ~m, 0, n) = ([l,m] + l +m, 0, n),

S23(l,m, n) = (l,m~ n, 0) = (l, [m,n] +m+ n, 0)

where l,m and n are linearly dependent to Euclidean bases e1, e2 and e3, respectively.
We have to satisfy the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all l,m, n ∈ E3.

(S12 ◦ S23 ◦ S12)(l,m, n)

= S12(S23(S12(l,m, n)))

= S12(S23([l,m] + l +m, 0, n))

= S12([l,m] + l +m, [0, n] + 0 + n, 0)

= S12([l,m] + l +m,n, 0)

= ([[l,m] + l +m,n] + [l,m] + l +m+ n, 0, 0)

= ([[l,m], n] + [l, n] + [m,n] + [l,m] + l +m+ n, 0, 0) (3.7)

and

(S23 ◦ S12 ◦ S23)(l,m, n)

= S23(S12(S23(l,m, n)))

= S23(S12(l, [m,n] +m+ n, 0))

= S23([l, [m,n] +m+ n] + l + [m,n] +m+ n, 0, 0)

= ([l, [m,n] +m+ n] + l + [m,n] +m+ n, 0, 0)

= ([l, [m,n]] + [l,m] + [l, n] + [m,n] + l +m+ n, 0, 0). (3.8)

Using Equation (3.7) and (3.8), we have

([[l,m], n] + [l, n] + [m,n] + [l,m] + l +m+ n, 0, 0)

= ([l, [m,n]] + [l,m] + [l, n] + [m,n] + l +m+ n, 0, 0).

By the help of above equality, we need to satisfy the following condition

[[l,m], n] = [l, [m,n]].

From the point of geometrical view, since we can correspond cross product to Lie bracket, we obtain

l ∧m = [l,m].

Hence, we get
[[l,m], n] = ((l ∧m) ∧ n) = 0. (Since (l ∧m) is parallel to n)

[l, [m,n]] = (l ∧ (m ∧ n)) = 0. (Since (m ∧ n) is parallel to l)

So, the mapping S(l,m) = ([l,m] + l + m, 0) is a set theoretical solution of Yang-Baxter equation in 3-
dimensional Euclidean space. �
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After these theorems and lemmas, we can give the following examples in E3.

Example 3.18. Let (E3, [, ]) be a Lie algebra. Then, the mappings
(i) S(l,m) = (l · (l ∧m), 0),

(ii) S(l,m) = (l · (l ∧m),m),

(ii) S(l,m) = (l · (l ∧m),m · (l ∧m))

are set theoretical solutions of Yang-Baxter equation in 3-dimensional Euclidean space where the operation “
·”corresponds dot product such that l · (m ∧ n) = (l ∧m) · n = det(l,m, n) where l,m, n ∈ E3.

Theorem 3.19. Let (L, [, ]) be a Lie algebra. Then, the mapping

S(l,m) = (
1

2
((l ~m) + (m~ l)), 0)

is a set theoretical solution of Yang-Baxter equation for l,m ∈ L in Lie algebras.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = ( 1
2 ((l ~m) + (m~ l)), 0, n),

S23(l,m, n) = (l, 1
2 ((m~ n) + (n~m)), 0).

We need to verify the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all l,m, n ∈ L.

(S12 ◦ S23 ◦ S12)(l,m, n)

= S12(S23(S12(l,m, n)))

= S12(S23(
1

2
((l ~m) + (m~ l)), 0, n))

= S12(S23(
1

2
(2(l +m), 0, n)), (By Lemma 3.16 (vi))

= S12(S23(l +m, 0, n))

= S12(l +m,
1

2
((0~ n) + (n~ 0)), 0)

= S12(l +m,
1

2
(2n), 0) (By Lemma 3.16 (ii))

= S12(l +m,n, 0)

= (
1

2
(((l +m)~ n) + (n~ (l +m))), 0, 0)

= (
1

2
(2(l +m+ n), 0, 0)) (By Lemma 3.16 (vi))

= (l +m+ n, 0, 0) (3.9)
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and we have

(S23 ◦ S12 ◦ S23)(l,m, n)

= S23(S12(S23(l,m, n)))

= S23(S12(l,
1

2
((m~ n) + (n~m)), 0))

= S23(S12(l,
1

2
(2(m+ n), 0)) (By Lemma 3.16 (vi))

= S23(S12(l,m+ n, 0))

= S23(
1

2
((l ~ (m+ n)) + ((m+ n)~ l)), 0, 0)

= S23(
1

2
(2(l +m+ n)), 0, 0) (By Lemma 3.16 (vi))

= S23(l +m+ n, 0, 0)

= (l +m+ n, 0, 0). (3.10)

From the equality of (3.9) and (3.10), the mapping S(l,m) = ( 1
2 ((l~m) + (m~ l)), 0) is satisfied Yang-Baxter

equation in Lie algebras. �

By Theorem 3.17 and Theorem 3.19, we attain a more general case as follows.

Corollary 3.20. The mapping
S(l,m) = (f(l,m), 0)

is a set theoretical solution of Yang-Baxter equation in 3-dimensional Euclidean space where
f(l, 0) = f(0,m) = 0 for each l,m ∈ E3 since the condition f(f(l,m), n) = f(l, f(m,n)) is verified for each
l,m, n ∈ E3 in 3-dimensional Euclidean space.

Definition 3.21. Let L be a Lie algebra.Then, the mapping Ψ is called a ~-homomorphism if the equality

Ψ(l ~m) = Ψ(l)~Ψ(m)

is satisfied for each l,m ∈ L.

Lemma 3.22. Let Ψ be a Lie homomorphism and additional homomorphism, then Ψ is also a~−homomorphism
in Lie algebras.

Proof. Let L be a Lie algebra and l,m ∈ L. Then, we obtain

Ψ(l ~m) = Ψ([l,m] + l +m)

= Ψ([l,m]) + Ψ(l) + Ψ(m)

= ([Ψ(l),Ψ(m)]) + Ψ(l) + Ψ(m)

= Ψ(l)~Ψ(m).

�

Lemma 3.23. Let L be a Lie algebra and the mapping f : L2 → L only consist of the combinations of binary
operations ”[, ]”, ”+” and ”~”. Besides, the mapping Ψ be a Lie homomorphism and additional homomorphism.
Then, the mapping

Ψ(f(l,m)) =

{
f(Ψ(l),Ψ(m)), if f(l,m) does not contain any constant

f(Ψ(l),Ψ(m)) + Ψ(c)− c, if f(l,m) contains any constant element c

is verified for each l,m ∈ L.
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Proof. We make induction on the number of the operations of the f mapping.
• Assume that the mapping f(l,m) consists of only the binary operation ” + ” and it does not contain any
constant element. Then, we use induction on the number of ” + ” operators as logical induction on the number
of connectives:

- If f(l,m) = pi1 + pi2 such that pi1 , pi2 ∈ {l,m}. Ψ(f(l,m)) = Ψ(pi1 + pi2) = Ψ(pi1) + Ψ(pi2) =

f(Ψ(l),Ψ(m)).

- Let f(l,m) = pi1 +pi2 + ...+pin such that pi1 , pi2 , ..., pin ∈ {l,m}. Assume that Ψ(f(l,m)) = Ψ(pi1 +

pi2 + ...+ pin) = Ψ(pi1) + Ψ(pi2) + ...+ Ψ(pin) = f(Ψ(l),Ψ(m)) is verified for each pi1 , pi2 , ..., pin ∈
{l,m}. Let g(l,m) = pi1 + pi2 + ... + pin + pin+1

such that pin+1
∈ {l,m}. Then, we show that

Ψ(g(l,m)) = g(Ψ(l),Ψ(m)) as follows:

Ψ(g(l,m)) = Ψ(pi1 + pi2 + ...+ pin + pin+1)

= Ψ(pi1 + pi2 + ...+ pin) + Ψ(pin+1
)

= Ψ(pi1) + Ψ(pi2) + ...+ Ψ(pin) + Ψ(pin+1
)

= g(Ψ(l),Ψ(m)).

• We assume that the mapping f(l,m) consists of only the binary operation ” + ” and it contains any constant
element such as c. Then we have the following conditions:

- If f(l,m) = c is any constant funtion, then we obtain clearly Ψ(f(l,m)) = Ψ(c) = Ψ(c) + c − c =

f(Ψ(l),Ψ(m)) + Ψ(c)− c.

- Let f(l,m) = pi1 + pi2 + ...+ pin + c such that pi1 , pi2 , ..., pin ∈ {l,m} and c be any constant element.
Then we obtain

Ψ(f(l,m)) = Ψ(pi1 + pi2 + ...+ pin + c)

= Ψ(pi1) + Ψ(pi2) + ...+ Ψ(pin) + Ψ(c)

= Ψ(pi1) + Ψ(pi2) + ...+ Ψ(pin) + Ψ(c) + c− c
= (Ψ(pi1) + Ψ(pi2) + ...+ Ψ(pin) + c) + Ψ(c)− c
= f(Ψ(l),Ψ(m)) + Ψ(c)− c

So, the equality f(l,m) = f(Ψ(l),Ψ(m)) is satisfied when the mapping consists of only “+”operation.
By using similar procedure as the “+”operation, we verify this equality for another operations and their
combinations on Lie algebras. �

Theorem 3.24. Let Ψ be a Lie homomorphism and an additional homomorphism. If S(l,m) = (f(l,m), g(l,m))

is a set theoretical solution of Yang-Baxter equation in Lie algebras where f(l,m) and g(l,m) do not contain any
constant element and consist of only “ [, ]”, “ +”and “ ~”operations, then Ψ(S(l,m)) is also a set theoretical
solution of Yang-Baxter equation in Lie algebras.

Proof. Let L be a Lie algebra. Assume that S(l,m) = (f(l,m), g(l,m)) is a set theoretical solution of Yang-
Baxter equation in Lie algebras where f(l,m) and g(l,m) do not contain a constant element and consist of only
“ [, ]”, “+”and “ ~”operations. Then, we have the following equality:

(S12 ◦ S23 ◦ S12)(l,m, n) = (S23 ◦ S12 ◦ S23)(l,m, n) (3.11)
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for each l,m and n ∈ L. So, we obtain the following conclusions:

(S12 ◦ S23 ◦ S12)(l,m, n)

= S12(S23(f(l,m), g(l,m), n))

= S12(f(l,m), f(g(l,m), n), g(g(l,m), n))

= (f(f(l,m), f(g(l,m), n)), g(f(l,m), f(g(l,m), n)), g(g(l,m), n)) (3.12)

and

(S23 ◦ S12 ◦ S23)(l,m, n)

= S23(S12(l, f(m,n), g(m,n)))

= S23(f(l, f(m,n)), g(l, f(m,n)), g(m,n))

= (f(l, f(m,n)), f(g(l, f(m,n)), g(m,n)), g(g(l, f(m,n)), g(m,n))). (3.13)

From the Equality (3.11), we achieve the Equation (3.12) and the Equation (3.13). Moreover, we get

Ψ(S(l,m)) = Ψ((f(l,m), g(l,m))) = (f(Ψ(l),Ψ(m)), g(Ψ(l),Ψ(m))).

If we show the accuracy of the below equation

(S12 ◦ S23 ◦ S12)(Ψ(l),Ψ(m),Ψ(n)) = (S23 ◦ S12 ◦ S23)(Ψ(l),Ψ(m),Ψ(n)) (3.14)

then we prove that Ψ(S(l,m)) is a set theoretical solution of Yang-Baxter equation in Lie algebras.
Now, we verify the Equality (3.14) by the help of Lemma 3.23,the Equations (3.12) and (3.13), respectively.

(S12 ◦ S23 ◦ S12)(Ψ(l),Ψ(m),Ψ(n))

= (f(f(Ψ(l),Ψ(m)), f(g(Ψ(l),Ψ(m)),Ψ(n))), g(f(Ψ(l),Ψ(m)),

f(g(Ψ(l),Ψ(m)),Ψ(n))), g(g(Ψ(l),Ψ(m)),Ψ(n)))

= Ψ((f(f(l,m), f(g(l,m), n)), g(f(l,m), f(g(l,m), n)), g(g(l,m), n)))

= Ψ(f(f(l,m), f(g(l,m), n)), g(f(l,m), f(g(l,m), n)), g(g(l,m), n))

= Ψ(f(l, f(m,n)), f(g(l, f(m,n)), g(m,n)), g(g(l, f(m,n)), g(m,n)))

= f(Ψ(l), f(Ψ(m),Ψ(n))), f(g(Ψ(l), f(Ψ(m),Ψ(n))), g(Ψ(m),Ψ(n))),

g(g(Ψ(l), f(Ψ(m),Ψ(n))), g(Ψ(m),Ψ(n))).

Then, we reach

(S12 ◦ S23 ◦ S12)(Ψ(l),Ψ(m),Ψ(n)) = (S23 ◦ S12 ◦ S23)(Ψ(l),Ψ(m),Ψ(n))

for each l,m, n ∈ L. So, Ψ(S(l,m)) is a set theoretical solution of Yang-Baxter equation in Lie algebras. �

Theorem 3.25. Let Ψ be a Lie homomorphism and an additional homomorphism. If S(l,m) = (f(l), g(m))

is a Lyubashenko set theoretical solution of Yang-Baxter equation in Lie algebras where the funtions f and g
consist of only “[, ]”, “+”and “~”operations, then Ψ(S(l,m)) is also a Lyubashenko set theoretical solution of
Yang-Baxter equation in Lie algebras.

Proof. It follows from Lemma 3.23 and Theorem 3.24. �
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4. Set Theoretical Solutions of Yang-Baxter Equation in Minkowski Space

In the previous section, we study in Euclidean space and realize that we need more flexible space to obtain
new solutions. For this reason, we decide to study in Minkowski space. The following theorems correspond
to geometrical interpretations of set theoretical solutions of Yang-Baxter equation in Minkowski space via Lie
algebras.

Theorem 4.1. Let (E3
1 , [, ]) be a Lie algebra. Then, the mapping

S(l,m) = ([m, l]− l, 0)

is a set theoretical solution of Yang-Baxter equation for l,m ∈ E3
1 in Minkowski space where l is a null vector

and m is a spacelike, timelike or null vector.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = ([l,m], [m, l], n),

S23(l,m, n) = (l, [m,n], [n,m]).

We need to reach the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all l,m, n ∈ E3
1 . Then, we get

(S12 ◦ S23 ◦ S12)(l,m, n) = S12(S23(S12(l,m, n)))

= S12(S23([m, l]− l, 0, n))

= S12([m, l]− l, 0, 0)

= (−[m, l] + l, 0, 0) (4.1)

and

(S23 ◦ S12 ◦ S23)(l,m, n) = S23(S12(S23(l,m, n)))

= S23(S12(l, [n,m]−m, 0))

= S23([[n,m]−m, l]− l, 0, 0)

= ([[n,m]−m, l]− l, 0, 0)

= ([[n,m], l]− [m, l]− l, 0, 0). (4.2)

From the Equations (4.1) and (4.2), we have

(−[m, l] + l, 0, 0) = ([[n,m], l]− [m, l]− l, 0, 0).

Thus, we need to satisfy the following condition

[[n,m], l] = 2l. (4.3)

If we use cross product instead of Lie bracket, then we get

(n ∧m) ∧ l = 2l. (4.4)

From the geometrical meaning of cross product, we know that if a ∧ b = c then c is both orthogonal to a and
b where a, b, c ∈ E3

1 . So, the Equation (4.4) is not achieved because a vector can not orthogonal to itself in
Euclidean space. However in Minkowski Space a null vector is orthogonal to itself so if l is a null vector and
(n ∧m) is a spacelike vector, then the Equation (4.3) is satisfied. �
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Theorem 4.2. Let (E3
1 , [, ]) be a Lie algebra. Then, the mapping

S(l,m) = (0, [l,m] + l)

is a set theoretical solution of Yang-Baxter equation for l,m ∈ E3
1 in Minkowski space where l is a null or

spacelike vector and m is a spacelike vector.

Proof. Let S12 and S23 be defined as follows:

S12(l,m, n) = ([l,m], [m, l], n),

S23(l,m, n) = (l, [m,n], [n,m]).

We have to get the equation S12 ◦ S23 ◦ S12 = S23 ◦ S12 ◦ S23 for all l,m, n ∈ E3
1 . Then

(S12 ◦ S23 ◦ S12)(l,m, n) = S12(S23(S12(l,m, n)))

= S12(S23([l,m], [m, l], n))

= S12(S23(0, [l,m] + l, n))

= S12(0, 0, [[l,m] + l, n] + [l,m] + l)

= (0, 0, [[l,m] + l, n] + [l,m] + l)

= (0, 0, [[l,m], n] + [l, n] + [l,m] + l) (4.5)

and

(S23 ◦ S12 ◦ S23)(l,m, n) = S23(S12(S23(l,m, n)))

= S23(S12(l, [m,n], [n,m]))

= S23(S12(l, 0, [m,n] +m))

= S23(0, l, [m,n] +m)

= (0, 0, [l, [m,n] +m] + l)

= (0, 0, [l, [m,n]] + [l,m] + l). (4.6)

From the Equations (4.5) and (4.6), we have

(0, 0, [[l,m], n] + [l, n] + [l,m] + l) = (0, 0, [l, [m,n]] + [l,m] + l).

Thus, we need to satisfy the following condition

[[l,m], n] + [l, n] = [l, [m,n]]. (4.7)

With the help of Jacobi identity of Lie bracket definition, we know that

[l, [m,n]] = −[m, [n, l]]− [n, [l,m]] (4.8)

and on the other hand from anti-symmetry identity of Lie bracket definition, we have

−[n, [l,m]] = [[l,m], n]. (4.9)

Finally, from the Equations (4.7), (4.8) and (4.9) , we attain

[l, n] = [m, [l, n]]. (4.10)

When we examine the Equation (4.10) in geometric terms via cross product, we get

(l ∧ n) = m ∧ (l ∧ n).

So, if (l ∧ n) is a null vector and m is a spacelike vector, then the Equation (4.7) is verified. �

Theorem 4.3. The mappings in Theorem 4.1 and 4.2 preserve the Yang-Baxter condition in Minkowski space
under the Ψ mapping where it is a Lie and additional homomorphism.

Proof. It follows from Theorem 3.24. �
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5. Set Theoretical Solutions of Yang-Baxter Equation in Differentiable Manifolds via Lie
Algebras

Until this section, we have discussed some set theoretical solutions of Yang-Baxter equations in Lie algebras,
3-dimensional Euclidean space and Minkowski space. Finally, we give a definition of Yang-Baxter equation in
differentiable manifolds and we attain some solutions for this equation on this structure. Additionally, we present
the definition of manifold quantum Yang-Baxter equation.

Definition 5.1. Let M be a differentiable manifold, U, V and W be vector fields on M and f be a smooth
function. Then, the mapping

((S12 ◦ S23 ◦ S12)(U, V,W ))f = ((S23 ◦ S12 ◦ S23)(U, V,W ))f

is called manifold quantum Yang-Baxter equation.

Theorem 5.2. Let M be an n-dimensional differentiable manifold and its local coordinate system denoted by

(x1, x2, ..., xn). Assume that U = g1
∂

∂x1
and V = g2

∂

∂x2
are vector fields onM where f , g1 and g2 are smooth

functions such that the functions g1 and g2 depend on the variables x1 or x3 and x2 or x3, respectively. Then,
the mapping

S(U, V ) = ([U, V ]f, 0),

= ([g1
∂

∂x1
, g2

∂

∂x2
]f, 0)

is a set theoretical solution of Yang-Baxter equation on manifold M .

Proof. Let S12 and S23 be defined as follows:

S12(U, V,W ) = ([U, V ]f, 0,W ),

S23(U, V,W ) = (U, [V,W ]f, 0)

where U = g1
∂

∂x1
, V = g2

∂

∂x2
and W = g3

∂

∂x3
are vector fields on M such that the functions g1, g2 and g3

depend on the variables x1 or x3; x2 or x3 and x1 or x2 or x3, respectively.

We satisfy the equation

((S12 ◦ S23 ◦ S12)(g1
∂

∂x1
, g2)

∂

∂x2
, g3

∂

∂x3
))f = ((S23 ◦ S12 ◦ S23)(g1

∂

∂x1
, g2

∂

∂x2
, g3

∂

∂x3
))f
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for each g1, g2 and g3 functions with the help of the Definition 2.5.

((S12 ◦ S23 ◦ S12)(g1
∂

∂x1
, g2

∂

∂x2
, g3

∂

∂x3
))f

= (S12(S23(S12(g1
∂

∂x1
, g2

∂

∂x2
, g3

∂

∂x3
))f )f )f

= (S12(S23(([g1
∂

∂x1
, g2

∂

∂x2
]f, 0, g3

∂

∂x3
))f )f

= (S12(S23((g1
∂

∂x1
(g2

∂

∂x2
(f))− g2

∂

∂x2
(g1

∂

∂x1
(f)), 0, g3

∂

∂x3
))f )f

= (S12(S23((g1
∂g2

∂x1

∂f

∂x2
+ g1g2

∂2f

∂x1∂x2
− g2

∂g1

∂x2

∂f

∂x1
− g2g1

∂2f

∂x2∂x1
, 0, g3

∂

∂x3
))f )f

= (S12(S23(g1g2
∂2f

∂x1∂x2
− g2g1

∂2f

∂x2∂x1
, 0, g3

∂

∂x3
))f )f

= (S12(S23(0, 0, g3
∂

∂x3
))f )f

= (S12(0, 0, 0))f

= (0, 0, 0)

and

((S23 ◦ S12 ◦ S23)(g1
∂

∂x1
, g2

∂

∂x2
, g3

∂

∂x3
))f

= (S23(S12(S23(g1
∂

∂x1
, g2

∂

∂x2
, g3

∂

∂x3
))f )f )f

= (S23(S12(g1
∂

∂x1
, [g2

∂

∂x2
, g3

∂

∂x3
]f, 0))f )f

= (S23(S12(g1
∂

∂x1
, g2

∂

∂x2
(g3

∂

∂x3
(f))− g3

∂

∂x3
(g2

∂

∂x2
(f)), 0))f )f

= (S23(S12((g1
∂

∂x1
, g2

∂g3

∂x2

∂f

∂x3
+ g2g3

∂2f

∂x2∂x3
− g3

∂g2

∂x3

∂f

∂x2
− g3g2

∂2f

∂x3∂x2
, 0))f )f

= (S23(S12(g1
∂

∂x1
, g2g3

∂2f

∂x2∂x3
− g3g2

∂2f

∂x3∂x2
, 0))f )f

= (S23(S12(g1
∂

∂x1
, 0, 0))f )f

= (S23(0, 0, 0))f

= (0, 0, 0).

�

Example 5.3. Let M be an n-dimensional differentiable manifold and two vector fields are defined as U =

x2
1x3

∂

∂x1
and V = tan(x3)

∂

∂x2
on M . Then, the mapping

S(U, V ) = ([U, V ]f, 0),

= ([x2
1x3

∂

∂x1
, tan(x3)

∂

∂x2
]f, 0)

is a set theoretical solution of Yang-Baxter equation on manifold M .

253



Ibrahim SENTURK and Şerife Nur BOZDAĞ

Each mapping must not satisfy manifold quantum Yang-Baxter condition. For example, we can define a mapping
which does not verify this condition as follows.

Example 5.4. Let M be a differentiable manifold, U and V be vector fields on M and f be smooth function.
Then the mapping

S(U, V ) = ([U, V ]f, [V,U ]f),

= (−Vf , Vf )

is not a set theoretical solution of Yang–Baxter equation on manifold M .
Let S12 and S23 be defined as follows:

S12(U, V,W ) = ([U, V ]f, [V,U ]f,W ),

S23(U, V,W ) = (U, [V,W ]f, [W,V ]f)

where W is a vector field on M . We need to satisfy the equation

((S12 ◦ S23 ◦ S12)(U, V,W )f = ((S23 ◦ S12 ◦ S23)(U, V,W )f

for each U, V,W vector fields. Then, we obtain

(S12 ◦ S23 ◦ S12)(U, V,W )f

= (S12(S23(S12(U, V,W )f )f )f

= (S12(S23([U, V ]f, [V,U ]f,W )f )f

= (S12(S23(−V, V,W )f )f

= (S12(−V, [V,W ]f, [W,V ]f))f

= (S12(−V,−W,W ))f

= (S12([−V,−W ]f, [−W,−V ]f,W ))f

= (W,−W,W )

and

((S23 ◦ S12 ◦ S23)(U, V,W ))f

= (S23(S12(S23(U, V,W )f )f )f

= (S23(S12(U, [V,W ]f, [W,V ]f))f )f

= (S23(S12(U,−W,W ))f )f

= (S23(([U,−W ]f, [−W,U ]f,W ))f )f

= (S23(W,−W,W ))f )f

= (S23(W, [−W,W ]f, [W,−W ]f))f

= (W, 0, 0).

As we can see
(W,−W,W ) 6= (W, 0, 0)

by this way the mapping does not verify manifold quantum Yang-Baxter condition.

Furthermore we have the following theorem for preserving of set theoretical solution of Yang-Baxter equation
under the Ψ−homomorphism.

Theorem 5.5. The mappings in Theorem 5.2 preserve the Yang-Baxter condition in differentiable manifolds
under the Ψ mapping where it is a Lie and additional homomorphism.

Proof. It follows from Theorem 3.24. �
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6. Conclusion

Lie algebra is one of the important algebraic structure which has been extensively investigated by many
researchers. This structure has an important role for different areas such as physics and geometry. In this study,
we examine fundamental set theoretical solutions of Yang-Baxter equation in Lie algebras. We indicate that
some set theoretical solutions of Yang-Baxter equation corresponds to the Lyubashenko set theoretical solutions
on these structures. Then, we define ~-operation on this structure. In accordance with this, we prove that all set
theoretical solutions which do not contain any constant element are preserved under the homomorphism.
Moreover, we give an interpretation for these solutions from the point of geometrical view in Euclidean space,
Minkowski space and differentiable manifolds by constructing a bridge among Lie algebras and these all
geometrical structures. As a result of this study, we think that further researchers should focus on new set
theoretical solutions of Yang-Baxter equation in many algebraic structures with geometrical approach such as
MV -algebras, C-algebras, Jordan algebras and etc. Furthermore, they should use applications of these solutions
in different areas such as physics, statistical mechanics, quantum groups, quantum mechanics, knot theory and
etc.
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