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Analytic and geometric aspects of Laplace operator
on Riemannian manifold
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Abstract
In the past decade there has been a flurry of work at intersection of spectral theory and Riemannian geometry.
In this paper we present some of recent results on abstract spectral theory depending on Laplace-Beltrami
operator on compact Riemannian manifold. Also, we will emphasize the interplay between spectrum of operator
and geometry of manifolds by discussing two main problems (direct and inverse problems) with an eye towards
recent developments.

Keywords
Spectrum, eigenvalue, Laplacian, spectral geometry, isospectral manifolds.

AMS Subject Classification
47A10, 58C40, 53C20, 58J50, 58J53.

1, 2Department of Mathematics, Osmania University, Hyderabad-500007, India.
*Corresponding author: 1 farah90.diab@gmail.com ; 2bsrmathou@osmania.ac.in
Article History: Received 21 July 2020; Accepted 13 September 2020 c©2020 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1556

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1557

3 Standard Result About Spectrum . . . . . . . . . . . . . . . 1558

4 Properties and Estimates . . . . . . . . . . . . . . . . . . . . . . . . 1558

5 Application of heat kernel in Riemannian geometry
1559

6 Isospectral manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1559

6.1 First Method : (Direct computation) . . . . . . 1559
6.2 Second method : (Representation method) 1560
6.3 Third method : (Riemannian submersions method)

1560
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1560

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1560

1. Introduction
Let M be a compact, connected Riemannian manifold.

Let ϕ ∈ L2(M) space of all square integrable real value on
M .We define Laplace-Beltrami operator4ϕ =−divgradϕ

where div is divergence , grad is the gradient or simply we
write4ϕ =−5 (5ϕ) which is differential unbounded self-
adjoint operator.
The inner product is defined by

〈
ϕ,ψ

〉
=
∫

M ϕ.ψdV ,where V

is volume form of M. In local coordinates {xi} , the Laplace-
Beltrami is defined by
4g f = −1√

g ∑
j,k

∂

∂x j

(
g jk√g ∂

∂xk
f
)

where g= |g jk| , g jk =(g jk)
−1,

f is smooth function on M. We will discern 4 with metric
when Laplace operator is associated by metric, we write4g .
Particulary in Euclidean case the form is written as 4 f =
−∑

j

∂

∂x j
∂

∂x j
f , f is a smooth function on Rn.

Suppose that M is compact Riemannian manifold, we will
deal with a class of eigen value problems as follows
Closed problem4ϕ = λϕ in M ∂M = φ

Dirchlet problem4ϕ = λϕ in M ϕ|∂M = 0
Neumann problem4φ = λφ in M ∂ϕ

∂N

∣∣
∂M = 0

Where N is outward oriented unit vector field normal to bound-
ary. The discrete set of all eigenvalue λ j with multiplicity m j;
j = 1,2,3, . . . is spectrum of4g and its denoted by spec(M)
or spec(4g).
spec(M) = {λ j(M)} such that 4g(ϕ j) = λ jϕ j, ϕ j is called
eigen function.
The relationship between geometric structure of manifolds
and spectrum of differential operators created a new concept
which is spectral geometry. In the case of Laplace -Beltrami
operator on closed Riemannian manifold this field sets two
questions.
(1) Direct problem
(2) Inverse problem
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Direct problem discusses how spectrum can be determined
from Riemannian manifold from this point on many inequali-
ties have been established like Cheeger and Cheng inequality
see [2].
Inverse problem seeks to identify features of geometry from
information about Laplace’s spectrum, some results are ap-
peared in inverse problem when Milnor [13] gave answer of
the question that Kac posted see [10] , the analogy of this
question is ” Is the spectrum of associated on smooth func-
tion Laplacian determine the shape of manifold? “In general,
Sunada rise to give examples which clarifies iso-Spectral man-
ifolds see [16]. This paper is covered by good references for
Riemannian geometry see [5]. For spectral geometry see [6].
We refer to [12] for bounds of eigenvalues on Riemannian
manifolds and [4] for general review in isospectral manifolds.

2. Preliminaries

Definition 2.1. An n-dim manifold M is second countable,
Hausdroff space for which every point p ∈ M has a neigh-
bourhood Up homemorphic to an open subset of R+, the com-
plement of int(M) is boundary of M and denoted by ∂M .
It should be noted that the term ”compact manifold” often
implies ”manifold without boundary,” which is the sense in
which it is used here. When there is need for a separate term,
a compact boundaryless manifold is called a closed manifold.
also, it can be superimposed by local charts.
The mapping φ : U →M is a local chart if it is bijective and
smooth. In addition to that, the Jacobian matrix of φ has
to have full rank. Furthermore, the point x ∈ φ−1(p) is the
local coordinate of p ∈M. Now we assume that the function
φ : M→ R takes points from M and maps them to R . One
way to apply that function to the parameter space is to use
the local chart to convert it into local coordinates, so that
f̃ = f oφ .

Example 2.2. Sm =
{

x ∈ Rm+1
∣∣ ‖ x ‖= r

}
m− sphere is

smooth manifold.
T m = S11× . . .×S11 m− dim tours (closed surface defined as
product of m circles).

Figure (1)

Definition 2.3. Tangent vector is the derivation on C∞(M)
X : C∞(M) → R such satisfies Leibnitz rule
X( f g) = X( f ).g(x)+ f (x).X(g) for f ,g ∈C∞(M),x ∈M the
set of all derivations is n- dimensional tangent denoted by
Tx(M) the disjoint union of tangent spaces is tangent bundle
T M =

⋃
x∈M

TxM.

Definition 2.4. Riemannian metric is a smooth map
g : Tx(M)×Tx(M)→ R which associates each point x ∈M by
scalar product g(x)(,). Riemannian manifold is smooth and
is denoted by (M,g).

Example 2.5. Example of Riemannian Metric Space
The simple example is canonical metric when M = Rn for
x ∈ Rn, X ,Y ∈ Tx(Rn)
X = (x1,x2, . . . ,xn) and Y = (y1,y2, . . . ,yn)

< X ,Y >=
n
∑

i=1
xiyi

Definition 2.6. Vector field of manifold is a smooth map M→
T M(i.e. x→ Tx(M)).
Definitions of some spaces that we will use later
C∞(M) = { f : M→ R| f is smooth}
Cinf

0 (M) = { f ∈C∞(M)|supp( f ) is compact}
A space of all square integrable real valued functions on
M is L2(M) such that inner product on L2(M) is defined as
< f1, f2 >=

∫
M

f1(x) f2(x)vg for f1, f2 ∈ L2(M)

Definition 2.7. Laplace-Beltrami4g is unbounded, self-adjoint
operator on C∞(M) takes the formula 4g f = −divgrad f
where div is divergence of vector field V of M

given by divV = 1√
g

n
∑

i=1

∂

∂xi (
√

gV i), grad is the gradient such

that
grad f = ∑

i
∑
j

gi j ∂ f̃
∂x j where V = ∑

i
V i ∂

∂xi
g = detgi j

Laplace Beltrami is denoted by4g with the form

4g f =−divgrad f = 1√
g

n
∑

i, j=1

∂

∂xi (
√

g.gi j. ∂

∂x j f ), f : M→ R,

gi j = (gi j)
−1.

Definition 2.8. The discrete set of eigenvalues (λ j) which sat-
isfies the equation4g(φ j) = λ j(φ j) where φ j ∈C∞(M), j =
1,2, . . . is called spectrum of4g and denoted by spec(M) =
{λ j(M)},φ j is called eigen function.

We need some definitions of sobolev spaces
H1M = { f ∈ L2(M)

∣∣|d f | ∈ L2(M)}
for f ,g ∈ H1(M)

〈
f ,g
〉
=
∫

M f gdV +
∫

M
〈
d f ,dg

〉
dV where

dV =
√

gdx1dx2 . . .dxn is canonical measure of
(M,g), dx1dx2 . . .dxn is standard Lebesgue measure of Rn.
H1

0 (M) = { f ∈ H1(M) ∃ fn ∈ C∞
0 (M)‖ fn − f‖1 → 0 as

n→ ∞} i.e. H1
0 (M) is closure of C∞

0 in H1(M).

Definition 2.9. Let M be a smooth Manifold and Γ(T M) =
is the space of all vector fields of M .The connection ∇ on
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M is bilinear map Γ(T M)× Γ(T M)→ Γ(T M) defined by
(X ,Y )→ ∇XY , ∇ is said to be Levi- Civita if
(1) For all smooth vector fields X ,Y of M the next relation is
hold ∇XY −∇Y X = [X ,Y ]
(2) ∇ is compatible with metric g. i.e. for all smooth vector
fields X ,Y,Z.
(3) Xg(Y,Z) = g(∇X ,Y ,Z)+g(Y,∇X ,Z)
Where [X ,Y ] is Lie bracket given by [X ,Y ]( f ) = X(Y ( f ))−
Y (X( f )) , for all f ∈C∞(M). We can regrade each smooth
vector field X on manifold M as differential operator on
C∞(M).

Definition 2.10. Curvature on Riemannian manifold
Let ∇ be Levi – Civita connection associated to the metric g ,
let X ,Y be smooth vector fields on M. the Curvature R(X ,Y )
is a map from the set of all vector fields on M into itself, so
for U vector field.
R(X ,Y )U = ∇X (∇YU)−∇Y (∇XU)−∇[X ,Y ]U
For four vector fields we have the formula R(X ,Y,Z,W ) =
g(R(X ,Y ),W,Z)

In this paper we will use Ricci curvature by the equality

Riccix(V,V ) =
n
∑
j=1

R(V,ei,V,ei) where

V ∈ Tx(M),x ∈M,(ei)i=1,2,...n
orthogonal basis of vector space Tx(M) , also we refer to scalar

curvature R(x) of M by R(x) =
n
∑

i=1
Riccix(ei,ei) ∈ R.

3. Standard Result About Spectrum
Let M be a compact Riemannian manifold with boundary

∂M (possibly empty) suppose one of mentioned eigenvalue
problems, then
(1) Spectrum consists of infinite sequence of eigenvalues
0≺ λ1 ≤ λ2 ≤ . . .≤ . . .
Where 0 is not an eigenvalue of Dirichlet problem. Each
eigenvalue has finite multiplicity and eigenvectors correspond-
ing to distinct eigenvalues are L2 orthogonal.
(2) Each eigenvalue is C∞ smooth analytic.

4. Properties and Estimates

Given a compact Riemannian Manifold (M,g) can we find
the spectrum {λk(M)}{k≥0} of M , this question comes under
Direct problem.
In fact, we can discern that the explicit computation of spec-
trum is not easy task, there are few examples where the spec-
trum of manifold is known, like (sphere, flat tori, balls), for
this reason will describe some of estimates of spectrum:
The aim is to find ak and bk depending on geometrical invari-
ants ak ≤ λk ≤ bk we will focus on the boundary of λ1 for that
we will introduce Min-Max principle

R( f )=
∫

M |∇ f |2dV∫
M f 2dV =

∫
M4 f . f dV∫

M f 2dV is called Rayleigh form on (M,g)

If f is eigenfunction associated to eigenvalue then it takes the
formula
R( f ) =

∫
M4 f . f dV∫

M f 2dV = λ

f ∈ H1(M) in case of Neumann problem, f ∈ H1
0 (M) in case

of Dirichlet problem.

Definition 4.1. minimax principle
For each spectral problem and for k ≥ 1 we have
λk(M)= min

E⊂H1
0 (M)

dim(E)=k

max
f∈E
{R( f )}for Dirichlet problem

and λk(M)= min
E⊂H1(M)

dim(E)=k

max
f∈E
{R( f )} for Neumann problem.

For ease, we will serve the explanation of min max princi-
ple for another operator

For example, let take matrix of dim (2), A =

(
4 −2
−2 7

)
both operators4 and A are self-adjoint.
The eigenvalues are λ1 = 3,λ2 = 8 with corresponding nor-
malized eigenvector f1 =

1√
5
(2,1), f2 =

1√
5
(−1,2)

R( f ) =
〈

A f , f
〉〈

f , f
〉 =

〈
A f , f

〉
, the Rayleigh quotient formula is

constant in any subspace E of dimension 1 and 2.
In the figure (2),(3) the Rayleigh quotient has its minimum
value when f1 equals the value will be at 3 .we find maxR( f )
is 8 this exactly when f = f2, λ = 8.

f igure(2)
Unitvectors

f igure(3)
Rayleighquotient

For example, of how geometry control the spectrum, Cheeger
inequality appears the lower bound of first eigenvalue if (M,g)
a compact ,connected Riemannian Manifold , and consider
one of eigenvalue problem, Ω is bounded regular subset of M
,Cheeger constant is defined as h(M,g) = in f h(Ω,g) where
h(Ω,g) = vol(∂Ω,g)

vol(Ω,g) , ∂Ω the boundary of Ω with vol(n-1), such

that vol(Ω)≤ vol(M,g)
2 we have λ1(M,g)≥ h2(M,g)

4 .
For the upper there are classical results on eigenvalues on
surfaces. [17] gave an upper bound for the first Neumann
eigenvalue λ of the Laplacian on a simply connected bounded
Ω domain . Where ε = 1.8412 is the constant related to the
first zero of some Bessel function. The equality holds if and
only if Ω is a disk.
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λ1 ≤ ε2π

S(Ω) .S(Ω) is area of Ω.

There are generations of the Szego inequality. H. Weinberger
[18] generalized Szego result to higher dimensions, that is,
for a simply connected bounded domain Ω ∈ Rn the first
Neumann eigenvalue λ1 satisfies λ1 ≤ c

vol(Ω)
2
n

where c is a

constant related to the volume of unit ball, and the equality
holds if and only if Ω is a ball. The proof of the this Szego-
Weinberger inequality is based on the minimax principle and
classical analysis.

For Inverse problem the data of spectrum doesn’t determine
the shape of manifold however, we will interduce some of
positive results to show the geometric effect that we can take
out from spectral invariant.

5. Application of heat kernel in
Riemannian geometry

Definition 5.1. Spectral Partition Function
Let (M,g) be a compact Riemannian manifold ,consider we
have unbounded operator ( in our case ) Laplace operator on
C∞(M), let {λk(M)} the spectrum of Laplace i.e. spec(4g) =
{λM}{k≥1}
One of the important tools in study of spectrum of Laplace
operator is heat kernel.
The map H(x,y, t)→M×M×R+→ R is heat kernel if
(1) H is C0 in x,y, t variables, C2 in variable y,C1 in variable
t.
(2) limt→0+H(x,y, t) = ∂x(y), limt→0+

∫
M H(x,y, t) f (y)dy =

f (x)
(3) ∂H(x,y,t)

∂ t =4g,yH(x,y, t) where f is compactly supported
function,4g,y is Laplace operator for second variable y.
Mathematical relationship between heat kernel and spectrum
of Laplace is regarded by H(x,y, t) = ∑

k
e−λktek(y).ek(x) this

formula helps to describe
The spectral partition function Z(t) = ∑

k
e−λkt as spectral in-

variant.

∫
M

H(x,y, t)dx =
∫

M
∑
k

e−λktek(x).ek(x)dx

=
∫

M
∑
k

e−λkte2
k(x)dx

= ∑
k

e−λkt
∫

M
e2

k(x)dx

∑
k

e−λkt‖ek‖2
L2 = ∑

k
e−λkt

Definition 5.2. The Minakshisundaram-pleijel expansion
Let (M,g) be closed Riemannian Manifold of dim n, asymp-
totic expansion of heat trace is H(x,x, t) = (4πt)(

n
2 )(α1t +

α2t2 + . . .) where α j integral over M depend on curvature
and covariant derivative , it’s difficult to compute all formu-
las α j but we get some of t. Then α0 = vol(M), α1 =

1
6
∫

M S

Where S is scalar curvature.
α2 =

1
360
∫

M 5S2−2(Ric)2−10|K|2 where Ric is Ricci curva-
ture.
K is main curvature. By Minakshisundaram-pleijel expansion
we can see that dim, vol, scalar curvature is known by spec-
trum.
Note: If is two dim then by Gauss –Bonnet theorem we get
Euler characteristic of M is also spectral invariant.
α0 = vol(M),α1 =

π

3 χ(M)

Definition 5.3. Vardhan’s formula
Vardhan’s formula is used to be another application of heat
kernel in Riemannian geometry.

limt→0+tlogE(x,y, t) = −d2
M(x,y)
4 where dM(x,y) is Rieman-

nian distance between x and y. We can see from above ex-
amples that the Spectrum invariant is defined in terms of
Riemannian manifold (M,g).

For negative results in inverse problem we will extend
some of iso-spectral non-isometric Manifolds, first let’s define
isometric and isospectral manifolds

Definition 5.4. Two manifolds M,N are isometric if there is
a diffeomorphism (diffeomorphism is a map between mani-
folds which is differentiable and has differentiable inverse.)
such that Riemannian metric from M pull back to metric on N .

Definition 5.5. Two closed Riemannian manifolds are said to
be iso-spectral if the eigenvalues 0f their (Laplace-Beltrami
operator) counted multiplicities coincide.

Note: Isometric manifolds are Isospectral manifolds.

6. Isospectral manifolds
We will refer to outline of constructing isospectral mani-

folds
(*) Direct computation
(*) Representation theorem
(*) Riemannian submersion

6.1 First Method : (Direct computation)
There are a few examples of manifolds which we can compute
the spectrum by direct computation one of them is Rectangle
with Dirichlet conditions and [0,1]× [0,1] is the domain in
R2, sin(n1πx)sin(n2πy) n1,n2 ∈ N∗ form a Hilbert basis of
{ f ∈ L2([0,1]× [0,1]); f (1) = 0}
spec(M,g)= {π2(n2

1+n2
2)} eigenvectors are sin(n2

1π)sin(n2
2π)

n1,n2 ∈ N∗ where M = [0,1]× [0,1] is Riemannian manifold
with canonical metric.

Example 6.1. Milnor’s counter
There are two lattices Γ,Γ

′
of R16 such that the associated tori

T 16(Γ) and T 16(Γ
′
) are isospectral,but not isometric.
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T 16(Γ) is flat tori-quotients of Euclidean space R16 by lattice
Γ of full rank. T 16(Γ

′
) is flat tori-quotients of Euclidean space

R16 by dual lattice Γ
′

.
Milnor’s work [13] is not a direct answer to the original
version of Kac’s [10] question because it is not concerned
with the planar domains. But from Milnor’s example one
learned that there really exist non-congruent domains with
the same eigenvalue spectrum.

6.2 Second method : (Representation method)
Let G be locally compact group acts on Riemannian manifold.
If Γ1,Γ2 are cocompact subgroups of group G . g be a metric
on G acts on G if Γ1,Γ2 are representation equivalent then
spec(Γ1|G) = spec(Γ2|G).
Two co-compact subgroup of G is said to be representation
equivalent if there exists a unitary isomorphism T : L2(Γ1|G)→
L2(Γ2|G) and T (ρΓ1(x))T−1 = ρΓ2(x), x ∈ G
L2(Γ1|G) is the space of measurable square integrable func-
tions with respect to haar measure on (Γ1|M) . We refer to
ρΓ1(x) f = f ◦RΓ,x where RΓ,x right translation operator on
Γ1|G i.e. RΓ,x(Γx) = (Γxa) for all a ∈ G and f ∈ L2(Γ1|G) .

Theorem 6.2. If Γ1Γ2 are representation equivalent sub-
groups of group G, acts on G compact Riemannian Manifold
then spec(Γ1|M) = spec(Γ2|M).

Note: We call the constructed isospectral manifolds by
this method strongly isospectral manifold.

6.3 Third method : (Riemannian submersions method)
The recent development is Riemannian submersions method,
the surjective differentiable map π : M→ N between differ-
entiable manifolds is submersion, this submersion is said to
be Riemannian if ker(π∗)1→ T N is isometry. T N is tangent
bundle, we called ker(π∗)1 vertical space and its orthogonal
complement is horizontal space. Geodesics are curves which
minimize length and distance between points on manifold,
totally geodesic is any geodesic in M which starts tangent to
fiber stays in the fiber.

Proposition 6.3. Let π : M→N be a Riemannian submersion
with totally geodesic then the Laplace on M and N ∆M,∆N
satisfy π∗(4M( f )) = π∗(4N( f )) , where f is function on N
in particular spec(4M) = spec(4(N)) .
The main idea is giving by theorem
Let T be a torus of dimension greater than one, suppose that
M1,M2 are compact Riemannian Manifolds with induced Rie-
mannian metrics ,are totally geodesic flat tori. M1/S and
M2/S are isospectral for every subtorus S and T of codimen-
sion ≤ 1 then M1,M2 are isospectral.

We will introduce example of isospectral manifolds.
j : S3×S3→ So(6), So(6) the space of skew-symmetric 6×6

matrices.
(x,y) ∈ R3×R3, z ∈ R3 define j(z)(x,y) = (z× x,z× y) for
j
′
(z)(x,y) = (z× x,−z× y)

Where u× v denotes the vector cross product of u,v ∈ R3 , so
j is isospectral to j

′
.

7. Conclusion
We covered most of analytic and geometric aspects of

spectrum of Laplace on Riemannian Manifold by the solu-
tion of direct problems which is typified by Cheeger, Cheng,
Szegö inequalities.

This paper mainly illustrates the inverse problems and the
way to discover the geometry of Riemannian manifold from
spectral data this study still a very active field of research till
now.
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