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On certain degree based Zagreb and Randić indices
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Abstract
Topological index is one of the significant tools in chemical graph theory, and is designed to transform a molecular
map into a number. Basically, topological index is a single numeric quantity which characterises the entire
chemical structure of a compound. Topological indices are crucial relevance to the physicochemical properties
of the molecular compounds and also predicting their bioactivity. As an n-type semiconducting metal oxide,
cubic tungsten trioxide (hereafter c−WO3 ) nanostructure has been considered as a potential candidate, which
offers manifold applications. Therefore, the chemistry of c−WO3 is very important and its interdisciplinary study
provides a way to understand the importance of various domains. In this study, we computed certain degree
based Zagreb and Randić topological indices for c−WO3 nanomultilayer for all values of p,q and r by adopting
edge partition technique. The computational results are analysed, compared and the general formulas to the
indices are obtained.
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1. Introduction
Chemical compounds are often modelled by molecular

graphs. Mathematical chemistry has a lot of potential tools
in real life such as topological indices, which are served as
molecular descriptors to reveal the unknown facts behind
the symmetry of molecular graphs. Topological index is a
graph-theoretical invariant, which provides a mathematical
formulation to chemical structures through their molecular
graphs and also describes their topology [1-3]. Owing to its

mathematical nature in chemical graph theory this idea has
drawn the attention of many researchers. Topological indices
are being widely employed to correlate and predict certain
physicochemical properties (e.g. solubility [4] and refractive
index [5] ) and thermodynamic properties (eg. vaporization
[6] and heats of formation [7]) of molecular species without
using quantum mechanics. To get more information about
topological indices and their significance, we should refer the
following texts [8-10] to the reader.
Let G = (V,E) be a (molecular) graph with vertex set V and
edge set E. Edge of G is represented by e = uv, connecting
the vertices u and v. For each vertex v of G, the degree of v is
denoted by dv and is defined as number of vertices adjacent to
v. Suppose Ω denotes the class of all graphs, then a function
Ψ : Ω→ R+ is said to be a topological index if A∼= B implies
Ψ(A) = Ψ(B). Throughout this article only simple connected
graphs (i.e. connected graphs without self loops and parallel
edges) are considered. For more related on algebraic and
graph theoretical tools used herein, the reader is referred to
the following text [11].
To date, numerous topological descriptors were established
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such as distance based, degree based, eccentricity based and
spectral based topological indices. Topological indices were
first introduced by Wiener for predicting certain physical prop-
erties of alkanes in 1947 [12]. In 1972, Gutman and Trina-
jstic have been derived a pair of degree based topological
indices named as the first Zagreb index Ml(G) and second Za-
greb index M2(G), which are employed as branching indices
and are used in the development of structure property mod-
elling, QSAR (quantitative structure-activity relationship) and
QSPR (quantitative structure-property relationship) studies
[13]. These indices were helpful in the topological formula
for predicting the total π− electron energy of conjugated
molecules [14]. Later, third Zagreb index was brought into
light by Fath-Tabar et al. [15]. In this line, hyper Zagreb
indices [16], Reduced second Zagreb index [17], Redefined
Zagreb indices [18], Nano-Zagreb index [19] and Sum Nano-
Zagreb index [20] were introduced and discussed by respec-
tive authors in their research articles. In 1975, Milan Randić
introduced a connectivity index known as branching index
(later called as Randić index) which is represented by χ(G)
and served as a reliable tool for quantitative assessment of
branching of molecules, QSAR and QSPR studies [6]. Many
modified forms of Randić indices were established such as,
general Randić index [21], Reciprocal Randić index [22], Re-
duced Reciprocal Randić index, [23], modified Randić index
[24] and Zeroth− order general Randić index [25−28] and
so on.
The interdisciplinary co-operation among various domains
such as chemical graph theory, materials science and com-
putational methods paving a way of new dimension in the
development of nanotechnology. For instance, Idrees et al.
[29] have proposed the topological Indices for H-Naphtalenic
nanosheet. Bača et al. [30] computed the topological in-
dices for the carbon nanotube networks. Afzal et al. [31] have
demonstrated some topological indices of OT [m,n] Octagonal
Tillings and TiO2 nanotubes. Javaid et al. [32] have reported
certain topological indices of Titania Nanotube TiO2[m,n].
Munir et al. [33] have discussed certain computational as-
pects of triangular Boron nanotubes. Topological Indices of
the Pent- Heptagonal Nanosheets VC5C7 and HC5C7 were
discussed by Deng et al. in [34].
In this scenario, we compute and analyse various Zagreb and
Randić topological indices for c−WO3[p,q, r] nanomultilayer
through its molecular graph, which is precisely the contribu-
tion of this study. To the best of our knowledge, Zagreb and
Randić topological indices of WO3 nanomultilayer have not
been reported yet. It is worth mentioning that, WO3 is one of
the most investigated nanomaterials due to its unique physic-
ochemical properties such as high surface area to volume
ratios, various surface morphologies, wider optical band gap
and tunable transport properties, which are very benefices in
gas sensing devices, water splitting applications and photocat-
alytic activities [35]. Details about the applications of WO3
nanostructures in various disciplines can be found in the paper
[36] and references cited therein.

This paper is organized as follows. In Section 2, some well-
known connectivity indices are given. In Section 3, we de-
scribe the molecular construction of c−WO3 nanomultilayer
and provide some mathematical formulation of its molecular
graph. In Section 4, computations are conducted for c−WO3
nanomultilayer through degree based Zagreb and Randic topo-
logical indices with appropriate illustrations. Moreover, In
Section 5, we apply some of our results to compare the values
of these indices.

2. Preliminaries
In this section, we have enumerated basic definitions of

certain topological indices which are needed in framing our
work. In mathematical chemistry, most of the topological
indices have the form

T I = T I(G) = ∑
uiu j∈E(G)

F (di,d j) .

Definition 2.1 ([13],[14]). For a simple connected graph G,
the first and second Zagreb indices are defined as

M1(G) = ∑
uv∈E(G)

(du +dv) , M2(G) = ∑
uv∈E(G)

(du ·dv) ,

where dv denotes the degree (number of first neighbours) of
vertex v in G.

Definition 2.2 ([15]). Let G be a simple connected graph G,
the third Zagreb index is defined as

ZG3(G) = ∑
uv∈E(G)

|du−dv| .

Definition 2.3 ([16]). For a simple connected graph G, the
first and second hyper Zagreb indices are defined as

HM1(G) = ∑
uv∈E(G)

(du +dv)
2 , HM2(G) = ∑

uv∈E(G)

(du ·dv)
2 .

The general case of first and second hyper Zagreb indices are
defined as

Mα
1 (G) = ∑

uv∈E(G)

(du +dv)
α , Mα

2 (G) = ∑
uv∈E(G)

(du ·dv)
α .

Definition 2.4 ([17]). For a simple connected graph G, the
reduced second Zagreb index is defined as

RM2(G) = ∑
uv∈E(G)

(du−1) · (dv−1) .

Definition 2.5 ([18]). For a simple connected graph G, the
first, second and third redefined Zagreb indices of G are de-
fined as

ReZG1(G)= ∑
uv∈E(G)

du +dv

du ·dv
, ReZG2(G)= ∑

uv∈E(G)

du ·dv

du +dv
,

and ReZG3(G) = ∑
uv∈E(G)

(du ·dv) · (du +dv) .
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Definition 2.6 ([19]). Let G be a simple connected graph.
The Nano - Zagreb index of G is defined as

N z(G) = ∑
uv∈E(G)

(
d2

u −d2
v
)
,

with du� dv.

Definition 2.7 ([20]). For a simple loopless connected graph
G, the sum Nano-Zagreb index of G is defined as

χ 1
2
N z(G) = ∑

uv∈E(G)

(
d2

u −d2
v
) 1

2 ,

with du� dv.

Definition 2.8 ([6]). For a simple connected graph G, Randić
index of G is defined as

R− 1
2
(G) = ∑

uv∈E(G)

(du ·dv)
−1
2 .

Definition 2.9 ([21]). Let G be a simple connected graph. The
Reciprocal Randić index is denoted by RR(G) and is defined
as

RR(G) = ∑
uv∈E(G)

√
du ·dv.

Definition 2.10 ([22]). For a simple connected graph G, the
Reduced Reciprocal Randić index of G is defined as

RRR(G) = ∑
uv∈E(G)

√
(du−1) · (dv−1).

Definition 2.11 ([23]). For a simple connected graph G, the
zeroth - order Randić index of G is defined as

R0
− 1

2
(G) = ∑

u∈V (G)

(du)
−1
2 .

Definition 2.12 ([25-28]). If G is a simple connected graph,
then the zeroth - order general Randić index of G is defined as

R0
α(G) = ∑

u∈V (G)

(du)
α

and α 6= 0,1.

Definition 2.13 ([24]). For a simple connected graph G, the
modified Randić index of G is defined as

R′(G) = ∑
uv∈E(G)

1
max{du,dv}

.

3. Discussions
In this section, first we present the step-by-step formation

of c−WO3 nanomultilayer and then discuss the partitions of
the vertex set and the edge set of its molecular graph.
Formation of WO3 nanomultilayers are experimentally stud-
ied in [37]. Since topological indices play a predominant

role in correlating physiochemical properties of the chemical
compounds, we eager to find some degree based Zagreb and
Randić indices for c−WO3 nanomultilayer through its molec-
ular graph. The pictorial representation of WO3 molecular
formation is shown in Fig. 1. Unit cell and nanolayer structure
of c−WO3 are displayed in Fig. 2 (a) and 2 (b) respectively.
The typical WO3 molecular structure clearly indicates that,
each tungsten atom with six oxygen atoms in close proximity,
and each oxygen atom and two tungsten atoms are closely ad-
jacent, then each tungsten atom is sub-neighbour with another
one. Oxygen atoms are in the surface while tungsten atoms in
the center as depicted in Fig. 1 and Fig. 2.

Figure 1. Molecular formation of WO3 (2-D , 3-D view)

Figure 2. (a) Unit cell of c−WO3 and (b) Nanolayer
structure (Top View)
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Figure 3. (a) Vertices of c−WO3 [1,1,1] nanomultilayer labelled with degrees 1,2,6 and (b) c−WO3 [1,1,2] nanomultilayer

Figure 4. c−WO3 [3,1,2] nanomultilayer

The intermediate space between two horizontal linear
arrangements of connected tungsten trioxide molecules is
treated as a single row (p = 1) in which two tungsten atoms
are connected by an oxygen atom. A similar vertical arrange-
ment of this pattern constitutes a single column (q= 1). These
two parameters combined together to form a single layer
(r = 1). Consider a cubic system of WO3 nanostructures with
p rows, q columns and r layers, and each layer consists of p
rows and q columns. Such a typical WO3 molecular graph W
and O atoms displayed as vertices and the bonds connecting
them to each other can be represented by edges.There are three
types of vertices in c−WO3 [p,q, r] nanomultilayer namely
of degree 1,2 and 6, and two types of edges with respect to
degree of end vertices namely, {1.6} and {2,6} as depicted
in Fig. 3 (a). The nanomultilayer of c−WO3 [1,1,2] and

c−WO3 [3,1,2] are shown in Fig. 3 (b) and Fig. 4.

Fig. 5 shows the molecular graph of c−WO3[p,q, r] nano-
multilayer (big and small dots indicate W and O atoms respec-
tively). From this, we can observe that the total number of
vertices are

4pqr+6r+15(pr+qr)+ pq+ p+q+1

and the total number of edges are

6r(pq+ p+q+1).

All surface oxygen atoms connected with tungsten atoms are
denoted by the edge type E(1,6) and the intermediated oxygen
atoms binded with tungsten atoms are shown by the edge type
E(2,6).

The edge set of c−WO3[p,q, r] nanomultilayer with p,q,r≥
1 has following two partitions,

E(1,6) = {e = uv ∈ E (c−WO3[p,q,r]) | du = 1,dv = 6}

and

E(2,6) = {e = uv ∈ E (c−WO3[p,q,r]) | du = 2,dv = 6}

The vertex set of c−WO3[p,q, r] nanomultilayer with p,q,r≥
1 has following three partitions,

V1 = {v ∈V (c−WO3[p,q,r]) | dv = 1} ,

V2 = {v ∈V (c−WO3[p,q,r]) | dv = 2}

and
V6 = {v ∈V (c−WO3[p,q,r]) | dv = 6}

Edge partition and Vertex partition of c−WO3 [p,q, r] nano-
multilayer based on the degree of end vertices of each edge in
r layers are given in Table 1 and Table 2.
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On certain degree based Zagreb and Randić indices for cubic tungsten trioxide [p,q,r] nanomultilayer — 1566/1573

Figure 5. Molecular graph of c−WO3 [p,q,r] nanomultilayer

Table 1. Edge partition of c−WO3 [p,q, r] nanomultilayer based on the degree of end vertices of each edge in r layers
Type of edges E(1,6) E(2,6)
(du,dv) ,uv ∈ E(G) (1,6) (2,6)
Edge cardinality 2(pq+qr+ rp+ p+q+2r+1) 6pqr+4(pr+qr)+2r
| E(du,dv) | −2(pq+ p+q+1)

4. Main Results

In this section, we present accurate expression of several
degree based Zagreb and Randić indices of c−WO3[p,q, r]
nanomultilayer by edge partition technique.

Theorem 4.1. For all p, q, r ≥ 1, The first Zagreb index of
c−WO3 [p,q,r] nanomultilayer is given by

M1 (c−WO3[p,q, r]) =48pqr+46(pr+qr)

+2(22r− pq)

−2(p+q+1).

Proof. Using Table 1 and the mathematical expression of first

Zagreb index M1(G) = ∑uv∈E(G) (du +dv) , we get

M1 (c−WO3[p,q,r])

=
∣∣E(1,6)

∣∣(1+6)+
∣∣E(2,6)

∣∣(2+6)

=2(pq+qr+ rp+ p+q+2r+1)(7)
+8(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))

=48pqr+46(pr+qr)+2(22r− pq)−2(p+q+1).

Example 4.2. Consider a 3D structure of c−WO3[5,4,3]
nanomultilayer consisting of 423 atoms and 540 chemical
bonds, we obtain,

M1 (c−WO3[5,4,3]) = 4194.
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Table 2. Vertex partition of c−WO3 [p,q,r] nanomultilayer based on the degree of end vertices of each edge in r layers
Vertex partition V du V 1 V 2 V 6
du,u ∈V (G) 1 2 6
Vertex
cardinality 2(pq+qr+ rp+ p+q+2r+1) 3pqr+2(pr+qr) (pq+ p+q+1)r
|V du | −(pq+ p+q+ r+1)

Theorem 4.3. For all p, q,r ≥ 1, the second Zagreb index of
c−WO3 [p,q,r] nanomultilayer is given by

M2 (c−WO3[p,q, r]) =72pqr+60(pr+qr)

+12(4r− pq)−12(p+q+1).

Proof. Using Table 1 and the mathematical expression of
second Zagreb index M2(G) = ∑uv∈E(G) (du ·dv) , we get

M2 (c−WO3[p,q,r])

=
∣∣E(1,6)

∣∣(1×6)+
∣∣E(2,6)

∣∣(2×6)

=2(pq+qr+ rp+ p+q+2r+1)(6)
+12(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))

=72pqr+60(pr+qr)+12(4r− pq)−12(p+q+1).

Example 4.4. Consider a 3D structure of c−WO3[17,45,76]
nanomultilayer consisting of 257404 atoms and 377568 chem-
ical bonds, we obtain,

M2 (c−WO3[17,45,76]) = 4462512.

Theorem 4.5. For all p, q,r ≥ 1, the third Zagreb index of
c−WO3 [p,q,r] nanomultilayer is given by

M2 (c−WO3[p,q, r]) =24pqr+26(pr+qr)

+2(14r+ pq)+2(p+q+1).

Proof. Using Table 1 and the mathematical expression of
third Zagreb index ZG3(G) = ∑uv∈E(G) |du−dv| , we get

ZG3 (c−WO3[p,q,r])

=|E(1,6)||1−6|+
∣∣E(2,6)

∣∣ |2−6|
=2(pq+qr+ rp+ p+q+2r+1)(5)
+(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))(4)

=24pqr+26(pr+qr)+2(14r+ pq)+2(p+q+1).

Example 4.6. Consider a 3 D structure of c−WO3[54,78,48]
nanomultilayer consisting of 845017 atoms and 1021554
chemical bonds, we obtain,

ZG3 (c−WO3[54,78,48]) = 5026994.

Theorem 4.7. For all p,q,r ≥ 1 the first hyper Zagreb index
of c−WO3 [p,q,r] nanomultilayer is given by

HM1 (c−WO3[p,q, r]) = 384pqr
+354(pr+qr)+3(108r−10pq)−30(p+q+1).

Proof. Using Table 1 and the mathematical expression of first
hyper Zagreb index HM1(G) = ∑uv∈E(G) (du +dv)

2 we get

HM1 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(1+6)2 +
∣∣E(2,6)

∣∣(2+6)2

=98(pq+qr+ rp+ p+q+2r+1)+64(6pqr

+4(pr+qr)+2r−2(pq+ p+q+1))
=384pqr+354(pr+qr)+3(108r−10pq)

−30(p+q+1).

Example 4.8. Consider a 3D structure of c−WO3 [57,88,65]
nanomultilayer consisting of 1356837 atoms and 2029434
chemical bonds, we obtain,

HM1 (c−WO3[57,88,65]) = 1.3×108.

Theorem 4.9. For all p,q, r ≥ 1, the second hyper Zagreb
index of c−WO3 [p,q, r] nanomultilayer is given by

HM2 (c−WO3[p,q, r]) =864pqr+648(pr+qr)

+72(6r−3pq)−216(p+q+1).

Proof. Using Table 1 and the mathematical expression of
second hyper Zagreb index HM2(G) = ∑uv∈E(G) (du ·dv)

2 ,
we get

HM2 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(1×6)2 +
∣∣E(2,6)

∣∣(2×6)2

=72(pq+qr+ rp+ p+q+2r+1)+144(6pqr

+4(pr+qr)+2r−2(pq+ p+q+1))
=864pqr+648(pr+qr)

+72(6r−3pq)−216(p+q+1).

Example 4.10. Consider a 3D structure of c−WO3 [24,46,76]
nanomultilayer consisting of 363847 atoms and 535800 chem-
ical bonds, we obtain,

HM2 (c−WO3[24,46,76]) = 7.6×107.
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Theorem 4.11. For all p,q,r ≥ 1, the general case of first
hyper Zagreb index of c−WO3 [p,q,r] nanomultilayer is
given by

M1
α (c−WO3[p,q, r])
=2(pq+qr+ rp+ p+q+2r+1)(7)α

+(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))(8)α .

Proof. Using Table 1 and the mathematical expression of
general case of first hyper Zagreb index

Mα
1 (G) = ∑

uv∈E(G)

(du +dv)
α ,

we get

Mα
1 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(1+6)α +
∣∣E(2,6)

∣∣(2+6)α

=2(pq+qr+ rp+ p+q+2r+1)(7)α

+(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))(8)α .

Theorem 4.12. For all p,q, r≥ 1, the general case of second
hyper Zagreb index of c−WO3[p,q, r] nanomultilayer is given
by

M2
α (c−WO3[p,q, r])
=2(pq+qr+ rp+ p+q+2r+1)(6)α

+(6pqr+4(pr+qr)

+2r−2(pq+ p+q+1))(12)α .

Proof. Using Table 1 and the mathematical expression of
general case of second hyper Zagreb index

Mα
2 (G) = ∑

uv∈E(G)

(du ·dv)
α ,

we get

Mα
2 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(1×6)α +
∣∣E(2,6)

∣∣(2×6)α

=2(pq+qr+ rp+ p+q+2r+1)(6)α

+(6pqr+4(pr+qr)

+2r−2(pq+ p+q+1))(12)α .

Theorem 4.13. For all p, q,r ≥ 1, the Reduced second Za-
greb index of c−WO3[p,q,r] nanomultilayer is given by

RM2 (c−WO3[p,q, r])
= 30pqr+20(pr+qr)+10(r− pq− p−q−1).

Proof. Using Table 1 and the mathematical expression of
Reduced second Zagreb index RM2(G) = ∑uv∈E(G) (du−1) ·
(dv−1) , we get

RM2 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(1−1) · (6−1)+
∣∣E(2,6)

∣∣(2−1) · (6−1)

=2(pq+qr+ rp+ p+q+2r+1)(0)
+5(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))

=30pqr+20(pr+qr)+10(r− pq− p−q−1).

Example 4.14. Consider a 3D structure ofc−WO3[10,7,9]
nanomultilayer consisting of 3427 atoms and 4752 chemical
bonds, we obtain, M3 (c−WO3[10,7,9]) = 21170.

Theorem 4.15. For all p,q, r ≥ 1, the first Redefined Zagreb
index of c - WO3 [p,q, r] nanomultilayer is given by

ReZG1 (c−WO3[p,q, r])
= 4pqr+5(pr+qr)+(6r+ pq)+(p+q+1).

Proof. Using Table 1 and the mathematical expression of first
Redefined Zagreb index

ReZG1(G) = ∑
uv∈E(G)

du +dv

du ·dv
,

we get

ReZG1 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(1+6
1×6

)
+
∣∣E(2,6)

∣∣(2+6
2×6

)
=

7
3
(pq+qr+ rp+ p+q+2r+1)+

2
3
(6pqr

+4(pr+qr)+2r−2(pq+ p+q+1))
=4pqr+5(pr+qr)+(6r+ pq)+(p+q+1).

Example 4.16. Consider a 3D structure of c−WO3[5,8,5]
nanomultilayer consisting of 1209 atoms and 1620 chemical
bonds, we obtain, ReZG1 (c−WO3[5,8,5]) = 1209.

Theorem 4.17. For all p,q,r ≥ 1, the second Redefined Za-
greb index of c−WO3[p,q,r] nanomultilayer is given by

ReZG2 (c−WO3[p,q, r])
=9pqr+7.7143(pr+qr)+(6.4285r−1.2857pq)

−1.2857(p+q+1).

Proof. Using Table 1 and the mathematical expression of
second Redefined Zagreb index ReZG2(G) =∑uv∈E(G)

du·dv
du+dv

,
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we get

ReZG2 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣( 1 ·6
1+6

)
+
∣∣E(2,6)

∣∣( 2 ·6
2+6

)
=

12
7
(pq+qr+ rp+ p+q+2r+1)

+
12
8
(6pqr+4(pr+qr)

+2r−2(pq+ p+q+1))
=9pqr+7.7143(pr+qr)+(6.4285r−1.2857pq)

−1.2857(p+q+1).

Example 4.18. Consider a 3D structure of c−WO3 [10,8,5]
nanomultilayer consisting of 2179 atoms and 2970 chemical
bonds, we obtain, ReZG2 (c−WO3[10,8,5]) = 4199.143.

Theorem 4.19. For all p, q,r≥ 1, the third Redefined Zagreb
index of c−WO3[p,q,r] nanomultilayer is given by

ReZG3 (c−WO3[p,q, r])
=576pqr+468(pr+qr)+24(15r−4.5pq)

−108(p+q+1).

Proof. Using Table 1 and the mathematical expression of
third Redefined Zagreb index

ReZG3(G) = ∑
uv∈E(G)

(du ·dv) · (du +dv) ,

we get

ReZG3 (c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(6)(1) · (6+1)+
∣∣E(2,6)

∣∣(6)(2) · (6+2)

=84(pq+qr+ rp+ p+q+2r+1)
+96(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))

=576pqr+468(pr+qr)+24(15r−4.5pq)

−108(p+q+1).

Example 4.20. Consider a 3D structure of c−WO3[10,6,5]
nanomultilayer consisting of 1707 atoms and 2310 chemical
bonds, we obtain,

ReZG3 (c−WO3[10,6,5]) = 203724.

Theorem 4.21. For all p,q, r ≥ 1, the Nano - Zagreb index
of c−WO3 [p,q,r] nanomultilayer is given by

N z(c−WO3[p,q, r])
= 192pqr+198(pr+qr)+6(34r+ pq)+6(p+q+1).

Proof. Using Table 1 and the mathematical expression of the
Nano - Zagreb index

N z(G) = ∑
uv∈E(G)

(
d2

u −d2
v
)
, with du� dv,

we get

N z(c−W03[p,q, r])

=
∣∣E(1,6)

∣∣(62−12)+ ∣∣E(2,6)
∣∣(62−22)

=70(pq+qr+ rp+ p+q+2r+1)+32(6pqr

+4(pr+qr)+2r−2(pq+ p+q+1))
=192pqr+198(pr+qr)+6(34r+ pq)

+6(p+q+1).

Example 4.22. Consider a 3D structure of c−WO3[10,8,15]
nanomultilayer consisting of 6339 atoms and 8910 chemical
bonds, we obtain, N z (c−WO3 [10,8,15]) = 287514.

Theorem 4.23. For all p,q, r ≥ 1, the Sum Nano - Zagreb
index of c−WO3 [p,q,r] nanomultilayer is given by

χ 1
2
N z(c−WO3[p,q, r])

=2(pq+qr+ rp+ p+q+2r+1)(35)
1
2

+(6pqr+4(pr+qr)+2r

−2(pq+ p+q+1))(32)
1
2 .

Proof. Using Table 1 and the mathematical expression of Sum

Nano-Zagreb index χ 1
2
N z(G) = ∑uv∈E(G)

(
d2

u −d2
v
) 1

2 , with
du� dv, we get

χ 1
2
N z(c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣(62−12) 1
2 +
∣∣E(2,6)

∣∣(62−22) 1
2

=2(pq+qr+ rp+ p+q+2r+1)(35)
1
2

+(6pqr+4(pr+qr)+2r

−2(pq+ p+q+1))(32)
1
2 .

Example 4.24. Consider a 3D structure of c−WO3 [15,18,5]
nanomultilayer consisting of 6559 atoms and 9120 chemical
bonds, we obtain,

χ 1
2
N z(c−WO3[15,18,5]) = 51838.8488.

Theorem 4.25. For all p,q,r ≥ 1, the Randić index of c−
WO3[p,q,r] nanomultilayer is given by

R−1
2
(WO3[p,q, r]) = 2(pq+qr+ rp+ p+q+2r+1)/

√
6

+((6pqr+4(pr+qr)+2r−2(pq+ p+q+1)))/(2
√

3).
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Proof. Using Table 1 and the mathematical expression of
Randić index R− 1

2
(G) = ∑uv∈E(G) (du ·dv)

−1
2 , we get

R−1
2
(WO3[p,q, r]) =

∣∣E(1,6)
∣∣(1×6)

−1
2 +

∣∣E(2,6)
∣∣(2×6)

−1
2

= (2(pq+qr+ rp+ p+q+2r+1))/
√

6
+((6pqr+4(pr+qr)+2r−2(pq+ p+q+1)))/(2

√
3).

Example 4.26. Consider a 3D structure of c−WO3 [10,7,4]
nanomultilayer consisting of 1572 atoms and 2112 chemical
bonds, we obtain, R−1

2
(c−WO3[10,7,4]) = 648.901879.

Theorem 4.27. For all p,q,r ≥ 1, the Reciprocal Randić
index of c−WO3 [p,q,r] nanomultilayer is given by

RR(c−WO3[p,q, r])

=2
√

6(pq+qr+ rp+ p+q+2r+1)

+2
√

3(6pqr+4(pr+qr)+2r−2(pq+ p+q+1)).

Proof. Using Table 1 and the mathematical expression of the
Reciprocal Randić index

RR(G) = ∑
uv∈E(G)

√
du ·dv,

we get

RR(c−WO3[p,q, r]) =
∣∣E(1,6)

∣∣√1 ·6+
∣∣E(2,6)

∣∣√2 ·6
= 2(pq+qr+ rp+ p+q+2r+1)

√
6

+
√

12(6pqr+4(pr+qr)+2r−2(pq+ p+q+1))
= 2
√

6(pq+qr+ rp+ p+q+2r+1)
+2
√

3(6pqr+4(pr+qr)+2r−2(pq+ p+q+1)).

Example 4.28. Consider a 3D structure ofc−WO3[10,5,5]
nanomultilayer consisting of 1471 atoms and 1980 chemical
bonds, we obtain, RR(c−WO3[10,5,5]) = 6552.50841.

Theorem 4.29. For all p, q, r ≥ 1, the Reduced Reciprocal
Randić index of c−WO3[p,q, r] nanomultilayer is given by

RRR(c−WO3[p,q, r]) =
√

5(6pqr+4(pr+qr)+2r

−2(pq+ p+q+1)).

Proof. Using Table 1 and the mathematical expression of the
Reduced Reciprocal Randić index

RRR(G) = ∑
uv∈E(G)

√
(du−1) · (dv−1),

we get

RRR(c−WO3[p,q, r])

=
∣∣E(1,6)

∣∣√(1−1)(6−1)+
∣∣E(2,6)

∣∣√(2−1)(6−1)

=2(pq+qr+ rp+ p+q+2r+1)
√

(0) · (5)

+
√
(1) · (5)(6pqr+4(pr+qr)

+2r−2(pq+ p+q+1))

=
√

5(6pqr+4(pr+qr)+2r−2(pq+ p+q+1)).

Example 4.30. Consider a 3D structure of c−WO3 [10,18,5]
nanomultilayer consisting of 4539 atoms and 6270 chemical
bonds, we obtain, RRR(c−WO3[10,18,5]) = 12414.6494.

Theorem 4.31. For all p,q,r ≥ 1, the zeroth - order Randić
index of c−WO3 [p,q, r] nanomultilayer is given by

R0
−1
2
(c−WO3[p,q,r]) = 2(pq+qr+ rp+ p+q+2r+1)

+
3pqr+2(pr+qr)− (pq+ p+q+ r+1)√

2

+
(pq+ p+q+1)r√

6
.

Proof. Using Table 2 and the mathematical expression of the
zeroth-order Randić index, R0

− 1
2
(G) = ∑u∈V (G) (du)

−1
2 , we

get

R0
− 1

2
(c−WO3[p,q,r]) = |V1|(1)

−1
2 + |V2|(2)

−1
2 + |V6|(6)

−1
2

=2(pq+qr+ rp+ p+q+2r+1)

+
3pqr+2(pr+qr)− (pq+ p+q+ r+1)√

2

+
(pq+ p+q+1)r√

6
.

Example 4.32. Consider a 3D structure of c−WO3[3,8,4]
nanomultilayer consisting of 664 atoms and 864 chemical
bonds, we obtain, R0

−1
2
(c−WO3[3,8,4]) = 478.032487.

Theorem 4.33. For all p,q,r ≥ 1, the zeroth - order general
Randić index of c−WO3[p,q,r] nanomultilayer is given by

R0
α(c−WO3[p,q,r])
=2(pq+qr+ rp+ p+q+2r+1)(1)α

+(3pqr+2(pr+qr)− (pq+ p+q+ r+1))(2)α

+((pq+ p+q+1)r)(6)α ,

where α is a real number other than 0 and 1.

Proof. Using Table 2 and the mathematical expression of the
zeroth-order general Randić index R0

α(G) = ∑u∈V (G) (du)
α

and α 6= 0,1, we get

R0
α(c−WO3[p,q,r])
= |V1|(1)α + |V2|(2)α + |V6|(6)α

=2(pq+qr+ rp+ p+q+2r+1)(1)α

+(3pqr+2(pr+qr)− (pq+ p+q+ r+1))(2)α

+((pq+ p+q+1)r)(6)α .
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Theorem 4.34. For all p,q,r ≥ 1, the modified Randić index
of c−WO3 [p,q,r] nanomultilayer is given by

R′(c−WO3[p,q,r])

=
2(pq+qr+ rp+ p+q+2r+1)

6

+
6pqr+4(pr+qr)+2r−2(pq+ p+q+1)

6
.

Proof. Using Table 1 and the mathematical expression of the
modified Randić index R′(G) = ∑uv∈E(G)

1
max{du,dv} , we get

R′(c−WO3[p,q,r])

=
∣∣E(1,6)

∣∣ 1
max{1,6}

+
∣∣E(2,6)

∣∣ 1
max{2,6}

=
2(pq+qr+ rp+ p+q+2r+1)

6

+
6pqr+4(pr+qr)+2r−2(pq+ p+q+1)

6
.

Example 4.35. Consider a 3D structure ofc−WO3[7,8,6]
nanomultilayer consisting of 1902 atoms and 2592 chemical
bonds, we obtain, R′ (c−WO3[7,8,6]) = 432.

5. Comparative Analysis
In this section, we present graphs (Figures 6–8) with key

features that exhibit the trends of dependency among the
values of indices and the number of vertices expressed in
terms of the parameters [p,q,r].
All indices disclose an upward trend with the increase in the
dimension of c−WO3[p,q, r] nanomultilayer. Plotting the
values of indices in graphs, the following observations have
been made:

(i) ZG3(G)< M1(G)< M2(G)< HMl(G)< HM2(G)

(ii) ReZG1(G)< ReZG2(G)< RM2(G)< ReZG3(G)

(iii) R′(G)< R−1/2(G)< R0
−1/2(G)< RRR(G)< RR(G)

(iv) χ1/2N z(G)< N z(G)

(v) RR(G)< N z(G)< ReZG3(G)< HM2(G).

It is evident that, Second hyper Zagreb index (HM2(G)) in-
creases sharply as compared to other indices. It is now an
established fact that total π - electron energy of chemical com-
pounds is closely related with Zagreb indices [14,38], hence
it can be concluded that this energy will rise with the rise in
dimension.

Figure 6. A comparison of various topological indices
(a) Ml(G),M2(G),ZG3(G),HMl(G) and HM2(G)
(b) RM2(G),ReZGl(G),ReZG2(G) and ReZG3(G)
(c) R−1/2(G),RR(G),RRR(G),R0

−1/2(G) and R′(G) and
(d) N z(G) and X1/2N z(G) of c−WO3[p,q,r]
nanomultilayer1571
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Figure 7. A 3−D plot showing the comparison of HM2(G),
ReZG3(G), N z(G) and RR(G) of c−WO3[p,q, r]
nanomultilayer

Figure 8. A 3−D surface plot of c−WO3 [p,q,r] monolayer
with p ∈ [1,5] and q ∈ [1,10] using Octave software.

6. Conclusion
In this article, many important degree based Zagreb and

Randić indices for c−WO3[p,q, r] nanomultilayer were es-
tablished and computed analytically for all possible values of
the parameters p,q and r. As we discussed the key outcomes
of the reported indices, it is clear that the expectation of this
study has been amply manifested. We also demonstrated the
comparison among the indices discussed in this article. This
interdisciplinary approach will shed light on the significance
of mathematical formulation in chemical physics. This could
be a better opportunity to reveal new insights in 3−DWO3
nanostructures through graph theoretic approach. The other
useful topological indices like ABC,GA,SK,SCI and AZI
will be discussed in our subsequent work.
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erties in graphs (conjectures of graffiti-ii). Discrete Math,
111(1993), 197–220.

[23] F. C. G. Manso, H. S. Júnior, R. E. Bruns, A. F. Rubira,
E. C. Muniz, Development of a new topological index
for the prediction of normal boiling point temperatures
of hydrocarbons, the fi index, J. Mol. Liq, 165(2012),
125–132.

[24] Z. Dvorak, B. Lidicky, R. Skrekovski, Randic index and
the diameter of a graph, Eur. J.Comb, 32(3), (2011), 434–
442.

[25] Y. Hu, X. Li, Y. Shi, T. Xu, Connected (n,m)-graphs with
minimum and maximum zeroth-order general Randic
index, Discrete Appl. Math, 155(2007), 1044–1054.

[26] H. Hua, H. Deng, On unicycle graphs with maximum and
minimum zeroth-order general Randic index, J. Math.
Chem, 41(2007), 173–181.

[27] X. Li, J. Zheng, A unified approach to the extremal trees
for different indices, MATCH Commun. Math. Comput.
Chem, 54(2005), 195–208.

[28] G. Su, L. Xiong, X. Su, G. Li, Maximally edge-connected
graphs and zeroth-order general Randic index for α–1. J.
Comb. Optim, 31(1), (2016), 182–195.

[29] Nazeran Idrees, Muhammad Jawwad Saif, Afshan Sadiq,
Asia Rauf, Fida Hussain, Topological Indices of H-
Naphtalenic Nanosheet, Open Chem, 16(2018), 1184–
1188.

[30] Martin Bača, Jarmila Horváthová, Martina Mokrišová,
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